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Abstract 

A modified version of a bioeconomic model for Prey-Predator interaction in polluted 

environment with constant harvesting strategy and reserve zone is proposed and studied. The 

coexistence equilibrium state has been analysed using the method of linearization and Routh-

Hurwitz criteria. The analytical results revealed that the coexistence equilibrium state is 

locally asymptotically stable. Results of numerical experiments carried out using Matlab 

R2010a agree substantially with the analytical results. The implication of the results obtained, 

is that creation of reserve zones have significant effects on both Tilapia and Nile perch yields 

in the unreserve zone. Therefore, the study recommends the creation of reserve zones with 

migration rate of 0.7  for effective control of overexploitation and extinction of fish 

biomass in both reserve and unreserve zones.  

Key words: Bioeconomic; Reserve Zone; Prey-Predator; Coexistence equilibrium point; 

Stability 

1.  Introduction 

Fish has been one of the sources of protein that substantially help human beings health wise. 

Economically, it had been known to contribute immensely in the economic growth and 
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development of any given country. Over the last two decades aquiculture had become an 

enterprise valued by the private sector, public sector (urban and rural communities) and is 

gaining ground especially in Nigeria. Fishing is consequentially considered as an alternative 

income-generating venture. Fishing in general, offers many benefits to man these includes: 

food, employment, business opportunities and recreational activities. 

However, overfishing can reduce the fish stock or biomass of reproductive age of fish below 

sustainability (threshold). According to the Food and Agriculture Organization FAO (2009), 

in the year 2005 about 50% of the fish stock under observation experienced overexploitation 

or depletion.  It is desirable that in the management of a renewable resource such as fish, a 

strategy is developed that will allow an optimum harvest rate and yet keep the populations 

above a sustainable level. A major current focus in fishery management is how best to ensure 

harvesting threshold (Brauer, and Castillo-Chavez, 2001). Clearly, the objective of the 

management is to devise harvesting strategies that will not drive fish species to extinction. 

Therefore, the notion of overexploitation and extinction of the fish populations and their 

various species, as well as a precautionary harvesting policy is always critical.  

Meanwhile, the study of the population dynamics under the influence of harvesting coupled 

with Prey-predator interaction has been a subject of mathematical bioeconomics. One of the 

substantial reasons for studying the dynamics of the population of Tilapia (Oreochromis 

niloticus)  and Nile perch (Lates niloticus) species in a Prey-Predator interaction coupled with 

harvesting, is to improve the control of overexploitation and extinction of fish species and 

presumably wipe off the phenomena of overexploitation and extinction of fish species.  

Several studies however, exploited this subject in different versions, approaches and goals 

which the studies intended to achieve. This study reviewed the followings ( Kar, and Matsuda, 

2006), ( Kar, and Chakraborty, 2010), ( Christou, Cameroun, and Idel 2012 ), ( Kar, and 
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Matsuda, 2008), ( Zhang, and Yang, 2007), ( Daga, Singh, Jai, and Ujjainkar, 2012), ( Kar, 

and Chakraborty, 2012), ( Zhang, Zhang, and Bai, 2012), ( Sharma, and Gupta, 2014), ( 

Pezzey, Roberts and Urdal, 2000), and ( Mayengo, Luboobi and Kuznetsov, 2014).   

In this paper the model due to Mayengo, Luboobi, and Kuznetsov (2014) is modified by 

integrating reserve zone as an alternative strategy in fishery management, and also accounted 

for natural death. The habitant of these fish species is partitioned into reserve and unreserve 

zones. Fishing activities are restricted to the reserve zones only.  

2.0 Materials and Methods. 

In this section, the mathematical formulation of the compartmental model for Prey-Predator 

interaction with constant harvesting strategy and reserve zones is presented. The total 

population of Tilapia (Oreochromis niloticus)  and Nile perch (Lates niloticus) species in a 

Prey-Predator interaction is divided into four compartments as shown in Figure 1 while the 

model variables and parameters are presented in Table 1 and Table 2 respectively. Hence, the 

compartmental model represents a biological dynamics. The economic features could not be 

represented in like manner, as such they have been incooperated in the model equations.  

2.1 Model Description 

The population of Tilapia perch in an unreserve zone ( )x t is naturally recruited at the rate 

1

1

1
1

k

 
 

 

 and decreases by harvesting at the rate 1 1q E , natural death rate 1 , death rate 

due to water pollution 1d  and Predation effect
A x




. The Tilapia perch in an unreserve 

zone requires a spillover from the reserve zone at the rate 1 . The population of Nile perch in 

an unreserve zone ( )y t is naturally recruited at the rate
2

2

1
1

k

 
 

 

, predation benefit

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

30 

A x




, and spillover from the reserve zone at rate 2 . Moreover, the population decrease by 

harvesting 2 2q E , natural death rate 2 , death rate due to water pollution 2d . The population of 

Tilapia perch in reserve zone ( )Rx t is naturally recruited at the rate 
3

3

1
1

k

 
 

 

 and 

decreases by natural death rate 3 , and spillover from the reserve zone at rate 1 . The 

population of Nile perch in reserve zone ( )Ry t is naturally recruited at the rate 
4

4

1
1

k

 
 

 

 

and decreases by natural death rate 4 , and spillover at rate 2 . 

