Closed Ideal with Respect a Binary Operation * On BCK-Algebra

Azal Taha Abdul Wahab¹* Rusul Hassan Naser² Zahraa M. Ali³

1. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
2. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.
3. Faculty of Education for girls\University of Kufa, Najaf, IRAQ.

* E-mail of the corresponding author: Azalt.almussawy@uokufa.edu.iq

The research is financed by authors own budget and efforts.

Abstract
In this paper, we define a new ideal of BCK-algebra, we call it a closed ideal with respect a binary operation *,
and denoted by (* -closed ideal). We stated and proved some properties on closed ideal and give some examples on it.

Indexing Terms/Keywords: BCK-algebra, Closed Ideal, A Binary Operation * on BCK-Algebra.

1) Introduction
The notion of BCK- algebras was introduced and formulated first in 1966 by Y.Imai and K.Iseki [Y.Imai and K.Iseki, 1966]. In the same year, K.Iseki [K.Iseki , 1966] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras where the class of BCK-algebras is a proper subclass of the class of BCI-algebras. The notion of a BCI-algebra is a generalization of a BCK-algebra. The general development of BCK/ BCI-algebra the ideal theory plays an important role. We introduce a new ideal of BCK-algebra is called a closed ideal with respect a binary operation *, then we study and prove some properties of them.

2) Preliminary
In this section we review some concepts we needed in this paper

Definition 2.1 [Z.M.Samaei , M.A.Azadani and L.N. Ranjbar, 2011]
Let X be a non-empty set with binary operation “*” and 0 is a constant an algebraic system (X, *, 0) is called a BCK-algebra if it satisfies the following conditions:
1) ((x * y) * (x * z)) * (z * y) = 0,
2) (x * (x * y)) * y = 0,
3) x * x = 0,
4) If x * y = 0 and y * x = 0 then x = y, \forall x, y, z \in X
5) 0 * x = 0.

Remarks 2.2 [A.A.A. Agboola1 and B. Davvaz2, 2015]
Let X be a BCK-algebra then:

a) A partial ordering” ≤” on X can be defined by x ≤ y if and only if
x * y = 0.
b) A BCK-algebra X has the following properties:
1) x * 0 = x.
2) If x * y = 0 implies (x * z) * (y * z) = 0 and (z * y) * (z * x) = 0.
3) (x * y) * z = (x * z) * y.
4) (x * y) * (x * z) ≤ (x * z).

Example 2.3
The set X = {0, 1, 2} with binary operation ”*” defined by the following table is a BCK-algebra.
Table 1. BCK-algebra

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Definition 2.4 [Sun Shin Ahn and Keumseong Bang, 2003]
Let $(X, *, 0)$ and $(X', *', 0')$ be two BCK-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism from X to X' if for any $x, y \in X$, $f(x * y) = f(x) *' f(y)$.

Note that if $f: X \rightarrow Y$ is a homomorphism of BCK-algebras, then $f(0) = 0$.

Definition 2.5:
A mapping $f: (X, *, 0) \rightarrow (Y, *', 0)$ of BCK-algebras is called an epimorphism if f is a homomorphism and surjective.

Definition 2.6 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A BCK-algebra is said to be commutative if $x * (x * y) = y * (y * x)$ for any $x, y \in X$.

Example 2.7
The set $X = \{0, 1, 2\}$ with binary operation " * " defined by the following table is commutative BCK-algebra.

Table 2. commutative BCK-algebra

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Definition 2.8 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A nonempty subset S of a BCK-algebra X is called a BCK sub algebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 2.9 [Young Bae Jun, and Kyoung Ja Lee, 2012]
A nonempty subset A of a BCK-algebra X is called a BCK ideal of X if it satisfies:
1) $0 \in A$
2) $x * y \in A$, $y \in A$ then $x \in A$ and $x, y \in X$

Proposition 2.10 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015]
Let I and J are BCK-algebra of X, then $I \times J$ is BCK-algebra of $X \times X$.

Proposition 2.11 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015]
Let A and B are BCK-algebra of X, then $A \cap B$ is BCK-algebra of X.
Proposition 2.12 [Sajda Kadhum Mohammed & Azal Taha Abdul Wahab, 2015] Let A and B are BCK-algebra of X, then A∪B is BCK-algebra of X if A ⊆ B or B ⊆ A.

