Robust Nonparametric and Semiparametric Model Calibration Estimators by Penalty Function Method

Pius Nderitu Kihara
Department of Statistics and Actuarial Sciences, Technical University of Kenya
Email: piuskihara@yahoo.com

Abstract
Use of nonparametric model calibration estimators for population total and mean has been considered by several authors. In model calibration, a distance measure defined on some design weights thought to be close to the inclusion probabilities, is minimized subject to some calibration constraints imposed on the fitted values of the study variable. The minimization is usually by way of introducing Langrange equation whose solution gives the optimal design weights to be used in estimation of population total. Sometimes a solution to the Langrange constants does not exist. Numerical approaches are some of the alternatives to the Langrange approach. In this paper, we have derived nonparametric and semiparametric model calibration estimators by treating the calibration problem as a nonlinear constrained minimization problem, which we transform to an unconstrained optimization problem using penalty functions. We show that the resulting nonparametric and semiparametric estimators are robust in the sense that they are quite efficient when the model is correctly specified for the data and that the estimators do not fail even when the model is misspecified for the data. When the penalty constant approaches zero, the estimators reduce to the Horvitz-Thompson design estimator.

Keywords: model calibration, nonparametric model, semiparametric model, penalty function

1. Introduction
Use of auxiliary information in estimation of missing values and descriptive parameters of a survey variable in a finite population has become fairly common. A simple way to incorporate known population totals of auxiliary variables is through ratio and regression estimation. More general situations are handled by means of generalized regression estimation as discussed by Sarndal [10] and calibration estimation discussed by Deville and Sarndal [4]. The processes of estimation of population total and mean starts first with the point estimation of the missing values based on auxiliary variable. Then, techniques like calibration and model assistance are employed on the fitted values to estimate population parameters and or any other required analysis of the data are carried out. The reasoning towards use of nonparametric and semiparametric modeling techniques for the missing values includes the following. First, an initial nonparametric estimate may well suggest a suitable parametric model such as linear regression. That is, it may give the data more of a chance to speak for themselves in choosing the model to be fitted (Silverman [11]). Secondly, known facts suggest a tentative model which in turn suggest a particular examination and analysis of data or the need to acquire further data or suggest a modified model resulting in an iterative procedure (Box[1], Hastie and Tibshirani [6], Simonof[12]). It is very important to note that parametric models would be very efficient if the model is correctly specified. However, if the assumed model is misspecified, inferences can lead to misleading interpretations of data.

Considered is a super population regression model which is denoted by ξ and given as
where $\mu(x_i)$ is a smooth function. Given n pair of observations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ from a population of size N, of interest is the estimator $\hat{\mu}(x)$ of $\mu(x) = E_\pi(y/x)$. A nonparametric method like local polynomial or splines could be used for this estimation.

In some circumstances, the auxiliary information is such that it contains a component whose parametric structure is known and a component that need to enter the estimation nonparametrically. Consider case where auxiliary information consists of a single univariate term x that is to enter estimation nonparametrically and a vector Z composed of an arbitrary number of linear terms.

Consider super population regression model given by

$$y_i = g(x_i, z_i) + \epsilon$$

where z_i is a vector of the categorical or continuous auxiliary variable. The interest is to find an estimator

$$\hat{g}(x_i, z_i)$$

of $g(x_i, z_i) = E_\pi(y/x, z)$

This is semiparametric estimation. Breidt et al [3] uses a sample estimator of the form

$$\hat{g}(x_i, z_i) = \hat{\mu}(x_i) + z_i \hat{\beta}$$

Once the missing data has been modeled, a nonparametric estimator $\hat{Y}_i = \sum_{i=1}^{n} w_i' Y_i$ for the population total $\sum_{i=1}^{N} y_i$ is then obtained where given the sample inclusion probability π_i, the weights w_i's are design weights which are as close as possible to $d_i = \pi_i^{-1}$ and are obtained by minimizing a given distance measure between w_i's and d_i's subject to some constraints. Wu and Sitter [14] considered the two constraints below

$$\sum_{i=1}^{n} w_i' x_i = \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} w_i = N$$

