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Abstract 
 

Discrete Weibul (DW) is considered to have the ability to capture under and over-dispersion simultaneously and 

also have a closed-form analytical expression of the quantiles of the conditional distribution. There is a need to 

further investigate how effective the model is, as compared to other competing models in the context of classical 

and Bayesian technique. In this study, the strength of DW is investigated, for both on frequentist and Bayesian 

technique. The Bayesian DW adopts parameterization, which makes both parameters of the discrete Weibull 

distribution to be dependent on the predictors. Bayesian Generalized linear mixed model is also implemented and 

is compared with the BDW, since Bayesian generalized linear mixed model is known to be robust in handling 

over-dispersion in count data. A simulation study and real life data was carried out for over and under-dispersed 

count data. The empirical analysis shows the superiority of Bayesian Generalized linear mixed model over 

Bayesian DW in the case of over-dispersed data as identified in the simulated data and real life data, but not for 

under-dispersed data as in the case of simulated study.  
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1. Introduction 

There are quite a number of models for fitting count data, Poisson model is found to be first of such models, but 

Poisson model is found deficient because of the problem of over and under-dispersion, some other models for 

count data have been developed which are improvement on the Poisson model and they include but not limited to 

negative binomial, COM-Poisson, Zero inflated family, Discrete Weibull, and hurdle model.  

In estimating the parameters of count models, Quasi-maximum likelihood estimate or Poisson maximum 

likelihood is considered the most popular method for estimating count data with the following reasons as; it is us 

known to give convenient or satisfactory results, it is computational simple and easily found in many software 

packages, it has reasonable robust properties, also, it is recommended when doubt exist about the form of the 

variance function, (Cameron and Trivedi 2005).  

Recent studies have adopted Bayesian techniques for fitting count data and it is found efficient in estimating 

count data. Bayesian approaches deals with complex models that lack analytically tractable likelihood functions, 

and the procedures are flexible to be adapted to produce estimates that are excellent and perfect substitutes of 

maximum likelihood estimates (Cameron and Trivedi 2005).  The likelihood, frequentist or classical approach 

requires probabilistic model specification of prior beliefs about unknown parameters, provided a model has been 

initially specified. The frequentist inferences about the parameter require probabilities calculated from the 

sampling distribution of the data, given the fixed but unknown parameter. With Bayesian approach, the prior 

information (probabilistically specified information before the current data are analysed or based on received 

information) will be combined using Bayes’ theorem, the outcome which gives posterior distribution of the 

parameters, say . Bayesian statistics gives a complete inference on the posterior distribution of the parameter 

given the actual data that occurred, hence, Bayesian estimate is calculated from the posterior distribution, and 

therefore estimate or the credible interval depends on the data that actually occurred (Bolstad 2007).   

 

In the study carried out by Haselimashhadi et. al., (2016), the author recognise that using discrete Weibull 

distribution for modelling count gives a promising results as compared to traditional Poisson and Negative 

Binomial distributions and their extensions, such as Poisson mixtures, Tweedie, zero-inflated regression and 

COM-Poisson distribution by (Sellers and Shmueli 2010). Discrete Weibull distribution can capture over and 

under-dispersion simultaneously and a give closed-form analytical expression of the quantiles of the conditional 

distribution. In describing COM-Poisson model, (Chanialidis 2015) states that it is flexible enough to handle any 

kind of dispersion but the key reason why the COM-Poisson distribution not practically used as much is that its 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

46 

normalization constant is not available in a closed from, therefore making approximation to it either 

computationally inefficient or not sufficiently exact.  

 

Saengthong, et. al., (2015) proposed the zero inflated negative binomial-Crack (ZINB-CR) distribution which is 

a mixture of Bernoulli distribution and negative binomial-Crack (NB-CR) distribution, as an alternative 

distribution for the excessive zero counts and over-dispersion.  Klein et. al., (2015) proposed a general class of 

Bayesian generalized additive models for zero-inflated and over-dispersed data within the framework of 

GAMLSS, the authors developed Bayesian inference based on MCMC simulation technique and it was applied 

to claim frequencies in car insurances.  Murat et. al., (2015) carried out a study to compare Bayesian approach 

for zero-inflated and the classic zero-inflated Poisson (ZIP) models, based on parameter estimation and 

information criteria.  The result showed that the Bayesian ZIP model suggests a much more improved fit over 

classic ZIP model. Haselimashhadi et. al., (2016) proposed Bayesian implementation on discrete Weibull 

regression model by implementing the model on parameterization, where both parameters of the discrete Weibull 

distribution can be made dependent on the predictors. The authors introduced a logit link for dicrete Weilbul 

distribution, and drew comparison between discrete Weibul log link and logit link on a number of information 

criteria.  