3) Main Results:
In this section, we define a closed ideal with respect a binary operation * of BCK-algebra. We stated and proved some properties on closed ideal and give some examples on it.

Definition 3.1
Let X is a BCK-algebra. A non empty subset I of X is said closed ideal with respect a binary operation * and denoted by (* -closed ideal) on X if satisfies the following conditions :
1) a * b ∈ I ∀ a, b ∈ I
2) I * X ⊆ I

Example 3.2:
Let X = \{0, 1, 2\} with binary operations '∗' defined by the following tables is BCK-algebra:

\[
\begin{array}{ccc}
\ast & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
\end{array}
\]

Then by usual calculation we can prove that I = \{0, 1\} ⊆ X is (* -closed ideal)

Example 3.3:
Let X = \{0, 1, 2, 3\} with binary operations '∗' defined by the following tables is BCK-algebra:

\[
\begin{array}{cccc}
\ast & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 3 & 2 \\
2 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
\end{array}
\]

Then I = \{0, 1, 2\} ⊆ X is not (∗ -closed ideal) since 1 ∈ I and 2 ∈ I but 1 ∗ 2 = 3 \notin I

Remark 3.4
If I is (∗ -closed ideal) of BCK-algebra, then, 0 ∈ I

Proof
Let I be \((\ast\)-closed ideal) so \(I \neq \emptyset\). Then \(\exists a \in I\),
then \(a \ast x \in I \ \forall \ x \in X\) [by 2 of definition 3.1]
So, \(0 = a \ast a \in I\), and therefore \(0 \in I\).

Remark 3.5
If I is \((\ast\)-closed ideal) of BCK-algebra, then I is sub algebra.

Proof
Let I is \((\ast\)-closed ideal) of BCK-algebra and let \(a, b \in I\)
\(\Rightarrow a \ast b \in I \Rightarrow I\) is sub algebra.

Remark 3.6
The converse of above remark in general is not true.

Proof
We will prove it by using the example (3.3):
Take \(I = \{0, 1\} \subseteq X\) it is clear that is a sub algebra but I is not \((\ast\)-closed ideal)
since \(I \ast x \not\subset I\) where \(1 \in I\) and \(3 \in X\) but \(1 \ast 3 = 2 \notin I\).

Proposition 3.7
Let \(X\) is BCK-algebra and let \(A, B\) \((\ast\)-closed ideal) of \(X\) Then \(A \cap B\) is \((\ast\)-closed ideal) of \(X\)

Proof
Let \(X\) is BCK-algebra and since \(A \cap B \neq \emptyset\) by (3.4)
1) Let \(a, b \in A \cap B \Rightarrow a, b \in A\) and \(a, b \in B\)
Since \(A, B\) are \((\ast\)-closed ideal) then \(a \ast b \in A\) and \(a \ast b \in B\)
\(\Rightarrow a \ast b \in A \cap B\)
2) Let \(a \in A \cap B\) and \(x \in X \Rightarrow a \in A\) and \(a \in B\) and \(x \in X\)
\(\Rightarrow a \ast x \in A\) and \(a \ast x \in B\); [since \(A\) and \(B\) \((\ast\)-closed ideal)]
\(\Rightarrow a \ast x \in A \cap B \Rightarrow (A \cap B) \ast x \subseteq (A \cap B)\),
then \(A \cap B\) is \((\ast\)-closed ideal).

Remark 3.8
The converse of above remark is not true in general.
Take \(A = \{0, 1\}\) and \(B = \{0, 1, 2\}\) in (example 3.3) then:
\(A \cap B = \{0, 1\}\) is \((\ast\)-closed ideal) but \(B = \{0, 1, 2\}\) is not \((\ast\)-closed ideal); since \(1 \ast 2 = 3 \notin B\)

Remark 3.9
Let \(X\) is BCK-algebra and let \(A, B\) \((\ast\)-closed ideal) of \(X\). Then \(A \cup B\) is \((\ast\)-closed ideal) of \(X\) if \(A \subseteq B\) or \(B \subseteq A\), and the converse is not true in general.

Proof
Proof is clear now, we show that the converse is not true in general; since if we take \(A, B\) and \(A \cup B\) are \((\ast\)-closed ideal) of \(X\)

Table 5. the converse is not true in general.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A = {0, 1} is (∗ -closed ideal)
B = {0, 2} is (∗ -closed ideal), A ⊔ B = {0, 1, 2} is (∗ -closed ideal),
but A ∉ B and B ∉ A

Proposition 3.10
Let f: X → Y is BCK-algebra homomorphism. Then ker f is (∗ -closed ideal) of X.

