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Abstract 

 In this work, the influence of transverse magnetic field on peristaltic transport of an incompressible Eyring–

Powell model fluid through porous medium in a symmetric channel is investigated. No slip condition and wall 

properties have been taken into consideration. The fundamental governing equations; mass conservation and 

momentum are modelled with respect to wave frame and then simplified with help of assumption long 

wavelength approximation and low Renold's number. The final resulting non-linear system has been solved for 

stream function by adopting the regular perturbation technique. The impact of physical significance of various 

parameters on the stream function, velocity profile, pressure gradient, and wall shear stress is utilized in details 

via graphs.  
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1. Introduction  

 The non-Newtonian fluid flow investigation regarded much interesting due to its extensive application in 

various field such as physiology, engineering and industry (Devakar et al. 2016). Certainly various constitutive 

relations are suggested for the flow description of such fluids diverse characteristics (Bhatti & Abbas 2016; 

Ismail et al. 2013). Powell and Eyring pointed out a fluid model known as “Eyring- Powell” fluid that gives 

many benefits than the other non-Newtonian fluids (Powell & Eyring 1944). This model although it is 

mathematically complex but it still has a certain advantages beyond the other models. It's constitutive equation 

deduced from the kinetic theory of fluids not by using empirical relations also it can be truly reduces into 

Newtonian fluid for both low and high shear rates (Adesanya et al. 2015). Recently numerous researchers are 

even now engaged for the flow analysis of non-Newtonian fluids and the peristalsis transportation. In connection 

with “peristalsis”, the process in which the fluid is transported by means of periodic progressive wave advancing 

axially across the length of distensible tube ( Shapiro 1969). This phenomenon has a wide application in 

physiological fluid transport in biological system such as urine transport from kidney to the bladder, lymph 

transportation in the lymphatic vessels, movement of ovum in fallopian tube and more others also it is 

recognized in designing many devices like dialysis machine, heart lung machine, blood pump machine, and cell 

separators (Parkes & Burns 1967). It is important to observe that the fluid involved in the aforementioned 

applications is non-Newtonian. So, numerous practical application and studies have brought about considerable 

interest in connection between peristaltic flow and Eyring- Powell fluid. Alsaedi et al. (2014) used Eyring-

Powell fluid to discuss the effects of convective conditions and chemical reactions on peristaltic flow. Abbasi et 

al. (2014) constructs a mathematical model for the peristaltic transport of Eyring-Powell fluid in a curved 

channel. Asghar et al. (2013 ) studied the radiative effect in three-dimensional flow of MHD Eyring-Powell 

fluid. Hina (2016) present the combined effects of slip and magneto hydrodynamics on the peristaltic motion of 

Eyring-Powell fluid with heat transfer. The flow through porous medium is of pivotal importance in 

geomechanics, biomechanics and industry Elshehawey et al. (2006). The application of such flows is basically 

seen in filtration of fluids, seepage of water in river beds,   movement of underground water and oils, 

physiological fluid flow in bile duct and flow of blood through small blood vessels Khan et al. (2013). On the 

other hand a great attention is given to scrutinize the peristaltic flow in presence of magneto hydrodynamic due 

to its significant role in construction of biomedical equipment like cancer tumor treatment, gastric medications 

and magnetic resonance imaging (MRI) for brain diagnosis, industrial manufacturing, geophysics (earth quick), 

engineering and magnetic drug targeting. In recent year, some examination focused on the effect of magnetic 

field on the peristaltic flow through porous medium. Bhatti et al. (2016) analyze a simultaneous effect of slip and 

MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Ahmad et al. (2016) addressed 
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the problem of hydromagnetic peristaltic flow of variable viscosity fluid with heat transfer and porous medium. 

Oyelami & Dada (2016) studied the effect of MHD flow of Eyring-Powell fluid in porous medium. Adesanya et 

al. (2015) depicted the flow of MHD Eyring-Powell under couple stress through a porous medium. 