 

This study seeks to add to literature by providing Bayesian approach for parameter estimation in discrete Weibull 

regression along with Bayesian Multivariate Generalised Linear Mixed Model of Poisson distribution. For the 

choice of prior distributions, non-informative prior is considered, a recent study where non-informative prior is 

used is Chandra and Rathaur (2017) based on (Jeffery and uniform prior distribution). For the Bayesian 

Multivariate Generalised Linear Mixed Model based on Poisson distribution, inverse-Wishart family of prior 

distributions is used, which is a multivariate generalization of the scaled inverse-Chi-square (Gelman 2013).  

 

This study aims first at identifying how Bayesian models fit data well as compared to frequentist models for 

count; in the case of under-dispersed, over-dispersed and excess zeros data.  Second is to compare Bayesian and 

Frequentist using number of scholarly journal articles published by University lecturers as response variable for 

both over-dispersed and excess zeros. Third and lastly, is to predict the relationship covariates have with the 

response variable (numbers of publications).  

 

The remaining part of this paper is organized as follows. Section two describes the inference on Bayesian 

discrete Weibull regression model. Section three describes the inference on Bayesian Multivariate Generalised 

Linear Mixed Model. In Section four, a simulation study for both over and under-dispersion is examined, 

whereas Section five shows the analysis of real data via Bayesian regression models and a comparison was made 

with existing approaches. Finally, in section six conclusions were drawn based on results obtained.  

 

 

2.  Inference for Discrete Weibull Regression 
 

2.1 Discrete Weibull Distribution 

Nagakawa and Osaki (1975) introduced the discrete Weibull distribution as a discretized form of a continuous 

Weibull distribution, just like the geometric distribution is the discretized form of the exponential distribution. 

The discrete Weibull distribution in the context of this study, is referred to as a type I discrete Weibull. 

Bracquemond and Gaudoin (2003) outlined the advantages of type I over the type II and III, type I has an 

unbounded support as compared to type II, also type I has a more straightforward interpretation as compared to 

type III.  

 

If a random variable Y  follows a discrete Weibull distribution of type I, then the cumulative distribution 

function of  Y  is defined as:  

 

                                      
(1 )( ; , ) 1 yG y q q



   ,     0,1,2.......y   

                  (1) 

                                         0       if       0y   

     

The probability mass function is given as  

                                   
(1 )( ; , ) y yF y q q q

 

      0,1,2.....y 
            (2) 
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2.2 Discrete Weibull regression 
 

Let Y  be the response variable with possible values 0,1,2........  and let 
1,...... pX X be p  covariates. We 

assume that the conditional distribution of Y  given X  follows a DW distribution with parameters q  and  . 

There are a number of possible choices to link the parameters q  and   to the covariates, proposing a logit and 

log link follows that: 

 

i. q is dependent on X  as follows: 

 

                                      
  0 1 1log 1 ........ p pq q X X      

                                            (3)
 

or                                     0 1 1log log( ) ........ p pq X X                   
 

ii.   is dependent on X  in this manner 

                                       0 1 1log( ) ........... p pX X     
                  (4) 

                                      
log( ) X 

, 
Where 0 1 1( , ,...... )    

 
A discrete Weibull regression with a discrete is considered to have the ability to capture over and under-

dispersion simultaneously and a closed-form analytical expression of the quantiles of the conditional distribution.
 

Haselimashhadi et. al., (2016) proposed one additional parameterization for q  through a logit link function, and 

has shown to be rather effective for statistical inference, and a link also between the second parameter   and 

the covariates, in order to capture more complex dependencies.  