In a parametric setting, Kihara [7] considered the conversion of the above calibration problem into an optimization problem. He has considered reducing the chi square distance measure below

$$\Phi = \sum_{i=1}^{n} \frac{(w_i - d_i)^2}{q_i d_i}$$

subject to constraints (5) and (6) to obtain a penalty function.
\[
\phi(w, r_x, x) = \sum_{i=1}^{n} \left(\frac{w_i - d_i}{q_i d_i} \right)^2 + r_i \left[\sum_{i=1}^{N} w_i x_i - \frac{N x}{j=1} x_j \right]^2 + r_i \left[\sum_{i=1}^{N} w_i - N \right]^2
\]

(8)

Differentiating (8) partially with respect to \(w_i \) he got

\[
\phi'(w, r_x, x) = 2 \left(\frac{w_i - d_i}{q_i d_i} \right) + 2 r_i x \left[\sum_{j=1}^{n} w_j x_j - \frac{N x}{j=1} x_j \right] + 2 r_i \left[\sum_{i=1}^{N} w_i - N \right]
\]

(9)

Equating (9) to zero and solving for \(w_i \) we have

\[
w_i = \frac{d_i - r_i q_i d_i \left(\sum_{j=1}^{n} w_j x_j + 1 \right) - \sum_{j=1}^{N} \left(x_j - 1 \right)}{1 + r_i \left(x_i^2 + 1 \right) q_i d_i}
\]

(10)

He therefore derived the following estimator of population total

\[
\hat{y} = \sum_{i=1}^{n} w_i y_i = \sum_{i=1}^{n} \frac{y_i d_i}{1 + r_i \left(x_i^2 + 1 \right) q_i d_i} - \sum_{i=1}^{n} \frac{r_i q_i d_i y_i \left(\sum_{j=1}^{n} w_j x_j + 1 \right) - \sum_{j=1}^{N} \left(x_j - 1 \right)}{1 + r_i \left(x_i^2 + 1 \right) q_i d_i}
\]

(11)

To obtain the weights \(w_i, (i = 1, 2, \ldots, n) \), the penalty function (8) is solved as an unconstrained minimization problem in which case we only require to start with some initial guess for \(w_i \) and \(r_i \) and then iteratively improve on the initial values until we have optimal values. Since the constraints (5) and (6) are equality constraints, we need not start with a feasible guess for \(w_i \). In this paper we extend the work of Kihara [7] to nonparametric and semiparametric regression modeling. We also consider model calibration in which case calibration is done with respect to the fitted values.

2. Penalty Function Method for Nonparametric and Semiparametric Estimators

Let there be a population of size \(N \) for our variable of interest \(y \) from which we draw a sample of size \(n \). Let the auxiliary value \(x \) be available for every element of the population of variable \(y \). We wish to estimate the population total \(\sum_{i=1}^{N} y_i \) from a sample of size \(n \) and incorporating the auxiliary
The penalty function method transforms the basic constrained optimization problem into an unconstrained optimization problem. In nonparametric model calibration estimation, we consider an optimization problem of the form

$$\min \Phi = \sum_{i=1}^{2} \left(\frac{w_i - d_i}{q_i d_i} \right)^2 \text{subject to}$$

\[
\begin{align*}
I_i(w) &= \sum_{j=1}^{n} w_j \hat{\mu}(x_j) - \sum_{j=1}^{n} \hat{\mu}(x_j) = 0 \quad \text{and} \\
I_j(w) &= \sum_{j=1}^{w_j} - N = 0
\end{align*}
\]

where $$\hat{\mu}(x_j)$$ is a nonparametric fit of the missing value $$y_i$$. Here, calibration constraint $$\sum_{j=1}^{w_j} \hat{\mu}(x_j) - \sum_{j=1}^{n} \hat{\mu}(x_j) = 0$$ is defined on the fitted values. We call this model calibration. We construct an unconstrained problem as follows.

$$\phi(w, r_j) = \sum_{j=1}^{2} \left(\frac{w_j - d_j}{q_j d_j} \right)^2 + \psi(r_j, I_j(w)), \quad j = 1, 2$$

where $$\psi(r_j, I_j(X))$$ is a penalty function which is continuous and which is such that $$\psi(r_j, t) \geq 0$$ for all $$r_j$$ and $$t \in \mathbb{R}^n$$. Also, $$\psi(r_j, t)$$ is strictly increasing for $$r_j > 0$$ and $$t > 0$$. In a form similar to the one discussed in Rao [6], we have the function

$$\phi(w, r_j) = \sum_{j=1}^{2} \left(\frac{w_j - d_j}{q_j d_j} \right)^2 + H(r_j) \sum_{j=1}^{2} l_j^q(w)$$