The aim of this paper is to study the peristaltic transport of Eyring-Powell under the effect of magnetic field in 

asymmetric horizontal channel through porous medium with the consideration of no-slip condition and wall 

properties. The relevant equations have been constructed by employing the wave frame and then reduced by 

assumptions of long wave length and low Renold's number approximation. The closed form of the velocity, 

stream function, and pressure gradient solutions are obtained analytically with help of the relationship between 

them. Finally the influences of the physical parameters are discussed in detail via graphs.  

 

2. Problem Formulation 

Consider the peristaltic transport of an incompressible Eyring- Powell fluid in a two dimensional a symmetric 

horizontal channel with width d2  through a porous medium. The fluid is electrically conducting in the presence 

of an applied magnetic field 0 in transverse direction to the flow. Magnetic Renold number is taken small and 

thus the induced magnetic field neglected. The Cartesian coordinates considered in such a manner that wave 

propagate parallel to X  direction and theY –axis is perpendicular to it. The waves are taken a sinusoidal with 

wavelength . The travelling waves with constant speed c along the wall of the channel. The walls of channel 

are flexible subject to viscous damping effect.  

The mathematical form of wall surface is given by 

 

                                                        (1) 

 

Where 𝑎 represents the wave amplitude, 𝑑 is the mean half width, )(c the velocity of the peristaltic wave, )(t is 

the time and  ),( tXH  is the displacements of the upper and lower walls respectively. 

The governing equation of the motion for incompressible Eyring- Powell fluid model in laboratory frame 

),,( tYX  through porous medium in the presence of applied normal magnetic field can be summarized as 

 

                                                                                                                                                                        (2) 

 

                                              (3) 

 

                                                                  

                                                                                                                                         (4) 

Where )( signify the density of the fluid, )( , )( , )(P  , )(U  , )(V  , )( 0  , )( 0 ,denote the dynamic 

viscosity, electric conductivity, pressure, axial velocity, transvers velocity, permeability of porous medium, and 

the magnitude of magnetic field respectively. 

The stress tensor for Eyring- Powell fluid is described by (Hina 2016) as follows: 
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)( ijS  designates the extra stress tensor. Also, )( 1c and )( represent the material parameters of Eyring-Powell 

fluid and )( is the dynamic viscosity. The term )(sinh 1
 is approximated using the second order 

approximation of the hyperbolic sine function as bellows: 

 

                                                             (6) 

 

Then Equation. (5) will be rewritten as 

 

                                                                                                                                                                        (7) 

 

So, the stress components of Equation. (7) take the following forms 

  

                                                                                                                                                                        (8) 

 

 

                                                                                                                                                                        (9) 

  

                                                                                                                                                                      (10) 

 

                                                                                                                                                                      (11) 

 

The associated boundary conditions comprising wall no-slip and its flexibility conditions are described in the 

forms 

     at                                                                        (12) 

 

 

 

                         (13)   

 

where )( is the elastic tension, 𝑚1 the mass per unit area and )(d  is the coefficient of viscous damping. The 

flow is time dependent with respect to laboratory coordinate ),,( tyx , whereas in the wave frame of coordinate 

),( yx  moving with the wave velocity the flow considered steady. Taking ),( vu  as the velocity components 

and ),( yxP  the pressure in the wave frame, to write the governing equation in wave frame we need the 

following transformation relationship between the laboratory and wave coordinates 

 

                                                        (14) 

 

So, the equations of the motion in the wave frame will be formed as below 
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The geometric of the walls in wave frame will be transformed as   

 

                                                                                                                                                                     (18) 

 

Finally the boundary conditions will be transformed as below 
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In which )( WandA are the dimensionless Eyring- Powell fluid parameters, )(x the non-dimensional axial 

coordinate, )( y the non-dimensional transverse coordinate, ),( vu are the non-dimensional velocity components, 