Furthermore, considering the economic feautures using the cost benefit measure for both fish 

species, total benefit as 1 1 1 1p q E  and 1 1 1c E as the total cost for Tilapia perch is generated; 

while 2 2 2 2p q E , 2 2 2c E represents total benefit and total cost for Nile perch respectively. 

Table 1: Model Variables and their Description  

Symbol Descriptions 

 

( )x t  Number of Tilapia perch in unreserve zone at time t  

( )y t  Number of Nile perch in unreserve zone at time t  

( )Rx t  Number of Tilapia perch in reserve zone at time t  

( )Ry t  Number of Nile perch in reserve zone at time t  

( )TE t  Economic rent for Tilapia perch populations at time t  

( )NE t  Economic rent for Nile perch populations at time t  
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Table 2: Model Parameters and their Description  

Symbol Descriptions 

 

1  Intrinsic growth rate of Tilapia perch in the unreserve zone 

2  Intrinsic growth rate of Nile perch in the unreserve zone 

3  Intrinsic growth rate of Tilapia perch in the reserve zone 

4  Intrinsic growth rate of Nile perch in the reserve zone 

1k  Environmental carrying capacity for Tilapia perch in the unreserve zone 

2k  Environmental carrying capacity for Nile perch in the unreserve zone 

3k  Environmental carrying capacity for Tilapia perch in the reserve zone 

4k  Environmental carrying capacity for Nile perch in the reserve zone 

1  The maximal relative increase of predation 

2  
Conversion factor from Prey to Predator 

A  Saturation constant 

1d  Death rate of Tilapia perch due to water pollution 

2d  Death rate of Nile perch due to water pollution 

1q  Catchability coefficient for Tilapia perch 

2q  Catchability coefficient for Nile perch 

1  Stiffness parameter for Tilapia perch 

2  Stiffness parameter for Nile perch 

1p  Constant price per unit biomass for Tilapia perch 

2p  Constant price per unit biomass for Nile perch 

1c  Constant cost per unit biomass for Tilapia perch 

2c  Constant cost per unit biomass for Nile perch 

1  Migration rate of Tilapia perch from reserve to unreserve zone 

2  Migration rate of Nile perch from reserve to unreserve zone 

1  Natural death rate of Tilapia perch in unreserve zone 

2  Natural death rate of Nile perch in unreserve zone 

3  Natural death rate of Tilapia perch in reserve zone 

4  Natural death rate of Nile perch in reserve zone 

1E  Harvesting effort for Tilapia perch 

2E  Harvesting effort for Nile perch 
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2.2 Model Assumption 

The following assumptions are made in the formulation of the model 

i. the populations of both Preys and Predators are partitioned into reserve and unreserve 

zones each; 

ii. migration is only one way from reserve zone to unreserve zone;  

iii. water in the reserve zones is assumed pollution-free;  

iv. The population in each reserve zones is assumed to be homogeneous; 

v. natural death rate in reserve zone is relatively smaller than that of unreserve zone 

vi. we assumed that 2 1  only in unreserve zone, but 3 4  in reserve zone 

  

Where 1,2.i   

Figure 1: Flow Diagram for the Model 
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2.3 Model Equations 

1
1 1 1 1 1 1

1
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y
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k
  
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    
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         4

1 1 1 1 1( ) ( )TE t p q x c E            5

2 2 2 2 2( ) ( )NE t p q y c E            6

0 0 0 0 0 0(0) , (0) , (0) , (0) , (0) , (0) , 0T T N N R R R Rx x y y E E E E x x y y t          

 7  

3.0 Results 

In this section, the analytical and numerical results obtained in this work is presented below: 

3.1 Coexistence Equilibrium Point of the Model  

The coexistence equilibrium points of the model was obtained by equating the right hand 

sides of equations (1) - (6) to zero and solving the resulting system simultaneously to get  

   

 

   

 
1 3 1 1 1 1 1 3 1 1 1 3 1 2 1 4 2 2 2 2 2 4 2 2 2 4 2 1* 1 3 2 4

1 2

3 4 1 1 3 1 2 2 4 1

, , , , ,
A a k k k b k A a k k k b kb k b k

P
k q A k q A

               
 

     

              
  
   

 

Where   , 1,2.i i i ia d i        , 1,2. 3,4.i j i jb i j       , 1,2.i
i

i i

c
i

p q
    
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3.1.1 Conditions for existence of the model 