 

 

2.3 Bayesian Inference for Discrete Weibull Regression 
 

Bayesian estimation of regression parameters 0( .......... )p     and 0( .......... )p    is discussed in this 

sub-section. Given a number of observation n , iy  and 1( .......... )i ipx x  , 1,.........,i n  for the response 

variable Y , and the covariates  X , respectively, and making ix  to be the row vector, ix  can then be written as 

1( .......... )i i ipx x x .  From (2) and (3) above, the likelihood is given by: 

                                         

(1 )

1

( , | , )
1 1

x xi i

i i

i i

y y
x xn

x x
i

e e
X Y

e e

 

 

 
 





    
     
      

    (5) 

Since from (3), 1i ix x
q e e

 
   

Samples are drawn with Metropolis-Hastings sampling (Hastings, 1970) from the full conditional posterior and 

implementation is provided in the R package BDWreg using non-informative prior with an independent 

Gaussian proposal to draw samples from the posterior. From the posterior distribution, the mode of the marginal 

densities is used as point estimate of the parameters, while the whole distribution is used for building credible 

intervals. The idea about using non-informative prior distributions is basically ‘to let the data speak for 

themselves,’ so that inferences are not affected by information external to the current data (Gelman 2013). The 

improper prior is another way of describing the non-informative prior and there is a possibility for improper prior 

distributions to lead to proper posterior distributions.  

Jeffreys introduced the approach that is sometimes used to define non-informative prior distributions, based on 

one-to-one transformations of the parameter: ( )g  , expressing prior on   gives: 

1
( ) ( ) ( ) ( )

d
p p p g

d


   




            (6) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

48 

The assumption of Jeffreys’ general principle is that ( )p   should yield an equivalent result if applied to the 

transformed parameter.   

 

The non-informative prior density can be defined following Jeffreys’ principle as   
1 2

( ) ( )p I   , where 

( )I   is the Fisher information of  .  

 
2 2

2

log ( | ) log ( | )
( ) | |

d p y d p y
I E

d d

 
  

 

    
           

    (7) 

Evaluating ( )I  at 
1( )g  shows that Jefferys’ prior model is invariant to parameterization.  

 

                                       

2

2

log ( | )
( )

d p y
I E

d






 
   

 
 

           

22 1

2

2

log ( | ( )

( )

d p y g d
E

d d

d
I

d

  

 






 
   

 
 



 

Hence,                            
1 2( ) ( )

d
I I

d


 


           (8) 

 
 

3. Bayesian Inference for GLMMs 
 

 GLMMs is an extension of generalized linear models (for example Poisson regression) to include both fixed and 

random effects (mixed models). The general form of the model (in matrix notation) is: 

 

The general form of GLMMs model in matrix notation is  

    
y X Z e   

                                                                        (9)
 

Where y  is a 1N  column vector, X and Z relates are design matrices to the fixed and random predictors to 

the data respectively.  These predictors have associated parameter vectors   and  , and e  is a vector of 

residuals. In MCMCglmm, over-dispersion is always dealt with, in the data after accounting for fixed and 

random sources of variation. MCMCglmm does not use a multiplicative model, but an additive model.  

 

The inverse-Wishart distribution, a multivariate generalization of the scaled inverse-
2 , is used to describe the 

prior distribution of the matrix . The conjugate prior distribution for ( , )  , the normal-inverse-Wishart, is 

conveniently parameterized in terms of hyperparameters 0 0 0 0 0( , ; , )    , matrix   is expressed as 

0

1

0

0 0

( )

| ( , )

Inv Wishart

N



  

  

 
                                                               (10) 

Which correspond to the joint prior density 

              

0(( ) 2 1) 1 10
0 0 0

1
( , ) | | exp( ( ( ) ( ))

2 2

d Tp tr
 

                                   (11) 

The parameters 0  and 0  describe the degrees of freedom and the scale matrix for the 

inverse-Wishart distribution on  . The remaining parameters are the prior mean, 0 , and the number of prior 

measurements, 0 , on the  scale.  
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Multiplying the prior density by the normal likelihood results in a posterior density result to 

0
0

0 0

0

0

n

n

n

n
y

n n

n

n


 

 

 

 

 
 

 

 

 

              

0
0 0 0

0

( )( )T

n

n
S y y

n


 


      


                                          (12) 

where S  is the sum of squares matrix about the sample mean, 

1

( )( )
n

T

i i

i

S y y y y


         (13) 

Samples from the joint posterior distribution of ( , )   are easily obtained using the following procedure: first, 

draw
1| ( )

n ny Inv Wishart
   , then draw | , ( , )n ny N    . 