)(P non-dimensional pressure, )( is the wave number, (Re) the Renold's number, )(  the dimensionless 

permeability parameter, )(M the Hartmann number, )(  the amplitude ratio, and )( 1E  the tension 

characterizing. Employing the relationship between the stream function and the velocity component as follows 
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Making use of the above mentioned non- dimensional parameters, the continuity equation is obviously satisfied, 

and motion Equations (16) to ( 17) will be reduced as follows 
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The non-dimensional stress components are 
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Finally the dimensionless of corresponding boundary conditions with respect to wave frame are  
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Where ℎ(𝑥) is the dimensionless of wall geometry. Under long wavelength and low Renold's number 
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3. Solution Technique  

Employing the perturbation method for small Eyring- Powell fluid parameter the solution of non-dimensional 

governing equation will be found, we expand the stream function in the form 
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3.1 Zeroth Order System and Solution 

The resulting zeroth order system has the form 
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Solving the above system, the solution will take the form 
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3.2 First Order System and Solution 

The first order system takes the form 

                                                                                          

                                                                                              (38) 
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The first order solution obtained from the above system is 

                                                                                                                                                                      (40) 

 where,                     and the values of                                     are non-constant and their values can 

be calculated algebraically using Mathematica. 

4. Result and Discussion 

    This section prepared to describe the computational results of our problem graphically using 

MATHEMATICA program. It is consist of four parts. The first one illustrates the impact of some interesting 

physical parameters on the axial velocity distribution. However in the second parts the evolution of wall shear 

stress at the wall ℎ(𝑥) with different flow parameters discussed. The effect of physical parameters on pressure 

gradient analyzes in the third part. Finally the trapping of the flow under the impact of various parameters is 

scripted. 

4.1 Velocity Profile 

Figures.1 to 6, manifest the influence of wall membrane parameter 𝐸1, Eyring- Powell parameters WA ,  the 

amplitude ratio )( , magnetic field parameter 𝑀 and permeability parameter 𝜅 on velocity profile )( yu that 

plotted for fixed value of 𝑥 = 0.02. The graphical descriptions show that the velocity profile is parabolic in 

)(xhy 

0
)(

)1(
2

2
0

2

1
2

1 





y
mW yy

yyyyyy




)(xhy 

ybb
m

bbemeyeccyeccecce yyyyyy

4322

21
222222

21
24

2

2

1
263

1
23

2
3

1
8

))(8)25(6)25(6(














)
)1(

(
2

2

W

m


 ),,,,,,,( 43214321 bbbbcccc

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.9, 2017 

 

15 

nature. Figure.1 gives an idea that the velocity is directed properly with wall elestance coefficient 𝐸1 , and the 

maximum impact can be seen when 𝑦 = 0.6 in another word the velocity increases as )( 1E  increases since the 

walls of the channel are compliant and exhibit elastic effect that reduce the resistance to flow and hence speed up 

the velocity. Figures. 2 & 6, portray the completely opposite impact on velocity profile with changing in fluid 

parameters )(A , and )(W The figures captured that the velocity increases as A increases (since increases in A

enhances the kinetic energy of particles and hence increases the velocity), whereas increases in )(W  reduces the 

axial velocity. The effect of magnetic field parameter )(M on velocity profile depicted in Figure.3 one can 

observe that an increases in )(M reduces the velocity distribution because the Lorentz force increases and as a 

result the resistance to the flow become larger. It is also noticed from Figure.4, that the velocity profile increases 

as the porosity parameter )( increases. From Figure.5, we notice that larger magnitude of amplitude ratio speed 

up the velocity of the fluid and the maximum value appears at  𝑦 = 0.6 . 