where $$H(r_j)$$ is some function of the parameter $$r_j$$ tending to infinity as $$r_j$$ tends to zero and so that $$\sum_{j=1}^{2} l_j^q(w)$$ also tend to zero. A common choice for value of $$q$$ is 2. Also, the function $$\phi$$ will always be greater than $$f$$. The penalty terms are chosen such that their values will be small at points away from the constraint boundaries and will tend to infinity as the constraint boundaries are approached. Hence, the value of $$\phi$$ will also blow up as the constraint boundaries are approached. Frank and Jorge [5] have discussed flexible ways of choosing the penalty. In an iterative process, the unconstrained minimization of $$\phi$$ does not have to
start with a feasible solution since we have equality constraints. The subsequent points generated will always lie within the feasible region since the constraint boundaries act as barriers during the minimization process. The rationale of the penalty terms as described by Ozgur [8] is that if the constraint is violated, that means \(l_j(w) \neq 0 \), a term will be added to \(\phi \) function such that the solution is pushed back towards the feasible region.

In the minimization of \(\phi \), for the solution to be the global, \(\sum \frac{(w_i - d_i)^2}{q_i d_i} \) and \(\sum l_i(w) \) should be convex and one of the functions \(\sum \frac{(w_i - d_i)^2}{q_i d_i} l_i^r(w) \) and \(l_i^q(w) \) be strictly convex. See Rao [9]. If we let \(q = 2 \), then, from equations (12) and (14), we have the penalty function

\[
\phi(w, r_j, \hat{\mu}(x)) = \sum_{i=1}^{n} \left(\frac{(w_i - d_i)^2}{q_i d_i} \right) + H(r_j) \left[\sum_{i=1}^{n} w_i \hat{\mu}(x_i) - \frac{N}{n} \right]^2 + H(r_j) \left[\sum_{j=1}^{N} w_j - N \right]^2
\]
(15)

Differentiating (15) partially with respect to \(w_i \) we get

\[
\phi'(w_i, r_j, \hat{\mu}(x)) = \frac{2(w_i - d_i)}{q_i d_i} + 2H(r_j)\hat{\mu}(x_i) \left[\sum_{i=1}^{n} w_i \hat{\mu}(x_i) - \frac{N}{n} \right] + 2H(r_j) \left[\sum_{j=1}^{N} w_j - N \right]
\]
(16)

Equating (16) to zero and solving for \(w_i \) we have

\[
w_i = \frac{d_i - H(r_j)q_id_i \left(\sum_{j=1}^{n} w_j [\hat{\mu}(x_i) \hat{\mu}(x_j) + 1] - \sum_{j=1}^{N} [\hat{\mu}(x_i) \hat{\mu}(x_j) - 1] \right)}{1 + H(r_j)(\hat{\mu}(x_i)^2 + 1)q_id_i}
\]
(17)

A weighted nonparametric estimator of population total is therefore obtained as

\[
\hat{y}_m = \sum_{i=1}^{n} \frac{w_i y_i}{1 + H(r_j)(\hat{\mu}(x_i)^2 + 1)q_id_i} - \sum_{i=1}^{n} \frac{y_i d_i}{1 + H(r_j)(\hat{\mu}(x_i)^2 + 1)q_id_i}
\]
(18)
In semiparametric estimation, we have an optimization problem of the form

\[
\text{minimize } \Phi = \sum_{i=1}^{n} \frac{(w_i - d_i)^2}{qd_i} \text{ subject to } \\
L_1(w) = \sum_{i=1}^{n} w_i \hat{g}(x_i) - \sum_{i=1}^{N} \hat{g}(x_i) = 0 \text{ and } \\
L_2(w) = \sum_{i=1}^{n} w_i - N = 0
\]

(19)

where \(\hat{g}(x_i) \) is a semiparametric fit of the missing value \(y_i \). We have the penalty function as

\[
\phi(w, r, \hat{g}(x)) = \sum_{i=1}^{n} \frac{(w_i - d_i)^2}{qd_i} + H(r_i) \left[\sum_{i=1}^{n} w_i \hat{g}(x_i) - \sum_{i=1}^{N} \hat{g}(x_i) \right]^2 + H(r_i) \left[\sum_{i=1}^{n} w_i - N \right]^2
\]

(20)

This yields the following semiparametric estimator of the population total

\[
\hat{y}_p = \sum_{i=1}^{n} w_i y_i \sum_{i=1}^{n} \frac{y_i d_i}{1 + H(r_i) \left[\hat{g}(x_i) \right]^2 + 1} \left[\sum_{i=1}^{n} w_i \hat{g}(x_i) + 1 - \sum_{i=1}^{N} \hat{g}(x_i) \right] \]

(21)

From equations (18) and (21), we see that as \(H(r_i) \rightarrow 0 \), the estimators reduce to the Horvitz Thompson design estimator \(\sum_{i=1}^{n} y_i d_i \).

