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Abstract

Use of nonparametric model calibration estimators for population total and mean has been considered by several
authors. In model calibration, a distance measure defined on some design weights thought to be close to the
inclusion probabilities, is minimized subject to some calibration constraints imposed on the fitted values of the
study variable. The minimization is usually by way of introducing langrage equation whose solution gives the
optimal design weights to be used in estimation of population total. Sometimes a solution to the langrage
constants does not exist. Numerical approaches are some of the alternatives to the langrage approach. In this
paper, we have derived nonparametric and semiparametric model calibration estimators by treating the
calibration problem as a nonlinear constrained minimization problem, which we transform to an unconstrained
optimization problem using penalty functions. We show that the resulting nonparametric and semiparametric
estimators are robust in the sense that they are quite efficient when the model is correctly specified for the data
and that the estimators do not fail even when the model is misspecified for the data. When the penalty constant
approaches zero, the estimators reduce to the Horvitz Thompson design estimator.

Keywords: model calibration, nonparametric model, semiparametric model, penalty function

1. Introduction

Use of auxiliary information in estimation of missing values and descriptive parameters of a survey variable in a
finite population has become fairly common. A simple way to incorporate known population totals of auxiliary
variables is through ratio and regression estimation. More general situations are handled by means of generalized
regression estimation as discussed by Sarndal [10] and calibration estimation discussed by Deville and Sarndal
[4]. The processes of estimation of population total and mean starts first with the point estimation of the missing
values based on auxiliary variable. Then, techniques like calibration and model assistance are employed on the
fitted values to estimate population parameters and or any other required analysis of the data are carried out. The
reasoning towards use of nonparametric and semiparametric modeling techniques for the missing values includes
the following. First, an initial nonparametric estimate may well suggest a suitable parametric model such as
linear regression. That is, it may give the data more of a chance to speak for themselves in choosing the model to
be fitted (Silverman [11]). Secondly, known facts suggest a tentative model which in turn suggest a particular
examination and analysis of data or the need to acquire further data or suggest a modified model resulting in an
iterative procedure (Box[1], Hastie and Tibshirani [6], Simonof[12]). It is very important to note that parametric
models would be very efficient if the model is correctly specified. However, if the assumed model is
misspecified, inferences can lead to misleading interpretations of data.

Considered is a super population regression model which is denoted by & and given as
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where 20(%,) is a smooth function. Given N pair of observations CHANCHA NS from a
population of size N , of interest is the estimator A(%) of 1(x) = E.(y/x)- A nonparametric method like local
polynomial or splines could be used for this estimation.

In some circumstances, the auxiliary information is such that it contains a component whose parametric structure
is known and a component that need to enter the estimation nonparametrically. Consider case where auxiliary
information consists of a single univariate term X that is to enter estimation nonparamtrically and a vector Z
composed of an arbitrary number of linear terms.

Consider super population regression model given by
Y, =9(x.2)+e (2)

where Z; is a vector of the categorical or continuous auxiliary variable. The interest is to find an estimator

a(x,2) °f g(x.,2)=E.(y/x2) A)

This is semiparametric estimation. Breidt et al [3] uses a sample estimator of the form
§(x;,2,) = a(x) + 2,8 4

~

Once the missing data has been modeled, a nonparametric estimator y, = zi”:lwi y; for the population total
Z,lei is then obtained where given the sample inclusion probability 7, the weights wi's are

=
design weights which are as close as possible tod, = z,;* and are obtained by minimizing a given distance

measure between Wi' Sand di'S subject to some constraints. Wu and Sitter [14] considered the two constraints

below

Zn:wi X, = i X,

i=1 i=1 (5)
"w =N

i1 Vi

(6)

In a parametric setting, Kihara [7] considered the conversion of the above calibration problem into an
optimization problem. He has considered reducing the chis square distance measure below

ies qidi (7)

subject to constraints (5) and (6) to obtain a penalty function
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W, 1, X) = z +rk|:zvvixi_ Xi:| +rk|:ZVVi_N:|
qid. = i1 ) ©)
Differentiating (8) partially with respectto W, he got
. 2(w, —d;) S S
¢ (Wi,rk,x):7d+2rk ZW X; =2 % [+ 25D w, =N
i j=1 i=1
9)
Equating (9) to zero and solving for w; we have
n N
d| - eridi zwj (Xixj "‘1) _Z(Xixj _1)
=1 =t
J#
w;, =
1+ ((x2 +Daq,d; ) (10)
He therefore derived the following estimator of population total
n N
raid;y; ZWJ‘ (X;x; +1) — Z(Xixj -1
y,d, = =
Wiy =
z ,21:1+ r.(x? +1)q,d,) Z 1+r((x2 +Dq.d,) (11)

To obtain the weightsw, (i =12,..,n), the penalty function (8) is solved as an unconstrained minimization
problem in which case we only require to start with some initial guess forw, and r, and then iteratively improve

on the initial values until we have optimal values. Since the constraints (5) and (6) are equality constraints, we
need not start with a feasible guess forw . In this paper we extend the work of Kihara [7] to nonparametric and

semiparametric regression modeling. We also consider model calibration in which case calibration is done with
respect to the fitted values.