 

3.2 Variance Structures Model Parameters of GLMM  

Given that ( , )   are residuals, ( )e  are assumed to come from a multivariate normal distribution as given 

below:  

                                   

0 0 0

0 , 0 0

0 0 0

B

N G

e R

 



      
      
      

                  (14) 

Where 0  are the prior means for fixed effects with prior co-variances, matrix B , along with G  and R  are the 

expected co-variances of the random effects and the residual respectively, (Hadfied 2010). MCMC GLMM is 

modelled in R -and G -structure, R  structure represents the Random structure; where the latent variables are 

assumed to have the multivariate normal distribution. For the G -structure, the residual model is indicated in a 

way that should allow each linear predictor to have a unique residual. Conjugate priors the variance structures (

R and G ) follows an inverse-Wishart prior distribution and can be Gibbs sampled in a single block in many 

cases (Gelman 2006). 

 

MCMCglmm allows variance structures of the form: 

    1 1 2 2( ) ( ) .........( )n nG V A V A V A         (15) 

and the inverse structure has the form  

                                               
1 1 1 1 1 1 1

1 1 2 2( ) ( ) .........( )n nG V A V A V A               (16) 

 

Where (V ) and ( )A are matrices, (V ) is estimated, while ( )A are usually high dimensional and treated as 

known. Each component term, however, is formed through the Kronecker product   which allows for possible 

dependence between random effects within a component term, while   is the direct sum. Expanded form give: 

      

1 1

2 2

0

0 ( )

V A
G

V A

 
  

 
       (17) 

The zero off-diagonals represent the independence between component terms.The simplest form is expressed in 

form of Identity matrices 
2

1 1 1( )V A I                          (18) 

which assumes that random effects within a component term are independent but have a common variance and 

appropriate G  component may have the form: 

1 1 2

2 1 2

2

,

1 1 2

,

u u u

u u u

V A I
 

 

 
   

  

                    (19) 
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In practical sense, for each component of the variance structure take the arguments V , n  and fix which specify 

the expected (co)variance matrix at the limit, the degree of freedom parameter, and the partition to condition on. 

When 1fix  , the whole matrix is fixed. 

 

4 Simulation Study 
In this session, simulation from Discrete Weibull distribution is performed in the case of over-dispersion and 

under-dispersion count response variable. To simulate over-dispersed response variable from DW, the value of 

  should be specified such that 0 1  , irrespectively of the value of q , and 2   in case of under-

dispersion, irrespective of the value of q (Kalktawi et.al., 2016). Bayesian and non-Bayesian estimation 

procedure is performed in both over and under-dispersed simulated data with R package DWreg by Vinciotti 

(2016).  Two predictors are uniformly in interval (0, 1) and (0, 2) respectively, and simulate 1000 observations is 

simulated using for Bayesian technique, non-informative prior and Metropolis-Hastings algorithm with an 

independent Gaussian proposal is used to draw samples from the posterior, where the correlation among chains is 

considered in the proposal and 30,000 iterations was performed. Formation of parameters for simulation is as 

stated in table 1. Implementations are carried in R software by R Core team (2017).  

 

Table 1: Formation of parameters for Simulating DW Regression Models 

Over-dispersion 

Model          True Parameters Estimation type  

( , )DW q      0.8q         0.9   Frequentist 

Logit: ( , )DW q     0 1 20.45, 0.2, 0.4     , 0.9   Bayesian 

log : ( , )DW q     0 1 20.45, 0.2, 0.4     , 0.9   Bayesian 

Under-dispersion 

Model          True Parameters Estimation type  

( , )DW q     0.8q         0.9   Frequentist 

Logit: ( , )DW q    0 1 20.45, 0.2, 0.4     , 2.9   Bayesian 

log : ( , )DW q    0 1 20.45, 0.2, 0.4     , 2.9   Bayesian 

 