To obtain the weights \(w_i \), \(i = 1, 2, \ldots, n \), we solve the penalty functions (15) and (20) as unconstrained minimization problems in which case we only require to start with some initial guess for \(w_i \) and \(r_i \) and then iteratively improve on the initial values until we have optimal values. Since the constraints in our case are equality constraints, we need not start with a feasible guess for \(w_i \) as discussed in Kihara [7]. We appeal to Newton method of unconstrained optimization. See Rao [9].

Considering the nonparametric case, let \(W = \{w_1, w_2, \ldots, w_n\} \) be the set of the weights. We need to obtain \(W^* \) such that

\[
\delta(W^*) = [\phi(w_1, r_1, \hat{g}(x)), \ldots, \phi(w_n, r_n, \hat{g}(x))] = 0
\]

(22)

We first start with some initial approximation \(W^1 \) of \(W^* \) so that \(W^1 = W + Z \). The Taylor’s series expansion of
\[\mathcal{G}(W^+) \] gives
\[\mathcal{G}(W^+) = \mathcal{G}(W_i + Z) = \mathcal{G}(W_i) + J_{w,i}Z + \ldots \]
(23)
By neglecting the higher order terms in (23) and setting \(\mathcal{G}(W^+) = 0 \) we obtain
\[\mathcal{G}(W_i) + J_{w,i}Z = 0 \]
(24)
Where \(J_{w,i} \) is the matrix of second derivatives evaluated at \(W_i \). In general, \(J \) is a \(n \) by \(n \) matrix with
\(i = 1,2,\ldots,n \) rows and \(j = 1,2,\ldots,n \) columns with diagonal elements \(\frac{2}{q,d_i} + 2H(r_k)(\hat{\mu}(x_i)^2 + 1) \) and elements \(2H(r_k)(\hat{\mu}(x_i)^2 + 1) \) elsewhere. If \(J_{w,i} \) is nonsingular, then, from the set of linear equations (24) we have for vector \(Z \)
\[Z = J_{w,i}^{-1}\mathcal{G}(W_i) \]
(25)
The following iterative procedure is used to find the improved approximations of \(W^+ \).
\[W_{k+1} = W_k + Z_k = W_k - J_{w,i}^{-1}\mathcal{G}(W_i) \]
(26)
The sequence of the points \(W_1, W_2,\ldots,W_{k+1} \) eventually converges to the actual solution \(W^+ \).

Now, if we let \(W_i \) be the minimum of \(W^+ \) obtained for a particular penalty \(r_k \), we obtain a sequence of minimum points \(W_1, W_2,\ldots,W_{k+1} \) for the penalties \(r_1, r_2,\ldots,r_{k+1} \) until \(W_k = W_{k+1} \) or \(\phi(w,r_k,\hat{\mu}(x)) = \phi(w,r_{k+1},\hat{\mu}(x)) \) for some specified accuracy level. The accuracy level may for example be, to certain decimal points or significance level. The penalty values may be set such that the starting point \(r_1 > 0 \) and \(r_{k+1} = cr_k \), where \(c < 1 \). \(H(r_k) \rightarrow \infty \) as \(r_k \rightarrow 0 \).

The Newton solution process in semiparametric case is similar to that of nonparametric case described above but with \(\hat{\mu}(x_i) \) replaced by \(\hat{g}(x_i) \). The \(J \) matrix is a \(n \) by \(n \) matrix with diagonal elements
\[\frac{2}{q,d_i} + 2H(r_k)(\hat{g}(x_i)^2 + 1) \] and elements \(2H(r_k)(\hat{g}(x_i)^2 + 1) \) elsewhere.