2. Penalty Function Method for Nonparametric and Semiparametric Estimators

Let there be a population of size N for our variable of interest y from which we draw a sample of size N . Let

the auxiliary value X; be available for every element of the population of variable y . We wish to estimate the

N
population total Y, = Z y, from a sample of size N and incorporating the auxiliary
i=1
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information present. The penalty function method transforms the basic constrained optimization problem into an
unconstrained optimization problem. In nonparametric model calibration estimation, we consider an optimization
problem of the form

R
minimize ® = zMsubject to

ies qi i

n N (12)
L(w) = Y wii(x) - fu(x) =0 and

i=L i=1
L,(w)=>"w-N=0

i=1
where  /i(x;) is a nonparametric fit of the missing value Yy, . Here, calibration constraint

n N
zWiﬁ(Xi) —Zﬁ(xi) — 0 is defined on the fitted values. We call this model calibration. We construct an

i=1 i=1

unconstrained problem as follows.

pour) =X Uy (), =12 (13)

where y (r,,1,(X))is a penalty function which is continuous and which is such that y (r,,t)>0 for all

r. and te®R". Also, y (r,t) is strictly increasing for r >0 and t>0. In a form similar to the one

discussed in Rao [6], we have the function

plwr) =y o9

ies i

+ H(rk)il?(w) (14)

where H(r, ) is some function of the parameter r, tending to infinity as r, tends to zero and so that ZZ:I’?‘(W)
]
j=1

also tend to zero. A common choice for value of ¢ is 2 .Also, the function ¢ will always

be greater than f . The penalty terms are chosen such that their values will be small at points away from the
constraint boundaries and will tend to infinity as the constraint boundaries are approached. Hence, the value of

¢ will also blow up as the constraint boundaries are approached. Frank and Jorge [5] have discussed flexible
ways of choosing the penalty. In an iterative process, the unconstrained minimization of ¢ does not have to
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start with a feasible solution since we have equality constraints. The subsequent points generated will always lie
within the feasible region since the constraint boundaries act as barriers during the minimization process. The

rationale of the penalty terms as described by Ozgur [8] is that if the constraint is violated, that means I;(w) =0,

a term will be added to ¢ function such that the solution is pushed back towards to the feasible region.

In the minimization of ¢, for the solution to be the global, _ (, -4, and should be convex

200 Z'q( w)

and one of the functionsz(wl —ay 17 (W) and 1}(w)be strictly convex. See Rao [9]. If we letq = 2
= qd

then, from equations (12) and (14), we have the penalty function

gt 9= 30 o) Swae - Faco] e S|

q;d;

id; (15)
Differentiating (15) partially with respectto W, we get
.1,00) = 2B 2h ) ) S )3 ) +2H05) S|

ad, E ( (16)

Equating (16) to zero and solving for w; we have
d, —H(r)ad, iwj[ﬂ(xi)ﬁ(xj)+1]—Z[[1(Xi)[t(xj)—1]
W; = e VNRY) |
L+ H()((a(x )* +Dad)) 17

A weighted nonparametric estimator of population total is therefore obtained as

H(r)a;d;; iwj[ﬂ(xi)ﬂ(xj)+1]—Z[ﬂ(xi)ﬁ(xj)—1]
d " d; d 5 -
Iop =2 WY =2 o -2

Z1+ HR)((a(x )? +Dad,) = 1+ H(r)((a(x )? +1)g,d,)

(18)
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In semiparametric estimation, we have an optimization problem of the form

2
minimize ® = zMsubject to

ies i

() = S wg(x)- > 9(x) =0 and

n (19)
L,(w)=>"w,-N=0

i=1

where §(x,) isasemiparametric fit of the missing value Y, .  We have the penalty function as
. n (W —d-)2 n . N . 2 n 2
p(w, 1, 4(x)) = Zﬁ +H (rk)|:zwig(xi) _Zg(xi ):| +H (rk)|:ZWi - N:|
i=1 ivi i=1 i=1 i=1
(20)