The existence of  0 0,0,0,0,0,0P is trivial. The equilibrium points P exist if and only if 

1 2 1 2, , , 0a a b b  that is if 

     

1 1 1

2 2 2

3 1 3

4 2 4

0

0

0

0

d

d

 

 

  

  

   


   


   
   

                  8  

The existence of the (coexistence) interior equilibrium point  * * * * * *, , , , ,R R T NP x y x y E E is 

subject to conditions  8 and   9  . However, conditions  8 are necessary but not sufficient 

conditions for the existence of the interior equilibrium point. Therefore, the sufficient 

conditions for the interior equilibrium point to exist are 

 
 

 
 

1

1 3 1 1 1 1 1 3 1 1

1 3 2

1

2 4 2 2 2 2 2 4 2 2

2 4 1
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a k k k b
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A
a k k k b

k
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    

 


    

 

 
     




      


                   9  

Proposition 3.1.1 

The interior equilibrium point  * * * * * *, , , , ,R R T NP x y x y E E of the system  1 -  6 exists if and 

only if the conditions in  9 are satisfied. It follows that, the satisfaction of these conditions 

guarantee the coexistence of Prey, and Predator in the system alongside their economic rents. 

3.2 Local stability of the Coexistence Equilibrium Point of the Model 

In this section, the linearization technique and Routh-Hurwitz criteria to investigate the local 

stability of the coexistence equilibrium point of the model is used. 
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Exploring linearization technique for equations in (1) - (6) of the model gives 

   
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         10

  

Evaluating  10  at P
, we have  11  
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  11  

 By using Routh – Hurwitz criteria the corresponding characteristic polynomial 

equation of the Matrix J  is  

6 5 4 3 2

1 2 3 4 5 6( )f m m m m m m              

 

The corresponding Hurwitz matrix is given by  
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Where: 

1 1 2 1 4( ) ( )m b b s s     

2 1 2 1 4 1 4 2 3 1 1 5 2 2 6( )(1 ( )) ( )m b b s s s s s s q s q s        

 3 1 2 1 4 2 3 1 4 1 1 5 2 2 6 1 1 4 5 2 2 1 6( ) ( ) ( )m b b s s s s s s q s q s q s s q s s           

4 1 2 2 2 1 6 1 1 4 5 1 2 1 4 2 3 1 1 2 2 6 1 2 1 2 5 6( )( ) ( )m b b q s s q s s b b s s s s q q s q q s s           

5 1 2 1 2 1 2 5 6 1 2 2 2 1 6 1 1 4 5( )( ) ( )m b b q q s s b b q s s q s s       
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The determinant of the matrix  12 and following through the Routh-Hurwitz criteria, 

conditions  13 and  14 were obtained. Therefore, the necessary and sufficient condition for 

local stability using Routh-Hurwitz criteria resolved as given below: 
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2 2 2 5

1 4 5 1 2 3 1 1 4 5 1 2 3 1 1( )( ) ( )m m m m m m m m m m m m m m m           

  13

3 2 2 2 3 2

1 3 4 6 1 2 5 1 5 4 5 1 2 6 5 3 3 6 2 5 5 1 5 2 5 3 6( ) 2 ( ) ( ) ( 3 )m m m m m m m m m m m m m m m m m m m m m m m m m m m       
2 2 2 2

1 6 2 3 1 6 4 5 3 1 4( ) ( )m m m m m m m m m m m                      

 14  

Proposition 3.2.1 

The local stability of the interior equilibrium point of the model equations in  1 -  6  is 

locally asymptotically stable if the conditions in  13 and  14 hold. 

3.3 Numerical Simulation 

In this section, the numerical simulation of the model using Runge-Kutta order four scheme is 

presented. The baseline values for the variables and parameters as provided in Table 3 for 

numerical simulations is presented. The impact of reserve zones with varied migration rate 

from reserve to unreserve zones is computed see table 4. In addition, the computational results 

of the impact of reserve zones is presented in figure 1 through 5. 

 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

38 

Table 3: The baseline value for Variables and Parameters for the Model for Prey-Predator 

Interaction in Polluted Environment with Constant Harvesting Strategy and Reserve Zones 

Parameter Value Source  

 

1  0.80                        Mayengo et al, (2014) 

2  0.65                    Mayengo et al, (2014) 

3  0.90                   Assumed 

4  0.90                   Assumed 

1k  600000                       Mayengo et al, (2014) 

2k  500000                       Mayengo et al, (2014) 

3k  600000                       Mayengo et al, (2014) 

4k  500000                       Mayengo et al, (2014) 

1  0.000005                       Mayengo et al, (2014) 

2  0.000003                       Mayengo et al, (2014) 

A  60000                       Mayengo et al, (2014) 

1d  0.2                       Mayengo et al, (2014) 