3. Fitting the Missing Values by Local Polynomial Method

The objective in polynomial regression is to minimize
\[\sum_{j=1}^{n} \left\{ y_j - \beta_0 - \beta_1(x_j - x) - \beta_2(x_j - x)^2 \right\}^2 K(x_j - x) \]
(27)
with respect to \(\beta = (\beta_0, \beta_1, \ldots, \beta_p) \). \(\beta_0 \) estimates \(\mu(x_i) \) while \(\beta_1, \ldots, \beta_p \) estimates higher order derivatives of
\(\mu(x_j) \). Also, \(q \) is the degree of the polynomial and \(K(\cdot) \) is some kernel function, a discussion of which is given by Simonof [12]. The corresponding nonparametric fit can be obtained from the local polynomial smoother as

\[
\hat{\mu}(x_i) = S_n^T Y
\]

(28)

where \(s_n^T = \varepsilon_i'(X_i^T \sigma_x X_i)^{-1} X_i^T \sigma_y \), \(\varepsilon = (1, 0, \ldots, 0)^T \), \(Y_i = (y_1, y_2, \ldots, y_n)^T \), \(\sigma_y = (K((x_i - x_j)/h), \ldots, K((x_i - x_j)/h)) \), \(h \) is the bandwidth and \(X_n \) is a matrix with rows \([1, (x_j - x_i), \ldots, (x_j - x_i)^q] \), \(j = 1, 2, \ldots, n \). See Breidt and Opsomer [2].

A semiparametric fit for the missing values similar to that derived by Breidt and Opsomer [2] may be obtained as

\[
\hat{\mu}_s = S_n^T (Y_i - Z_i^T \hat{\beta}) + Z_i (Z_i^T S_n Z_i)^{-1} Z_i^T S_n Y_i
\]

(29)

where \(S_n = [S_n, i = 1, 2, \ldots, n] \), \(\hat{\beta} = (Z_i^T S_n Z_i)^{-1} Z_i^T S_n Y_i \) and \(Z_i = [Z_i, Z_{i+1}, \ldots] \) is the vector of categorical variables.

4. Empirical Results

In section 4.1, we report on the performance of the nonparametric estimator \(y_{np} \). In subsection 4.1.1, we have results of the nonparametric estimator \(y_{np} \) on the linear model data and a comparison of its performance with that of Horvitz Thompson estimator \(y_{ht} \) discussed in Thompson [13].

In subsection 4.1.2, we report on the results for estimator \(y_{np} \) on the quadratic model data and again compare with Horvitz Thompson estimator. In section 4.2, we discuss the performance of the semiparametric estimator \(y_{sp} \) where in subsection 4.2.1, we have results of the estimator \(y_{sp} \) on the linear model data and a comparison of its performance with that of Horvitz Thompson estimator \(y_{ht} \). In subsection 4.2.1, we report on the results for estimator \(y_{sp} \) on the quadratic model data.

4.1. Analysis of the Nonparametric Estimator Results

Using R program, we simulated a population of independent and identically distributed variable \(x \) using uniform \((0, 1)\). Using \(x \) as the auxiliary variable we generated the populations of size 300 for random variable \(y \) as a linear function \(y = 2 + 5x \) and quadratic function \(y = (2 + 5x)^2 \). For each of different sample sizes \(n \), 5 samples were generated. Our initial penalty constant was set at \(r_i = 0.00010 \).
convergence criteria considered was \(W^* = W^{*m} \) and \(\phi(w, r_k, x) = \phi(w, r_{k+1}, x) \) to six decimal places.

We used local polynomial method described in section (3.0) to fit the missing values. In particular, we have considered local polynomial of degree 1, that is local linear function. We have used the standard Epermecknikov kernel \(K(u) = 3/4(1-u^2), u \leq 1 \) with a bandwidth of 0.25. The choice of the bandwidth is based on the ad hoc rule of a quarter of the range of the data.

4.1.1. Results for Nonparametric Estimator \(y_{np} \) on Linear Model Data

We let \(y_i = \sum_{n=1}^{N} y_{n} \) be the actual population total, \(r_k \) be the penalty parameter, and \(y_i - y_{np} \) and \(y_i - y_{ht} \) be the errors in the estimation.

