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Abstract 

Use of nonparametric model calibration estimators for population total and mean has been considered by several 

authors. In model calibration, a distance measure defined on some design weights thought to be close to the 

inclusion probabilities, is minimized subject to some calibration constraints imposed on the fitted values of the 

study variable. The minimization is usually by way of introducing langrage equation whose solution gives the 

optimal design weights to be  used in estimation of population total. Sometimes a solution to the langrage 

constants does not exist. Numerical approaches are some of the alternatives to the langrage approach. In this 

paper, we have derived nonparametric and semiparametric model calibration estimators by treating the 

calibration problem as a nonlinear constrained minimization problem, which we transform to an unconstrained 

optimization problem using penalty functions. We show that the resulting nonparametric and semiparametric 

estimators are robust in the sense that they are quite efficient when the model is correctly specified for the data 

and that the estimators do not fail even when the model is misspecified for the data.  When the penalty constant 

approaches zero, the estimators reduce to the Horvitz Thompson design estimator.  

Keywords:  model calibration, nonparametric model, semiparametric model, penalty function  

1. Introduction 

Use of auxiliary information in estimation of missing values and descriptive parameters of a survey variable in a 

finite population has become fairly common. A simple way to incorporate known population totals of auxiliary 

variables is through ratio and regression estimation. More general situations are handled by means of generalized 

regression estimation as discussed by Sarndal [10] and calibration estimation discussed by Deville and Sarndal 

[4]. The processes of estimation of population total and mean starts first with the point estimation of the missing 

values based on auxiliary variable. Then, techniques like calibration and model assistance are employed on the 

fitted values to estimate population parameters and or any other required analysis of the data are carried out. The 

reasoning towards use of nonparametric and semiparametric modeling techniques for the missing values includes 

the following. First, an initial nonparametric estimate may well suggest a suitable parametric model such as 

linear regression. That is, it may give the data more of a chance to speak for themselves in choosing the model to 

be fitted (Silverman [11]). Secondly, known facts suggest a tentative model which in turn suggest a particular 

examination and analysis of data or the need to acquire further data or suggest a modified model resulting in an 

iterative procedure (Box[1], Hastie and Tibshirani [6], Simonof[12]). It is very important to note that parametric 

models would be very efficient if the model is correctly specified. However, if the assumed model is 

misspecified, inferences can lead to misleading interpretations of data. 

Considered is a super population regression model which is denoted by  and given as 
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  )( ii xy                        (1) 

where )( ix  is a smooth function. Given n  pair of observations ),(),...,,(),,( 2211 nn yxyxyx  from a 

population of size N , of interest is the estimator )(ˆ
ix of )/()( xyExi   . A nonparametric method like local 

polynomial or splines could be used for this estimation. 

 

In some circumstances, the auxiliary information is such that it contains a component whose parametric structure 

is known and a component that need to enter the estimation nonparametrically. Consider case where auxiliary 

information consists of a single univariate term x  that is to enter estimation nonparamtrically and a vector Z 

composed of an arbitrary number of linear terms.  

Consider super population regression model given by 

 ),( iii zxgy                           (2) 

where 
iz  is a vector of the categorical or continuous auxiliary variable. The interest is to find an estimator 

),(ˆ
ii zxg  of ),/(),( zxyEzxg ii                    (3) 

This is semiparametric estimation. Breidt et al [3] uses a sample estimator of the form 

  ˆ)(ˆ),(ˆ
iiii zxzxg                        (4) 

Once the missing data has been modeled, a nonparametric estimator 
i

n

i it ywy  


1
ˆ  for the population total 

 

N

i iy
1

 is then obtained where given the sample inclusion probability 
i , the weights swi

' are  

design weights which are as close as possible  to 1 iid   and are obtained by minimizing a given distance  

measure between swi

'
and sd i

'
 subject to some constraints. Wu and Sitter [14] considered the two constraints 

below

 




N

i

i

n

i

ii xxw
11                   (5) 

 

Nw
n

i i  1

                         (6)

 

 

In a parametric setting, Kihara [7] considered the conversion of the above calibration problem into an 

optimization problem. He has considered reducing the chis square distance measure below  







si ii

ii

dq

dw 2)(

                                                                    (7) 

subject to constraints (5) and (6) to obtain a penalty function 
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Differentiating (8) partially with respect to 
iw  he got  