2d  0.2                       Mayengo et al, (2014) 

1q  0.000005                       Mayengo et al, (2014) 

2q  0.000012                       Mayengo et al, (2014) 

1  0.1                       Mayengo et al, (2014) 

2  0.12                       Mayengo et al, (2014) 

1p  750                       Mayengo et al, (2014) 

2p  700                       Mayengo et al, (2014) 

1c  500                   Assumed 

2c  500                   Assumed 

1  0.5                   Assumed 

2  0.5                   Assumed 

1  0.2                   Assumed 

2  0.2                   Assumed 

3  0.1                   Assumed 

4  0.1                   Assumed 

1E
 

1.20                       Mayengo et al, (2014) 

2E
 

1.50                       Mayengo et al, (2014) 
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Table 4: Computed Results of the Impact of Reserve Zone on Optimal Economic Rent of the 

Fish Species with Increased Migration Rate from Reserve to Unreserve Zone  

Change of migration rate *

TE  
*

NE  

 

0.5 

 

20,000,115,591 

 

66,754,772,177 

 

 

0.6 24,000,115,591 80,105,669,726 

 

 

0.7 28,000,116,697 93,456,567,276 

 

0.8 32,000,115,591 106,807,464,825 

 

 

0.9 36,000,114,485 120,158,362,374 

 

 

1 40,000,116,144 133,509,254,607 

 

 

Example 1:  

In this example, we use baseline parameter values in table 3 with (0) 40000x  , (0) 40000y 

(0) 40000Rx   and (0) 40000Ry  to simulate results in figures 1 through 5 

 

Figure 1: Simulation Results for the Impact of Reserve zone (i.e. Migration from Reserve to 

Unreserve Zone) Using Values of Parameters as Given in Table 3. 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

time t

x
,
y
,
x
r
,
y
r

 

 

Tilapia perch (x) in unreserved zone

Nile perch (y) in unreserved zone

Tilapia perch (xr) in reserved zone

Nile perch (yr) in reserved zone

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

40 

 

 

Figure 2: Simulation Results for the Impact of Reserve Zones increasing Migration Rate to 0.6 

keeping all other Parameter Values as Provided in Table 3 constant  

 

 

Figure 3: Simulation Results for the Impact of Reserve Zones increasing Migration Rate to 0.7 

keeping all other Parameter Values as Provided in Table 3 constant 
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Figure 4: Simulation Results for the Impact of Reserve Zones increasing Migration Rate to 0.8 

keeping all other Parameter Values as Provided in Table 3 constant  

 

 

Figure 5: Simulation Results for the Impact of Reserve Zones increasing Migration Rate to 0.9 

keeping all other Parameter Values as Provided in Table 3 constant  
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In this numerical simulations, the biomass density of Tilapia and Nile perch species in the 

presence of reserve zones is examined. From figure 1, it is clear that biomass density of both 

Tilapia and Nile perch species in the unreserve zones increase more sharply (due to spill over 
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level. But, biomass density of Tilapia and Nile perch species in reserve zones increase in snail 

pace near their carrying capacity and eventually settle down to their equilibrium level.  

In addition, as the migration rate from reserve to unreserve zone is varied from 0.5 to 0.6, 0.7, 

0.8, and 0.9 respectively as presented in figures 1 through 5. The results as plotted on the 

graphs indicate that, as the migration rate from reserve to unreserve zone increases, the more 

the reserve zones shrink consequence to periodic spill over. Similarly, as the migration rate is 

varied; optimal economic rent changes. Nonetheless, where the migration rate begins to affect 

the reserve zones negatively; optimal economic rent is at peak. This would only be achieve at

0.7  .  Migration rate beyond 0.7  exhibits the behavior of the model without reserve 

zones. Therefore, Migration rate should be adequately controlled in order not to overstretch 

the reserve zone; this would be achieved if steady migration rate that would not adversely 

affect the reserve zone is maintained.  

5. Conclusion 

A modified version of a bioeconomic model due to Mayengo, Luboobi, and Kuznetsov (2014) 

had been proposed. The study observed the long time efficiency of the reserve zone as to 

remedy the overexploitation and extinction of fish biomass caused by intensive harvesting, 

Prey-Predator interaction, and water pollution as well. Therefore, the modified model 

provides a better control of overexploitation and extinction of fish stock. The simulation 

results of the model show that, increase in migration rate beyond 0.7   diminishes the 

biomass density of Tilapia and Nile perch species in reserve zone. Thus, the ability of both the 

species in reserve zone to regenerate quickly is hampered and if care is not taken the species 

undergo an irreversible decline and cannot recover even if harvesting ceased (see figures 4 - 

5). The study suggested that, migration rate at 0.7   should be maintained in the reserve 
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zone as spill over to unreserve zone; so that the reserve zones would be able to adequately 

regenerate itself.  
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