<table>
<thead>
<tr>
<th>Table 1: Nonparametric Estimates for Linear Model Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample number</td>
</tr>
<tr>
<td>sample size n</td>
</tr>
<tr>
<td>(y_i)</td>
</tr>
<tr>
<td>(y_{np})</td>
</tr>
<tr>
<td>(y_{ht})</td>
</tr>
<tr>
<td>(y_i - y_{np})</td>
</tr>
<tr>
<td>(y_i - y_{ht})</td>
</tr>
<tr>
<td>(r_k)</td>
</tr>
</tbody>
</table>

From table (1), the estimators \(y_{np} \) and \(y_{ht} \) have small error margins. Consistently, \(y_{np} \) has a smaller error margin. This is expected because the data is linear and \(y_{np} \) is obtained from a linear local polynomial model. We say the nonparametric model is correctly specified for the data. For all the samples, convergence is achieved at the same penalty value of 0.00010 and which was the initial penalty value.
In figure (1) and figure (2), the variances for y_{np} and y_{ht} decrease as the sample size increases. From figure (3), the ratio $\frac{\text{var}(y_{np})}{\text{var}(y_{ht})}$ settles almost to a constant, estimated to be 0.37, as the sample size increases. That is, y_{np} consistently has a lower variance than y_{ht}. This is expected since y_{np} is correctly specified for the data.
Figure 3: Variance Ratio $\frac{\text{var}(y_{np})}{\text{var}(y_{ht})}$ on Linear Model Data

4.1.2. Results for Nonparametric Estimator y_{np} on Quadratic Model Data

| Table 2: Nonparametric Estimates for Quadratic Model Data |
sample number	1	2	3	4	5
sample size n	100	100	100	100	100
y_r	6702.63067	6702.63067	6702.63067	6702.63067	6702.63067
y_{np}	6991.0552	6582.4742	7021.3978	6679.41066	6714.58378
y_{ht}	6409.9701	6592.1200	6858.8175	6654.76502	6805.59084
$y_r - y_{np}$	-288.4246	120.1564	-318.7671	23.22000	-11.95311
$y_r - y_{ht}$	292.6606	110.5106	-156.1868	47.86565	-102.96018
r_k	0.00010	0.00010	0.00010	0.00010	0.00010

From table (2), there does not appear to be a noticeable difference in the performances of y_{np} and y_{ht}. In some instances y_{np} has smaller error margins than y_{ht}, while in other samples, y_{ht} has smaller error margins.
This lack of noticeable difference in the performances may point to the robustness of the estimator y_{np}. This is because for quadratic data, y_{np} is actually as misspecified model since y_{np} is obtained from a local linear polynomial model. We note also that the penalty value is 0.00010 for all the samples.

![ynp variance vs sample size](image)

Figure 4: Variance for Estimator y_{np} on Quadratic Model Data

![yht variance vs sample size](image)

Figure 5: Variance for Horvitz Thompson Estimator y_{np} on Quadratic Model Data

From figure (4), variance for y_{np} does not appear to significantly change as the sample size increases. But for
small samples, the variance is more erratic as opposed to large samples. From figure (5), the variance for y_{ht} steadily decreases as the sample size increases. Looking at the scales in figure (4) and figure (5), it can be seen that y_{np} has higher variance than y_{ht}.

From figure (6), the ratio $\frac{\text{var}(y_{np})}{\text{var}(y_{ht})}$ tends to a constant, though more erratic for smaller samples. Looking at the scale, we can see that variance for y_{np} dominates variance for y_{ht}.

![Figure 6: Variance Ratio \(\frac{\text{var}(y_{np})}{\text{var}(y_{ht})} \) on Quadratic Model Data](image)

4.2. Analysis of Semiparametric Estimator Results

For semiparametric estimation, the dependent population values y were generated from the linear function $Z\beta' + 2 + 5x$ and quadratic function $Z\beta' + (2 + 5x)^2$. Z is the matrix (Z_1, Z_2, Z_3), where Z_1 is a matrix of 2s with dimension N, the population size. Z_2 is a matrix of alternating 3s, 4s and 5s with dimension N, while Z_3 is a matrix of alternating 6s, 7s and 8s with dimension N. The vector of coefficients $\beta = (1, 2, 3)$. We let $y_i = \sum_{i=1}^{N} y_i$ be the actual population total, r_k be the penalty parameter,

and $y_i - y_{np}$ and $y_i - y_{ht}$ be the errors in the estimation.
4.2.1 Results for Semiparametric Estimator y_{sp} on Linear Model Data