 
                            

                 

       (9)  

Equating (9) to zero and solving for
iw  we have  
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He therefore derived the following estimator of population total 
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To obtain the weights ),...,2,1(, niwi  , the penalty function (8) is solved as an unconstrained minimization 

problem in which case we only require to start with some initial guess for
iw and 

kr and then iteratively improve 

on the initial values until we have optimal values. Since the constraints (5) and (6) are equality constraints, we 

need not start with a feasible guess for
iw . In this paper we extend the work of Kihara [7] to nonparametric and 

semiparametric regression modeling.  We also consider model calibration in which case calibration is done with 

respect to the fitted values. 

 

2. Penalty Function Method for Nonparametric and Semiparametric Estimators 

 

Let there be a population of size N for our variable of interest y from which we draw a sample of size n . Let 

the auxiliary value 
ix be available for every element of the population of variable y . We wish to estimate the 

population total 



N

i

it yy
1

 from a sample of size n  and incorporating the auxiliary  
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information present. The penalty function method transforms the basic constrained optimization problem into an 

unconstrained optimization problem. In nonparametric model calibration estimation, we consider an optimization 

problem of the form 
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where )(ˆ
ix   is a nonparametric fit of the missing value 

iy . Here, calibration constraint 

0)(ˆ)(ˆ
11




N

i

i

n

i

ii xxw  is defined on the fitted values. We call this model calibration. We construct an  

 

unconstrained problem as follows. 
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where ))(,( Xlr jk is a penalty function which is continuous and which is such that 0),( trk  for all 

kr and nt  .  Also, ),( trk  is strictly increasing for 0kr and 0t . In a form similar to the one 

discussed in Rao [6], we have the function 
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si ii
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rw                           (14) 

where )( krH is some function of the parameter 
kr  tending to infinity as 

kr  tends to zero and so that 


2

1

)(
j

q

j wl  

also  tend to zero. A common choice for value of q is 2  . Also, the function   will always  

be greater than f . The penalty terms are chosen such that their values will be small at points away from the 

constraint boundaries and will tend to infinity as the constraint boundaries are approached. Hence, the value of 

  will also blow up as the constraint boundaries are approached. Frank and Jorge [5] have discussed flexible 

ways of choosing the penalty. In an iterative process, the unconstrained minimization of   does not have to 
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start with a feasible solution since we have equality constraints. The subsequent points generated will always lie 

within the feasible region since the constraint boundaries act as barriers during the minimization process. The 

rationale of the penalty terms as described by Ozgur [8] is that if the constraint is violated, that means 0)( wl j
, 

a term will be added to  function such that the solution is pushed back towards to the feasible region.  

In the minimization of , for the solution to be the global, 





si ii

ii

dq

dw 2)( and 



2

1

)(
j

q

j wl
 should be convex  

and one of the functions





si ii

ii

dq

dw 2)( , )(1 wlq
 and )(2 wlq

be strictly convex. See Rao [9]. If we let 2q    

then, from equations (12) and (14), we have the penalty function  
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Differentiating (15) partially with respect to 
iw  we get

 
                                                                                                                                                                      

                        

(       (16) 

 

Equating (16) to zero and solving for
iw  we have  
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A weighted nonparametric estimator of population total is therefore obtained as 
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 In semiparametric estimation, we have an optimization problem of the form 
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where )(ˆ
ixg  is a semiparametric fit of the missing value 

iy .   We have the penalty function as  
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This yields the following semiparametric estimator of the population total 
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From equations (18) and (21), we see that as 0)( krH , the estimators reduce to the Horvitz Thompson design 

estimator 
i

n

i idy 1
. 

To obtain the weights ),...,2,1(, niwi  , we   solve the penalty functions (15) and (20) as unconstrained 

minimization problems in which case we only require to start with some initial guess for
iw and 

kr and then 

iteratively improve on the initial values until we have optimal values. Since the constraints in our case are 

equality constraints, we need not start with a feasible guess for
iw
 

as discussed in Kihara [7]. We appeal to 

Newton method of unconstrained optimization. See Rao [9]. 