Table 2: Frequentist Model Selection for Under and Over-dispersed Simulated data 

Model                    Inf. Criteria            Under-dispersed (loglik)                   Over-dispersion (loglik) 

Poison AIC                                  

BIC                                  

CAIC                                 

1773.60 

1793.22 

1787.29 

 

(-882.80) 

 

5810.3 

5829.9 

5823.97 

 

(-2901.13 )             

 

Negbin AIC                                  

BIC                                  

CAIC                                 

2074.46 

2094.45 

2088.53 

 

(-1033.41)    

 

4559.63* 

4579.25 

4573.30 

 

(-2275.80) 

 

ZIP AIC                                  

BIC                                  

CAIC                                 

2078.82 

2070.20 

2087.70 

 

(-1033 ) 

 

5587.90 

5580.20 

5597.70 

 

(-2788.00) 

 

ZINB AIC                                  

BIC                                  

CAIC                                 

2080.00 

2070.20 

1777.84 

 

(-1033) 

 

4563.13 

4553.32 

4570.82 

 

(-2274.56) 

 

Hurdle Pois              AIC                                  

BIC                                  

CAIC                                 

1766.14 

1756.34 

1777.84 

 

(-876.07) 

 

5587.65 

5579.96 

5597.48 

 

(-2787.88)        

 

Hurdle NB      AIC                                  

BIC                                  

CAIC                                 

1766.14 

1738.40* 

2088.52* 

 

(-867.1) 

 

4563.00 

4553.01* 

4570.70 

 

(-2274.50) 

 

CMP AIC                                  

BIC                                  

CAIC                                 

2073.83 

2072.83 

1764.66 

 

(-1033.41) 

 

6598.66 

6613.9 

6614.37 

 

(-3296.33) 

 

D-WB AIC                                  

BIC                                  

CAIC                                 

1756.96* 

1747.14 

1764.66 

 

(-871.49)  

 

4565.84 

 4579.32 

-2275.92 

 

(-2275.92) 
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In the case of Bayesian Glmm, multivariate normal proposal distribution is used, which is determined during 

burin-in phase by adaptive methods. The (R and G) variance structure follows an inverse-Wishart distribution 

prior using Gibb’s sampling approach to draw sample from the posterior distribution.  

 

For the BDW, we consider 30,000 iterations of the sampler and use the first 25% of the data as burn-in. The 

acceptance rate for the scale proposal is found to be (63.6; 64.32) % in the case of over-dispersed data, while 

(72.15; 73.42) % respectively for under-dispersed. Figure (1) shows the posterior distribution of the parameters 

and the chain convergence for under-dispersed count data under the logit link. Similar plots are obtained for the 

other cases. Figure (2) shows the marginal densities of the parameters and the 95% HPD. 

 

Table 3: Bayesian Model Selection for Under-dispersed and Over-dispersed simulated data 

  Model                                AIC                     BIC                    CAIC               QIC                    DIC              PBIC 

log : ( , )Uit BDW q   1752.942 1772.57 1776.57 1.75603 1751.12* 1755.l52* 

log : ( , )U BDW q   1751.84* 1771.4* 1775.5* 1.75493* 1751.21 1755.345 

log : ( , )Oit BDW q   - - - - 2070.82 - 

log : ( , )O BDW q   4561.804 4581.43 4585.43 4.56489 4559.66 4563.63 

UBPglmm  4560.406* 4580.03* 4584.00* 4.56341* 4559.65 4563.55* 

OBPglmm  -  - - 3910.63* - 

 

 

 
Figure 1: Posterior distribution of the Parameters and the Chain Convergence for Simulated Data.  
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Log: over-dispersed 

 

              Logit over-dispersed 

 
Log: under-dispersed 

 
             Logit: under-dispersed 

                          Figure 2: Marginal Densities of Parameters and 95% HPD 

 

The frequentist approach and Bayesian techniques is carried out on both under-dispersed and over-dispersed 

simulated dataset and compared. The Poisson, Negative Binomial, Zero-inflated Poisson, Zero-inflated NB, 

Hurdle models, COM-Poisson and DW was carried out using frequentist estimation. Also BDW logit-link, BDW 

log-link and MCMCglmm was equally implemented and the models are compared on the basis of criteria such 

as; Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), logLik, Consistent AIC (CAIC) for 

frequentist. For Bayesian estimation, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), 

Deviance Information Criterion (DIC), Quasi-likelihood Information Criteria (QIC), Bayesian Predictive 

Information Criterion (BPIC), and Consistent AIC (CAIC). 