<table>
<thead>
<tr>
<th>sample number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size n</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>y_{y}</td>
<td>10637.07767</td>
<td>10637.07767</td>
<td>10637.07767</td>
<td>10637.07767</td>
<td>10637.07767</td>
</tr>
<tr>
<td>y_{sp}</td>
<td>10653.33589</td>
<td>10592.83642</td>
<td>10772.50201</td>
<td>10656.61600</td>
<td>10620.68442</td>
</tr>
<tr>
<td>y_{ht}</td>
<td>10710.11132</td>
<td>10553.27255</td>
<td>10591.87632</td>
<td>0579.65450</td>
<td>10718.60134</td>
</tr>
<tr>
<td>$y_{y} - y_{sp}$</td>
<td>-16.25822</td>
<td>44.24125</td>
<td>-135.42434</td>
<td>-19.53834</td>
<td>16.39324</td>
</tr>
<tr>
<td>$y_{y} - y_{ht}$</td>
<td>-73.03365</td>
<td>83.80512</td>
<td>45.20135</td>
<td>57.42317</td>
<td>-81.52367</td>
</tr>
<tr>
<td>r_{k}</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
</tbody>
</table>

From table (3), in some samples y_{sp} has larger error margins than y_{ht}, while in other samples, the reverse is true. Convergence is achieved at the same penalty value of 0.00010 and which was the initial penalty value.

![Figure 7: Variance for Estimator y_{sp} on Linear Model Data](image)
Figure 8: Variance for Horvitz Thompson Estimator y_{ht} on Linear Model Data

In figure (7), though variance for y_{sp} appear to be largely constant when a Lowess line if fitted, a look at individual plots shows higher and more erratic variance for small samples before stabilizing for larger samples. In figure (8), the variance and y_{ht} steadily decrease as the sample size increases. From figure (9), the ratio $\frac{\text{var}(y_{sp})}{\text{var}(y_{ht})}$ is more than one, indicating that y_{sp} has higher variance than y_{ht}.

Figure 9: Variance Ratio $\frac{\text{var}(y_{sp})}{\text{var}(y_{ht})}$ on Linear Model Data
4.2.2 Results for Semiparametric Estimator y_{sp} on Quadratic Model Data

<table>
<thead>
<tr>
<th>sample number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size n</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>y_{sp}</td>
<td>16054.39204</td>
<td>16054.39204</td>
<td>16054.39204</td>
<td>16054.39204</td>
<td>16054.39204</td>
</tr>
<tr>
<td>y_{ht}</td>
<td>16083.00298</td>
<td>16386.4447</td>
<td>15530.1848</td>
<td>15850.0349</td>
<td>15939.60759</td>
</tr>
<tr>
<td>$y_{t} - y_{sp}$</td>
<td>-28.61094</td>
<td>-332.0527</td>
<td>524.2072</td>
<td>204.3571</td>
<td>114.78445</td>
</tr>
<tr>
<td>$y_{t} - y_{ht}$</td>
<td>342.40823</td>
<td>-332.5310</td>
<td>-200.4320</td>
<td>-115.4326</td>
<td>-19.37273</td>
</tr>
<tr>
<td>r_{k}</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
</tbody>
</table>

From table (4), there is no noticeable difference in the performances of y_{sp} and y_{ht}. In some instances y_{sp} has smaller error margins than y_{ht}, while in other samples, y_{ht} has smaller error margins. This lack of noticeable difference in the performances is evidence to the robustness of the semiparametric estimator y_{sp}. We note also that the penalty value is 0.00010 for all the samples.
From figure (10), variance for the semiparametric estimator y_{sp} is higher and more erratic for small samples before stabilizing almost to a constant for larger samples. From figure (11), variance for y_{ht} steadily decreases as the sample size increases. From figure (12), the ratio $\frac{\text{var}(y_{sp})}{\text{var}(y_{ht})}$ show clearly y_{sp} has larger variance than y_{ht}.

Figure 12: Variance Ratio $\frac{\text{var}(y_{sp})}{\text{var}(y_{ht})}$ on Quadratic Model Data
5. Conclusion

We conclude that when the nonparametric model is correctly specified for the data, the nonparametric estimator y_{np} is quite accurate, more than the Horvitz Thompson design estimator y_{ht}. When the nonparametric model is misspecified for the data, the nonparametric estimator y_{np}, though a bit less efficient than the Horvitz Thompson design estimator y_{ht}, still yields quite reliable estimates. This shows that y_{np} is a robust estimator. The semiparametric estimator y_{sp} is also a very robust estimator giving estimates that are very close to those of Horvitz Thompson design estimator even when the nonparametric model component of the semiparametric estimator is misspecified.

References