 

                 

   Figure.1 Velocity Profile )( yu  for Variation )( 1E    Figure.2 Velocity Profile )( yu for Variation  )(W  

 

           

 Figure.3 Velocity Profile )( yu  for Variation )(M         Figure.4 Velocity Profile )( yu  for Variation )(  
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     Figure.5 Velocity Profile )( yu  for Variation )(        Figure.6 Velocity Profile )( yu for Variation A                                                                                        

 

4.2 Pressure Gradient 

Physical impact of pertinent parameters on the pressure gradient in wave frame inspected through Figures. 7 to 

12. The figures show an oscillatory function. From Figures.7 & 11, one can deduced that if the wall elastence 

parameter 1E , and the 

 permeability parameter 𝜅 increase an important consideration can be made which is in the vicinity of the 

channel walls for (0 ≤ 𝑥 ≤ 0.1) ∪  (0.85 ≤ 𝑥 ≤ 1) more pressure needed for the fluid to flow while in the 

central part of the channel for (0.4 ≤ 𝑥 ≤ 0.6)  due to low pressure difference, the fluid flows so easy. Also at 
(0.15 ≤ 𝑥 ≤ 0.35) 𝑎𝑛𝑑 (0.65 ≤ 𝑥 ≤ 0.85) the pressure is diminishing. Figure.8, shows that when the 

magnitude of magnetic field parameter )(M increases the pressure gradient decreases especially at the walls of 

the channel but this action reverse in the central part of the channel where 
dx

dP  increases. Figures.9 & 10, seek a 

totally opposite influence for Eyring- Powell parameters )(W & A to each other's on the pressure gradient, they 

show increasing of  
dx

dP  as A increases and )(W  decreases near the channel walls, however in the central part 

the opposite results noticed (i.e. the magnitude of  
dx

dP  increaces with inceases of )(W  and decreases of A ). 

Figure.12, demonstrates the physical reaction of amplitude ratio on the magnitude of pressure gradient. An 

increasing in 
dx

dP   is noticed upon increasing of )(  value at the walls while it reduces in the central part of the 

channel.  

 

 

  

              Figure.7 Pressure Gradient
dx

dP  upon 1E                   Figure.8 Pressure Gradient
dx

dP
 upon )(M  
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              Figure.9 Pressure Gradient
dx

dP
 upon )(W                       Figure.10 Pressure Gradient

dx

dP
 upon A  

 

 

          Figure.11 Pressure Gradient
dx

dP
 upon  )(           Figure.12 Pressure Gradient

dx

dP
 upon  )(  

 

4.3 Wall Shear Stress 

Figures.13 to 18, recorded the impact of different emerging parameters involved in shear stress equation upon 

the horizontal coordinate 𝑥- axis. The values of shear stress evaluated at a fixed value for 𝑦 = 0.02. Figure.13, 

detected that the local wall shear stress attains maximum value in the central part of the channel , and then it 

begin to retard toward the walls of the channel another observation can be made from the figure is that xyS  

increasing as the elastance parameter of the wall 1E  increasing at the central part however the situation is 

reverse near the walls of the channel (i.e. the shear stress decreasing. For large value of magnetic parameter 

)(M ) the shear stress quantity reduces this effect illustrated through Figure.14.However Figuress.15 & 16, 

suggest two opposite behavior of xyS  for AW , , in which for ascending value of W  the shear stress quantity 

increases in the central part of channel for 𝑥 = 0.5 and decreases for A , while xyS  exhibits an opposite response 

near the walls for ),( AandW . While Figures.17 & 18, depict an increasing behavior for xyS via increase of 

amplitude ratio )(  and permeability parameter 𝜅 at the center and reduction function near the walls. 
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            Figure.13 Shear Stress upon 1E                                    Figure.14 Shear Stress upon )(M  

 

  
            Figure.15 Shear Stress upon )(W                                 Figure.16 Shear Stress upon A  

 

  

          Figure.15 Shear Stress upon )(                                       Figure.16 Shear Stress upon )(  

4.4 Trapping 

A phenomenon of trapped bolus is a formation of closed and circular splitting of streamlines which moves along 

the peristaltic wave. Figures.17 to 22, display the generation of trapped bolus with variation of physical 

parameters involved in the stream function 𝜓  in the wave frame. Figure.17 illustrates that the size of the bolus 

increasing with an increasing of wall parameter 1E . Moreover, Figure.18, shows that the trapped bolus size 

reduces upon increasing the magnetic parameter )(M . In Figurs.19 & 20, we found that there is a hardly small 

impact considered for fluid parameters ),( AandW on streamlines. While Figures.21 & 22, depict that the 

bolus size increases as the magnitude of ),(  increase.  
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(a)                                                          (b)                                               (c)  