This yields the following semiparametric estimator of the population total

H(r)a,dy; iwj[Q(Xi)@(X,-)+1]—Z[@(Xi)g‘(xj)—1]
I =Swy =3 % -y

SL+HE)(G(x )2 +Dad;) S 1+ H(r)((G(x)? +Dad;)

(21)

From equations (18) and (21), we see thatas H(r,) — 0, the estimators reduce to the Horvitz Thompson design
estimator Z:lyidi.
To obtain the weightsw,, (i=12,..,n), we solve the penalty functions (15) and (20) as unconstrained

minimization problems in which case we only require to start with some initial guess forw,and r, and then

iteratively improve on the initial values until we have optimal values. Since the constraints in our case are
equality constraints, we need not start with a feasible guess forw, as discussed in Kihara [7]. We appeal to

Newton method of unconstrained optimization. See Rao [9].
Considering the nonparametric case, let W ={w,w,,..,w,} be the set of the weights. We need to obtain

W “such that

IW) = [§ (W 100) s (W, 1, )] =0 (22)
We first start with some initial approximation W, of W” so thatw* =W, +Z . The Taylor’s series expansion of
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(W) gives

W) = SW, +Z) = IW,) + 3y Z +..... (23)

By neglecting the higher order terms in (23) and setting 9(W ™) = Owe obtain

IW,) +3,Z2=0 (24)

Where Jy, is the matrix of second derivatives evaluated atW;- In general, Jisa n by n matrix with

i=12,..,n rowsand j=12,.., ncolumns with diagonal elements i+2H(rk)(fl(Xi )2 +1) and

elements 2H(rk)([l(xi)/}(xj)ﬂ)elsewhere. If JWi is nonsingular, then, from the set of linear equations (24)

we have for vector Z
Z=3,9W,) . (25)

The following iterative procedure is used to find the improved approximations ofW*.

W, =W, +2Z, =W, - J;59(W,) (26)

The sequence of the points W;,W,,...,W,,; eventually converges to the actual solutionW

Now, if we let W, be the minimum of W obtained for a particular penalty ', we obtain a sequence of

* * *

minimum  points W, \W,,...W.,  for the  penalties s B until W, =W,
or #(W, Iy, (X)) = $(W, Ty .1, £(X)) for some specified accuracy level. The accuracy level may for example be,

to certain decimal points or significance level. The penalty values may be set such that the starting point 1 > 0

andfi = Ch, where€ <1, H() »>oas r, -0 .
The Newton solution process in semiparametric case is similar to that of nonparametric case described above but

with  fi(x) replaced by §(x) . The J matrix is a n byn matrix with diagonal elements

LdJrgH(rk)(g(xi)zﬂ) and elements 2H (r, )((x, )4 (x,) +1) elsewhere.

i
3. Fitting the Missing Values by Local Polynomial Method

The objective in polynomial regression is to minimize
2

Zn:{yi _ﬂo _ﬂl(xj _Xi)"'ﬂp(xj _Xi)q} K(Xj _Xi) (27)

j=1

with respect to B= By B B) - B estimates  z(x,) while Brrvr By estimates higher order derivatives of
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(%) Also, (is the degree of the polynomial and K(.) is some kernel function, a discussion of which is

given by Simonof [12]. The corresponding nonparametric fit can be obtained from the local polynomial
smoother as

A(%) =S¥

si's

(28)

Where ] = 5] (X 1o, X,) X1y s & = (L0, 0)T, Y, = (e Yoo Vo) o @ = (K((% = %)/ 1), K((% %) /1)),

is the bandwidth and X is a matrix with rows [1, (x;—x),...,(x;=%)%], j=12,..,n. See Breidt and

Opsomer[2] .
A semiparametric fit for the missing values similar to that derived by Breidt and Opsomer [2] may be obtained
as

G, =Si(Y. 2] B)+Z,(2]S,2.)*Z]S.Y, (29)

and z_=[z,,Z,,.]Is the vector of categorical variables.

s Ts’'s

where S =[S_,i=12,..,n], A=(2!s,2,)*Z]SY

4. Empirical Results

In section 4.1, we report on the performance of the nonparametric estimator Yop- 1IN subsection 4.1.1, we have

results of the nonparametric estimator Y, on the linear model data and a comparison of its performance with that

of Horvitz Thompson estimator Yo = Zn: y,d, discussed in Thompson [13]. In

i=1

subsection 4.1.2, we report on the results for estimator Y., on the quadratic model data and again compare

with Horvitz Thompson estimator. In section 4.2, we discuss the performance of the semiparametric

estimator Y, where in subsection 4.2.1, we have results of the estimator Y, on the linear model data and a
comparison of its performance with that of Horvitz Thompson estimator y, . . In subsection 4.2.1, we report on

the results for estimator Y, on the quadratic model data.