 

 

Figure (2) shows that no parameter is significant in the case of over-dispersion (broken green lines), while only 

parameter one parameter ( 1 ) is significant for both log link and logit link.  In tables 2 and 3, where the 

frequentist models is represented in table (2) and Bayesian models in table (3). The (*) indicate the minimum 

value of the information criteria for over and under-dispersed data for simulated data, the lower the better.

log : ( , )Uit BDW q   represents under dispersed with logit link, log : ( , )U BDW q   represents under 

dispersed with log link, log : ( , )Oit BDW q   represents over-dispersed with logit link, log : ( , )O BDW q   

represents over-dispersed with log link, UBPglmm  represents under dispersed MCMC Glmm based on Poisson 

distribution, and OBPglmm  represents over dispersed MCMC Glmm based on Poisson distribution. 

 

In the class of frequentist estimation technique, discrete Weibull (DW) outperforms others, in the case of under-

dispersed count data while negative Binomial outperformed other models in the case for over-dispersed count 

data.   

 

In the class of Bayesian model for under-dispersed count data, log : ( , )U BDW q   and 

log : ( , )Uit BDW q   outperforms UBPglmm . While OBPglmm  outperforms log : ( , )O BDW q   and 

log : ( , )Oit BDW q   in the case of over-dispersed data.  
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5.  Analysis of Counts in Scholarship 
In this section, the performance of the Bayesian discrete Weibull regression model is examined in the case of 

real-life datasets from the academic domain. Comparison is drawn between Bayesian discrete Weibull regression 

model and Bayesian MCMCglmm, and eight other regression models based on frequentist (Poisson, Neg Bin, 

ZIP, ZINB, Hurdle Poisson, Hurdle Negbin, Discrete Weibul, and COM-Poisson) based on the criteria stated 

above.  

 

BDW model is fitted with non-informative prior on the regression parameters, carrying out 30,000 iterations for 

the Metropolis-Hastings algorithm and an acceptance rate in the (44.8; 45.93) % interval for over-dispersed data, 

implemented in BDWreg package, “MCMCglmm” package was used for Bayesian Multivariate Generalised 

Linear Mixed Model based on Poisson regression. Frequentist regression was carried out with the package 

COUNT in R by Hilbe (2016).  Empirical analysis shows that logit(q) link of BDW outperformed the log(q) link 

in the case of over-dispersion. In the class of frequentist estimation technique, Hurdle Negbin outperforms other 

models, while Bayesian Poisson (BPglmm) outperforms log ( , )BDW q   and logit ( , )BDW q   in the case of 

Bayesian. For over-dispersed excess zeros, using frequentist approach, ZIP and Hurdle Negbin outperforms other 

models. For the Bayesian technique, Poisson (BPglmm) outperforms log ( , )BDW q   and logit ( , )BDW q  . 

 

Figure 4 shows the 95%Highest Posterior Distribution interval (HPD) for Bayesian discrete Weibull, while 

figure 3 shows the trace plot and density of Bayesian Glmm for over-dispersed count data. Figure 4 shows the 

parameters that are significant (green and doted), while the red and thick lines are parameters that are not 

significant.  

 

 
Figure 3: Trace of Sampled Output and Density Estimates of the Covariates for over-dispersed with Bayesian 

Glmm 
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Bayesian techniques have proven to perform better than the frequentist, particularly in the case the Bayesian 

MCMCglmm for over-dispersed and over-dispersed excess zeros for the real life count data considered in this 

study. 