   
Figure.16 Streamlines for Variation of 𝐸1 and Fixed {𝑊 = 0.3, 𝐴 = 0.1, 𝜙 = 0.2, 𝑀 = 0.5, 𝜅 = 1.5}           

 (a) 𝐸1 = 0.02  (b) 𝐸1 = 0.04    (c) 𝐸1 = 0.06 

 

(d)                                                            (e)                                                 (f) 

    
Figure.17 Streamlines for Variation of 𝑀 and Fixed {𝑊 = 0.3, 𝐴 = 0.1, 𝜙 = 0.2, 𝐸1 = 0.02, 𝜅 = 0.8}                     

(d) 𝑀 = 0.2   (e) 𝑀 = 0.4   (f) 𝑀 = 0.6 

       (g)                                                (h)                                                    (i) 

 

   
Figure.18 Streamlines for Variation of 𝐴 and Fixed {𝑊 = 0.3, 𝑀 = 0.5, 𝜙 = 0.2, 𝐸1 = 0.02, 𝜅 = 0.8}                  

(g) 𝐴 = 0.2 (h) 𝐴 = 0.4  (i) 𝐴 = 0.6 

 (J)                                                       (k)                                                    (l) 
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Figure.19 Streamlines for Variation of 𝑊 and Fixed {𝐴 = 0.1, 𝑀 = 0.1, 𝜙 = 0.2, 𝐸1 = 0.02, 𝜅 = 0.8}                            

(J) 𝑊 = 0.3  (k) 𝑊 = 0.6  (l) 𝑊 = 0.9 

   

    

     (m)                                                     (n)                                                          (o) 

  
Figure.20 Streamlines for Variation of 𝜙 and Fixed {𝐴 = 0.1, 𝑀 = 0.5, 𝑊 = 0.3, 𝐸1 = 0.02, 𝜅 = 0.8} 

              (m) 𝜙 = 0.2    (n) 𝜙 = 0.4   (o) 𝜙 = 0.6 

   

    (p)                                                      (q)                                                       (s) 

   
Figure.21 Streamlines for Variation of 𝜅 and Fixed {𝐴 = 0.1, 𝑀 = 0.5, 𝑊 = 0.3, 𝐸1 = 0.02, 𝜙 = 0.2} 

              (p) 𝜅 = 0.5    (q) 𝜅 = 1   (s) 𝜅 = 1.5 

 

 

5. Conclusion 

The impacts of magnetic field on the peristaltic flow for Eyring- Powell fluid through porous medium in a 

horizontal symmetric channel associated with no slip condition and wall properties are investigated. The 

fundamental governing equation flow problem has been constructed and simplified under the assumptions of 
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long wavelength and low Renolds number.  The results are discussed graphically taking into consideration the 

effects of variation of some interesting flow parameters. Major conclusion observations have been listed below:  

1. The longitudinal velocity enhances at the center part of the channel with the increase in 1,, EA  , and  )(  

whereas it decreases near the channel walls. It is observed that )(M , and )(W have opposite influences when 

compared with the above parameters.  

2. The magnitude of pressure gradient increases near the walls of channel as 1,, EA   and )(  increases  

whereas it reduces in the central part of the channel. The response is completely reverse with increasing of

)(W , and )(M magnitudes. 

3. The value of axial shear stress increases in the center part of the channel, however it reduces towards the 

channel walls. it is noted that shear stress increases for 1E , ,W , and )(  while it decreases with )(A and

)(M . 

4. The size of the trapped bolus increases for increases of ,1E and )( . However opposite effect is noticed for 

magnetic field parameter )(M . Hardly change has been seen on the trapped bolus for both fluid parameters 

)(A and )(W . 

Suggested future works include study the effect of heat transfer on peristaltic transport for MHD Eyring- Powell 

fluid through a porous medium in an inclined channel with convective conditions. 
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