4.1. Analysis of the Nonparametric Estimator Results

Using R program, we simulated a population of independent and identically distributed variable X using
uniform (0, 1). Using X as the auxiliary variable we generated the populations of size 300 for random

variable Yy as a linear function y =2+5X and quadratic functiony=(2+5x)?. For each of different

sample sizesN, 5 samples were generated. Our initial penalty constant was set at r; =0.00010. The
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convergence criteria considered was w," =w,,and g(w,r,,X) = #(w,r,.,,x) to six decimal places.

We used local polynomial method  described in section (3.0) to fit the missing values. in particular ,we have
considered local polynomial of degree 1, that is local linear function. We have used the standard Epernecknikov
kernel K (u) =3/4(1—u?),u<1 with a bandwidth 0f 0.25. The choice of the bandwidth is based on the ad hoc

rule of a quarter of the range of the data.

4.1.1. Results for Nonparametric Estimator Y, on Linear Model Data

We let y, :Z_“il y, be the actual population total, r, be the penalty parameter, and Y = Yop and
Y, — Y, De theerrors in the estimation.
Table 1: Nonparametric Estimates for Linear Model Data
sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 1344531793 | 1344.531793 | 1344.531793 1344531793 | 1344.531793
t
y 1345.865888 | 1341.235027 | 1330.40555 1348.019108 | 1348.805556
np
y 1346.733668 | 1339.116040 | 1321.57077 1350.289785 | 1351.609775
ht
-1.334095 3.296766 14.12624 -3.487315 -4.273763
yt - ynp
-2.201875 5.415753 22.96103 -5.757992 -7.077982
Y = Yie
r 0.00010 0.00010 0.00010 0.00010 0.00010
k

From table (1), the estimators Ynp and Y, have small error margins. Consistently, Ynp has a smaller

error margin. This is expected because the data is linear and Ynp is obtained from a linear local polynomial

model. We say the nonparametric model is correctly specified for the data. For all the samples, convergence is
achieved at the same penalty value of 0.00010 and which was the initial penalty value.
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Figure 1: Variance for Estimator Y, on Linear Model Data

vht variance vs sample size
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Figure 2: Variance for Horvitz Thompson Estimator Yy, on Linear Model Data

In figure (1) and figure (2), the variances for Y, and Y, decrease as the sample size increases. ~ From
figure (3), the ratio Vvar(y,,)/var(y,) settles almost to a constant, estimated to be 0.37, as the sample size

increases. That is, Y., consistently has a lower variance than Y, . This is expected since Y, is correctly

specified for the data.
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Figure 3: Variance Ratio Var(y,,)/var(y,,) on Linear Model Data

4.1.2. Results for Nonparametric Estimator Ynp ON Quadratic Model Data

Table 2: Nonparametric Estimates for Quadratic Model Data
sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 6702.63067 6702.63067 6702.63067 6702.63067 6702.63067
t
y 6991.0552 6582.4742 7021.3978 6679.41066 6714.58378
np
y 6409.9701 6592.1200 6858.8175 6654.76502 6805.59084
ht
-288.4246 120.1564 -318.7671 23.22000 -11.95311
Yi— ynp
292.6606 110.5106 -156.1868 47.86565 -102.96018
Yi = Yt
r 0.00010 0.00010 0.00010 0.00010 0.00010
k

From table (2),  there does not appear to be a noticeable difference in the performances of Y., and Y, . In

some instances Y, has smaller error margins than Yy, , while in other samples, Y, has smaller error margins.
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This lack of noticeable difference in the performances may point to the robustness of the estimator Yop - This is

because for quadratic data, Yop is actually as misspecified model since Yop is obtained from a local linear
polynomial model. We note also that the penalty value is 0.00010 for all the samples.

vynp variance vs sample size
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Figure 4: Variance for Estimator Ynp ON Quadratic Model Data

vht variance vs sample size
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Figure 5: Variance for Horvitz Thompson Estimator Y, on Quadratic Model Data

From figure (4), variance for Yoo does not appear to significantly change as the sample size increases. But for
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small samples, the variance is more erratic as opposed to large samples.  From figure (5), the variance for Y,
steadily decrease as  the sample size increases. Looking at the scales in figure (4) and figure (5), it can be seen

that Y, has higher variance than Y, .From figure (6), the ratio var(y,,)/var(y,) tends to a constant,
though more erratic for smaller samples.  Looking at the scale, we can see that variance for Y., dominates

variance for Y, .

variance ratio vs sample size
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|

1000

500
|
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= — [=] < o o o o T SR R o S SR oY