 

Table 4: Model Selection for Over-dispersed and Over-dispersed Excess Zero for Frequentist Models 
Model                    Inf. Criteria            Over-dispersed (loglik)             Over-dispersion Excess zero(loglik) 

Poison AIC                                  

BIC                                                               

765.81 

761.33 

 

(-373.90) 

551.45          

576.97 

 

(-266.73 )             

Negbin AIC                                  

BIC                                                                

720.927 

746.455 

 

(-351.46)    

492.28 

517.81 

 

(-237.14) 

ZIP AIC                                  

BIC                                                               

795.70 

768.00 

 

(-381.90) 

486.16* 

458.40 

 

(-227.1) 

ZINB AIC                                  

BIC                                                              

720.33 

690.70 

 

(-343.19) 

486.89 

537.09 

 

(-226.45) 

Hurdle Pois              AIC                                  

BIC                                                                

795.56 

767.76 

 

(-381.78) 

487.81 

460.01 

 

(-227.91)       

Hurdle NB      AIC                                  

BIC                                                                

720.31* 

690.52* 

 

(-343.16) 

488.68 

454.68* 

 

(-227.34) 

CMP AIC                                  

BIC                                                                 

866.00 

866.69 

 

(866.00) 

515.00  

537.91 

 

(-249.39)      

D-WB AIC                                  

BIC                                                                

723.45 

708.02 

 

(-871.49)  

494.86 

497.92 

 

(-237.762) 
 

 

Table 5: Model Selection for Over-dispersed and Over-dispersed Excess Zero for  Bayesian Models 
  Model                                 AIC                         BIC                          CAIC                 QIC                       DIC                 PBIC 

log : ( , )Uit BDW q   722.877* 748.404* 757.404* 5.90815* 721.832 730.688 

log : ( , )U BDW q   723.246 748.772  757.773 5.91108 721.3956 730.077 * 

log : ( , )Oit BDW q   548.40 568.251 550.10 - 638.673* - 

log : ( , )O BDW q   494.557 520.0839 528.0839* 4.09609 493.8645 502.904 

UBPglmm  493.965* 519.4918* 528.4918 4.09139* 493.4428 502.487* 

OBPglmm  403.36 423.22 405.06 - 463.052*  - 

 

Over-dispersed log 

 
Over-dispersed logit 

                 Over-dispersed logit 

 
 

                     Over-dispersed logit 

Figure 4: Marginal Densities of Parameters and the 95% HPD  
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Table 6: Posterior Mean and Confidence Interval for Bayesian GLMM for the period of one year 

                                            Post.mean                       l-95%CI                     u-95%    

Intercept 1.466 -2.840 6.014 

GENDER 4.747 0.085 8.874 

MS 5.048 0.093 10.84 

CHD 0.5033 0.0657 1.423 

EXP 0.233 0.0679 0.488 

LEVEL 7.387 0.080 9.604 

UGC 0.242 0.066 0.515 

PGC 0.404 0.074 0.978 

 

Table 7: Posterior Mean and Confidence Interval for Bayesian GLMM for the period of three years 

                                      Post.mean                             l-95%CI                       u-95%    

Intercept 0.147 -4.748 4.864 

GENDER 5.854 0.069 14.26 

MS 5.986 0.067 16.5 

CHD 0.483 0.056 1.330 

EXP 0.263 0.072 0.555 

LEVEL 3.640 0.081 9.637 

UGC 0.355 0.078 0.814 

PGC 0.485 00728 1.193 

 

From the posterior means and confidence intervals in table 6, and 7, it is observed that Gender, Level, and 

Marital Status really contribute to the variability of number of article production by lecturers. Number of 

children, year of experience, undergraduate courses taught, and postgraduate courses taught do not have much 

impact on number of journal article produced by lecturers.  Result from frequentist approach further explained 

with Zero-inflated Negative Binomial as follows: 

 

From table (8) below, for every increase in male gender in the system, the number of publications produced will 

increase by a factor of 1.29. Addition of married individual into the system increases number of publication by 

2.76. Also, addition of a child into the family of a lecturer reduces the number of article publication by a factor 

of 0.894. Increase in year of experience does not necessarily increase publication output; it reduces it by a factor 

of 0.99. Every increase in number of lecturer in senior cadre increases publication output by 1.47. Every increase 

in undergraduate courses taught increases publication output by a factor of 1.02.  