Considering the nonparametric case, let  ni wwwW ,...,, 2  be the set of the weights.  We need to obtain 

*W such that   

  0))(ˆ,,()),...,(ˆ,,()( 1

* 


 xrwxrwW knk                           (22) 

We first start with some initial approximation  
iW  of *W  so that ZWW i * . The Taylor’s series expansion of 
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)( *W gives 

......)()()( *  ZJWZWW
iWii                                   (23) 

By neglecting the higher order terms in (23) and setting 0)( * Wg we obtain 

0)(  ZJW
iWi                                    (24) 

Where 
iWJ  is the matrix of second derivatives evaluated at iW .  In general, J is a nbyn  matrix with 

ni ,...,2,1  rows and nj ,...,2,1 columns with diagonal elements )1)(ˆ)((2
2 2  ik

ii

xrH
dq

  and  

 

elements )1)(ˆ)(ˆ)((2 jik xxrH  elsewhere.  If 
iWJ  is nonsingular, then, from the set of linear equations (24) 

we have for vector Z  
)(1

iW WJZ
i
  .                      (25) 

The following iterative procedure is used to find the improved approximations of
*W . 
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1 iWiiii WJWZWW
i
                         (26) 

The sequence of the points 121 ,....,, iWWW  eventually converges to the actual solution
*W . 

 Now, if we let 
*

kW be the minimum of 
*W  obtained for a particular penalty kr , we obtain a sequence of 

minimum points 
*
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*
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*

1 ,....,, kWWW  for the penalties 121 ,....,, krrr   until 
*

1

*

 kk WW  

or ))(ˆ,,())(ˆ,,( 1 xrwxrw kk   for some specified accuracy level.  The accuracy level may for example be, 

to certain decimal points or significance level. The penalty values may be set such that the starting point 01 r  

and kk crr 1 , where 1c .  )( krH as 0kr  . 

The Newton solution process in semiparametric case is similar to that of nonparametric case described above but 

with )(ˆ
ix replaced by )(ˆ

ixg . The J matrix is a nbyn  matrix with diagonal elements 
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 and elements )1)(ˆ)(ˆ)((2 jik xgxgrH elsewhere.   

 

3. Fitting the Missing Values by Local Polynomial Method 

 

The objective in polynomial regression is to minimize   
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with respect to ),...,,( 10 p  . 
0 estimates )( ix while 
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estimates higher order derivatives of 
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)( ix . Also, q is the degree of the polynomial and (.)K is some kernel function, a discussion of which is 

given by Simonof [12]. The corresponding nonparametric fit can be obtained from the local polynomial 

smoother as 

s

T

sii YSx )(̂                            (28) 
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is the bandwidth and 
siX is a matrix with rows njxxxx q

ijij ,...,2,1],)(,...),(,1[  . See Breidt and 

Opsomer[2] . 

 A semiparametric fit for the missing values similar to that derived by Breidt and Opsomer [2] may be obtained 

as  
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4. Empirical Results 

 

In section 4.1, we report on the performance of the nonparametric estimator npy .  In subsection 4.1.1, we have 

results of the nonparametric estimator npy on the linear model data and a comparison of its performance with that 

of Horvitz Thompson estimator 



n

i

iiht dyy
1

 discussed in Thompson [13]. In  

 

subsection 4.1.2, we report on the results for estimator npy   on the quadratic model data and again compare 

with Horvitz Thompson estimator. In section 4.2, we discuss the performance of the semiparametric 

estimator spy  where in subsection 4.2.1, we have results of the estimator spy on the linear model data and a 

comparison of its performance with that of Horvitz Thompson estimator
hty . In subsection 4.2.1, we report on 

the results for estimator spy   on the quadratic model data. 

 

4.1. Analysis of the Nonparametric Estimator Results 

 

Using R program, we simulated a population of independent and identically distributed variable x  using 

uniform (0, 1).  Using x  as the auxiliary variable we generated the populations of size 300 for random 

variable y  as   a linear function xy 52  and quadratic function 2)52( xy  . For each of different 

sample sizes n , 5 samples were generated.  Our initial penalty constant was set at 00010.01 r . The 
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convergence criteria considered was *

1

*

 kk WW and ),,(),,( 1 xrwxrw kk   to six decimal places. 

We used local polynomial method   described in section (3.0) to fit the missing values. in particular ,we have 

considered local polynomial of degree 1, that is local linear function. We have used the standard Epernecknikov 

kernel 1),1(4/3)( 2  uuuK   with a bandwidth 0f 0.25.  The choice of the bandwidth is based on the ad hoc 

rule of a quarter of the range of the data.  