T T T T
8} 50 100 150 200 250 300

sample size
Figure 6: Variance Ratio \Var(y,,)/var(y,) on Quadratic Model Data

4.2. Analysis of Semiparametric Estimator Results

For semiparametric estimation, the dependent population values Yy were generated from the linear function

Zf' +2+5x and quadratic function 7'+ (2+5x)>. £ isthe matrix(z,,z,,z,) .where Z, isa matrix of 2s
with dimension N, the population size. Z, is a matrix of alternating 3s,4s and 5s with dimension N ,

whilez, is a matrix of alternating 6s,7s and 8s with dimension N . The vector of coefficients 5 = (1,2,3) . We

let y, = ZN: v be the actual population total, I, be the penalty parameter,
i=1

and Y, —Y, and Y, —Y,, betheerrorsinthe estimation
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4.2.1 Results for Semiparametric Estimator Y., on Linear Model Data

Table 3: Semiparametric Estimates for Linear Model Data

sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 10637.07767 | 10637.07767 | 10637.07767 10637.07767 | 10637.07767
t
y 10653.33589 | 10592.83642 | 10772.50201 10656.61600 | 10620.68442
sp
y 10710.11132 10553.27255 | 10591.87632 | 0579.65450 10718.60134
ht
-16.25822 44.24125 -135.42434 -19.53834 16.39324
Yo~ ysp
-73.03365 83.80512 45.20135 57.42317 -81.52367
Yi = Yie
r 0.00010 0.00010 0.00010 0.00010 0.00010
k

From table (3), in some samples Yoo has larger error margins than Yy, , while in other samples, the reverse is

true. Convergence is achieved at the same penalty value of 0.00010 and which was the initial penalty value.

vysSp variance vs sample size
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Figure 7:  Variance for Estimator Y, on Linear Model Data
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Variance for Horvitz Thompson Estimator Yy, on Linear Model Data

In figure (7), though variance for Ysp appear to be largely constant when a Lowess line if fitted, a look

at individual plots shows higher and more erratic variance for small samples before stabilizing for larger

samples. In figure (8), the variance and Y, steadily decrease as the sample size increases. ~ From figure (9),

the ratio Var(y,,)/var(y,,) is more than one, indicating that Y, has higher variance than y, .
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variance ratio vs sample size
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Variance Ratio var(y,,)/var(y,) on Linear Model Data
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4.2.2 Results for Semiparametric Estimator Y., on Quadratic Model Data

Table 4: Semiparametric Estimates for Quadratic Model Data

sample number | 1 2 3 4 5

sample size n 100 100 100 100 100

Y, 16054.39204 16054.39204 16054.39204 16054.39204 16054.39204

Yo 16083.00298 16386.4447 15530.1848 15850.0349 15939.60759

Vit 15711.98381 16386.9231 16254.8241 16169.8247 16073.76477

Yi = Yo -28.61094 -332.0527 524.2072 204.3571 114.78445

Yi — Yt 342.40823 -332.5310 -200.4320 -115.4326 -19.37273

r 0.00010 0.00010 0.00010 0.00010 0.00010

From table (4),

there is no noticeable difference in the performances of

Y and Yy, . In some instances

Ysp has smaller error margins than Yy, , while in other samples, Y, has smaller error margins. This lack of

noticeable difference in the performances is evidence to the robustness of the semiparametric estimator Yop - We

note also that the penalty value is 0.00010 for all the samples.
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Figure 10: Variance for Estimator Y, on Quadratic Model Data
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Figure 11: Variance for Horvitz Thompson Estimator Y, on Quadratic Model Data

From figure (10), variance for the semiparametric estimator Yep is higher and more erratic for small samples
before stabilizing almost to a constant for lager samples. From figure (11), variance for Y,  steadily decrease
as  the sample size increases. From figure (12), the ratio Var(y,,)/var(yy,) show Cleary Yy, has larger

variance than y,., .

variance ratio vs sample size
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Figure 12: Variance Ratio Vvar(y,,)/var(y,) on Quadratic Model Data
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5. Conclusion

We conclude that when the nonparametric model is correctly specified for the data, the nonparametric estimator

Yop is quite accurate, more than the Horvitz Thompson design estimator Y, . When the nonparametric model is
misspecified for the data, the nonparametric estimator Yop s though a bit less efficient than the Horvitz Thompson
design estimator Y, , still yields quite reliable estimates. This shows that Yop is a robust estimator. The

semiparametric estimator Ysp is also a very robust estimator giving estimates that are very close to those of

Horvitz Thompson design estimator even when the nonparametric model component of the semiparametric
estimator is misspecified.
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