 

Table 8: Coefficient and Confidence Interval for number of publication in one year  

                                                    CO                          2.5 pct                          97.5 pct          

count_(Intercept) 7.588246e-01 4.419457e-01 1.302908e+00 

count_GENDER 1.290373e+00 9.286388e-01 1.793015e+00 

count_MS 2.764620e+00 1.564341e+00 4.885844e+00 

count_CHD 8.944647e-01 7.618634e-01 1.050145e+00 

count_EXP 9.906919e-01 9.637305e-01 1.018408e+00 

count_LEVEL 1.474057e+00 9.348171e-01 2.324353e+00 

count_UGC 1.019014e+00 9.873434e-01 1.051700e+00 

count_PGC 1.066096e+00 9.921887e-01 1.145508e+00 

 

From table (9) below, for every increase in male gender in the system, the number of publications produced will 

increase by a factor of 1.18. Addition of married individual into the system increases number of publication by 

1.51. Also, addition of a child into the family of a lecturer reduces the number of article publication by a factor 

of 0.99. Increase in year of experience does not necessarily increase publication output; it reduces it by a factor 

of 0.98. Every increase in number of lecturer in senior cadre increases publication output by 1.16. Every increase 

in undergraduate courses taught reduces publication output by a factor of 0.99. 
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Table 9: Coefficient and Confidence Interval for number of publication in three years 

                                                    CO                        2.5 pct                      97.5 pct          

count_(Intercept) 3.9252303 2.97641196 5.1765121 

count_GENDER 1.1811979 1.00906103 1.3826999 

count_MS 1.5098190 1.13049070 2.0164283 

count_CHD 0.9940997 0.92085986 1.0731646 

count_EXP 0.9804618 0.96820485 0.9928739 

count_LEVEL 1.1649363 0.92776472 1.4627378 

count_UGC 0.9962218 0.98053341 1.0121612 

count_PGC 1.1123543 1.07318927 1.0121612 

 

 

6.  Summary and Conclusion 
 

In this study count data has been fitted using frequenist models along with well-known Bayesian regression 

models of Bayesian Discrete Weibull and MCMCglmm. The performance of these models that are being used for 

fitting count data is closely observed using simulated data and real life data. Also, application of the proposed 

models have been considered in academic domain, particularly analysing counts of number of article 

publication(s) by lecturers in a private University in Nigeria; for both one year period and three year period 

respectively. Simulation was carried out for both over- and under-dispersed data where response variable is taken 

from from Discrete Weibul distribution and predictors from uniform distribution respectively, so as to test the 

performance of these models and draw comparison among them, both from Bayesian and frequentist techniques.  

 

Simulation study shows that Bayesian estimation method performs well compared to frequentist. In either case, 

Bayesian Discrete Weibull shows superior technique than frequentist DW; also, Poisson model based on 

MCMCglmm shows a superior technique to frequentist Poisson particularly for over-dispersed and over-

dispersed excess zeros, but not under-dispersed data.  

 

The study further shows that BDW with logit link seems to perform credibly well when covariates are few, that 

is, in the case of simulation study carried out with two covariates. The real life data set consist of seven 

covariates, and the log link outperforms the logit link. Also MCMCglmm based on Poisson distribution is 

observed to perform well with over-dispersed data as noted by Hadfield (2010), but not in the case of under-

dispersion as shown in the simulation study. The applicability Bayesian models to real life datasets give a 

meaningful result and reasonable inference is drawn from it. 

 

Based on the results obtained, the following are hereby recommended: 

(i) In the class of frequentist models, discrete Weibul fits count data well, it is more suitable for under-

dispersed among other models under examination. Therefore, it is recommended for use. 

(ii) Negative Binomial and Hurdle negative Binomial performs well both for under-dispersed and over-

dispersed data. This is demonstrated in the simulation and real life data. 

(iii) In the class of Bayesian models, Bayesian discrete Weibull with logit link should be considered 

when predictors are few, but when number predictors is large, but Bayesian discrete Weibull with 

log link should be considered when predictors are few.    

(iv) Bayesian Generalized mixture model have proven to outperform Bayesian discrete Weibull for 

over-dispersed data and not under-dispersed. It is therefore recommended for use for over-dispersed 

and over-dispersed excess zeros.   
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