  

4.1.1. Results for Nonparametric Estimator npy on Linear Model Data 

 

We let  


N

i it yy
1

 be the actual population total, 
kr   be the penalty parameter, and  

npt yy   and 

htt yy   be the errors in the estimation.   

 

Table 1: Nonparametric Estimates for Linear Model Data 

sample number 1  2 3 4 5 

sample size n 100 100 100 100 100 

ty  
1344.531793 1344.531793 1344.531793 1344.531793 1344.531793 

npy  
1345.865888  1341.235027  1330.40555 1348.019108 1348.805556 

hty  
1346.733668  1339.116040 1321.57077 1350.289785 1351.609775 

npt yy   
-1.334095  3.296766  14.12624  -3.487315  -4.273763 

htt yy   
-2.201875 5.415753  22.96103   -5.757992   -7.077982 

kr  
0.00010     0.00010     0.00010     0.00010     0.00010     

From table (1), the estimators   npy  and 
hty  have small error margins. Consistently, npy  has a smaller 

error margin. This is expected because the data is linear and npy is obtained from a linear local polynomial 

model.  We say the nonparametric model is correctly specified for the data. For all the samples, convergence is 

achieved at the same penalty value of 0.00010 and which was the initial penalty value.   
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Figure 1: Variance for Estimator npy  on Linear Model Data 

 

 Figure 2: Variance for Horvitz Thompson Estimator
hty  on Linear Model Data 

In figure (1) and figure (2), the variances for npy  and  hty  decrease as the sample size increases.   From 

figure (3), the ratio )var(/)var( htnp yy settles almost to a constant, estimated to be 0.37, as the sample size 

increases.  That is, npy  consistently has a lower variance than hty . This is expected since npy is correctly 

specified for the data.   
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Figure 3: Variance Ratio )var(/)var( htnp yy  on Linear Model Data 

 

 

4.1.2. Results for Nonparametric Estimator npy  on Quadratic Model Data 

 

Table 2: Nonparametric  Estimates  for Quadratic Model Data 

sample number 1 2 3 4 5 

sample size n 100 100 100 100 100 

ty  
6702.63067 6702.63067 6702.63067 6702.63067 6702.63067 

npy  
6991.0552 6582.4742  7021.3978  6679.41066 6714.58378 

hty  
6409.9701 6592.1200  6858.8175  6654.76502  6805.59084 

npt yy   
-288.4246  120.1564  -318.7671 23.22000 -11.95311 

htt yy   
292.6606  110.5106 -156.1868    47.86565  -102.96018 

kr  
0.00010     0.00010     0.00010     0.00010     0.00010     

From table (2),   there does not appear to be a noticeable difference in the performances of  npy  and hty . In 

some instances npy  has smaller error margins than hty , while in other samples, hty  has smaller error margins.  
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This lack of noticeable difference in the performances may point to the robustness of the estimator npy . This is 

because for quadratic data,  npy  is actually as misspecified model since npy is obtained from a local linear 

polynomial model. We note also that the penalty value is 0.00010 for all the samples. 

 

Figure 4: Variance for Estimator npy  on Quadratic Model Data 

 

Figure 5: Variance for Horvitz Thompson Estimator npy on Quadratic Model Data 

From figure (4), variance for npy  does not appear to significantly change as the sample size increases. But for 
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small samples, the variance is more erratic as opposed to large samples.  From figure (5), the variance for 
hty  

steadily decrease as   the sample size increases. Looking at the scales in figure (4) and figure (5), it can be seen 

that  npy  has higher variance than
hty .From figure (6), the ratio )var(/)var( htnp yy  tends to a constant, 

though more erratic for smaller samples.  Looking at the scale, we can see that variance for  npy  dominates 

variance for
hty .  

 

Figure 6: Variance Ratio )var(/)var( htnp yy  on Quadratic Model Data 

4.2. Analysis of Semiparametric Estimator Results 

  

For semiparametric estimation, the dependent population values y  were generated from the linear function 

xZ 52  and quadratic function 2)52( xZ  .   Z  is the matrix ),,( 321 ZZZ  ,where 
1Z is a matrix of 2s 

with dimension N , the population size.  
2Z  is a matrix of alternating 3s,4s and 5s with dimension N , 

while
3Z  is a matrix of alternating 6s,7s and 8s with dimension N .  The vector of coefficients )3,2,1( . We 

let 



N

i

it yy
1

 be the actual population total, kr   be the penalty parameter,  

 

and  spt yy   and htt yy   be the errors in the estimation 
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4.2.1 Results for Semiparametric Estimator spy  on Linear Model Data 

 

Table 3: Semiparametric Estimates for Linear Model Data 

sample number 1  2 3 4 5 

sample size n 100 100 100 100 100 

ty  
10637.07767  10637.07767  10637.07767  10637.07767  10637.07767  

spy  
10653.33589  10592.83642  10772.50201 10656.61600  10620.68442 

hty  
10710.11132  10553.27255  10591.87632  0579.65450 10718.60134 

spt yy   
-16.25822  44.24125 -135.42434   -19.53834 16.39324 

htt yy   
-73.03365 83.80512  45.20135   57.42317  -81.52367 

kr  
0.00010     0.00010     0.00010     0.00010     0.00010     

From table (3), in some samples   spy  has larger error margins than
hty , while in other samples, the reverse is 

true.  Convergence is achieved at the same penalty value of 0.00010 and which was the initial penalty value.  

   

Figure 7:  Variance for Estimator spy  on Linear Model Data 
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Figure 8: Variance for Horvitz Thompson Estimator
hty  on Linear Model Data 

In figure (7), though variance  for  spy  appear to  be largely  constant when a Lowess line if fitted, a look 

at individual plots shows higher and more erratic variance  for small samples before stabilizing for larger 

samples. In figure (8), the variance and  
hty  steadily decrease as the sample size increases.   From figure (9), 

the ratio )var(/)var( htsp yy is more than one, indicating that npy  has higher variance than
hty .   

 

Figure 9: Variance Ratio )var(/)var( htsp yy  on Linear Model Data 
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4.2.2 Results for Semiparametric Estimator spy  on Quadratic Model Data 

  

Table 4: Semiparametric  Estimates  for Quadratic Model Data 

sample number 1 2 3 4 5 

sample size n 100 100 100 100 100 

ty  16054.39204 16054.39204 16054.39204 16054.39204 16054.39204 

spy  16083.00298 16386.4447 15530.1848 15850.0349 15939.60759 

hty  15711.98381  16386.9231 16254.8241  16169.8247  16073.76477 

spt yy   -28.61094  -332.0527   524.2072 204.3571 114.78445 

htt yy   342.40823  -332.5310   -200.4320   -115.4326  -19.37273 

kr  0.00010     0.00010     0.00010     0.00010     0.00010     

From table (4),   there is no noticeable difference in the performances of  spy  and 
hty . In some instances 

spy  has smaller error margins than
hty , while in other samples, 

hty  has smaller error margins.  This lack of 

noticeable difference in the performances is evidence to the robustness of the semiparametric estimator spy . We 

note also that the penalty value is 0.00010 for all the samples. 

 

Figure 10: Variance for Estimator spy  on Quadratic Model Data 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.8, 2017 

 

38 

 

Figure 11: Variance for Horvitz Thompson Estimator
hty on Quadratic Model Data 

From figure (10), variance for the semiparametric estimator spy  is higher and more erratic for small samples 

before stabilizing almost to a constant for lager samples. From figure (11), variance for 
hty  steadily decrease 

as   the sample size increases. From figure (12), the ratio )var(/)var( htsp yy  show Cleary spy  has larger 

variance than hty . 

 

Figure 12: Variance Ratio )var(/)var( htnp yy  on Quadratic Model Data 
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5. Conclusion 

We conclude that when the nonparametric model is correctly specified for the data, the nonparametric estimator 

npy  is quite accurate, more than the Horvitz Thompson design estimator
hty . When the nonparametric model is 

misspecified for the data, the nonparametric estimator npy , though a bit less efficient than the Horvitz Thompson 

design estimator
hty , still yields quite reliable estimates.  This shows that npy  is a robust estimator. The 

semiparametric estimator spy is also a very robust estimator giving estimates that are very close to those of 

Horvitz Thompson design estimator even when the nonparametric model component of the semiparametric 

estimator is misspecified.  
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