Proof

Let f: X → Y is BCK-algebra homomorphism. Then

1) a, b ∈ ker f ⇒ f(a) = 0 and f(b) = 0
 ⇒ f(a * b) = f(a) * f(b) = 0 * 0 = 0 ⇒ f(a * b) = 0 ⇒ a * b ∈ ker f
2) Let a ∈ ker f and x ∈ X ⇒ f(a) = 0
 ⇒ f(a * x) = f(a) * f(x); [since f is a homomorphism]
 = 0 * f(x) = 0; [by 5 of definition 2.1]
 ⇒ f(a * x) = 0 ⇒ a * x ∈ ker f ∀ a ∈ ker f and x ∈ X
 ⇒ ker f * X ⊆ ker f

Then ker f is (∗ -closed ideal)

Proposition 3.11
Let f: X → Y is BCK-algebra epimorphism if A is (∗ -closed ideal) of X, then f(A) is (∗ -closed ideal) of Y.

Proof

Let f: X → Y is BCK-algebra epimorphism. Let A be (∗ -closed ideal) of X then:

1) Let x', y' ∈ f(A), then ∃ x, y ∈ A such that x'=f(x), y'=f(y),
 since A is (∗ -closed ideal) ⇒ x * y ∈ A ⇒ f(x * y) ∈ f(A)
 but f(x * y) = f(x) * f(y) ⇒ f(x) * f(y) ∈ f(A) so x * y' ∈ f(A)
2) Let a' ∈ f(A) and y ∈ Y since f is an epimorphism
 ⇒ ∃ a ∈ A and x ∈ X such that f(a) = a' and f(x) = y
 ⇒ a * x ∈ A; [since A is (∗ -closed ideal)]
 ⇒ f(a * x) ∈ f(A) ⇒ f(a) * f(x) ∈ f(A); [since f is a homomorphism]
 ⇒ a' * y ∈ f(A) ∀ a' ∈ f(A) and y ∈ Y
 ⇒ f(A) * Y ⊆ f(A)

Then, f(A) is (∗ -closed ideal).

Proposition 3.12
Let X is BCK-algebra and let f: X → X' is BCK-algebra homomorphism of X if B is (∗ -closed ideal) of X',
then f -1(B) = {a ∈ X: f(a) ∈ B} is (∗ -closed ideal) of X.

Proof

Let f: X → X' is BCK-algebra homomorphism of X if B is (∗ -closed ideal) of X', then:

1) Let a, b ∈ f -1(B) ⇒ f(a), f(b) ∈ B
 Since B is (∗ -closed ideal) then:
 f(a) * f(b) = f(a * b) ∈ B; [since B is (∗ -closed ideal)]
 ⇒ a * b ∈ f -1(B)
2) Let a ∈ f -1(B) and x ∈ X so f(x) ∈ X' ⇒ f(a) ∈ B and f(x) ∈ X'
 ⇒ f(a) * f(x) = f(a * x) ∈ B, [since B is (∗ -closed ideal)]
 ⇒ a * x ∈ f -1(B) ∀ a ∈ f -1(B) and x ∈ X
 ⇒ f -1(B) * X ⊆ f -1(B) ⇒ f -1(B) is (∗ -closed ideal).

Proposition 3.13
Let X is BCK-algebra and let I, J be (∗ -closed ideal) of X. Then I × J is (∗ -closed ideal) of X × X.

Proof

Let X is BCK-algebra, and let I, J be (∗ -closed ideal) of X

1) Let x = (a, a') ∈ I × J and y = (b, b') ∈ I × J
 ⇒ x * y = (a, a') * (b, b') = (a * b, a' * b')
then \(a \ast b \in I \) and \(a' \ast b' \in J; \)
\[(a \ast b, a' \ast b') \in I \times J \]
so \(x \ast y \in I \times J \)

2) Let \((x_1, x_2) \in X \times X\) and \((a_1, a_2) \in I \times J\)
\[a_1 \ast x_1 \in I, a_2 \ast x_2 \in J \]
because \(I \) and \(J \) are (* -closed ideal)

Then \((a_1, a_2) \ast (x_1, x_2) = (a_1 \ast x_1, a_2 \ast x_2) \in I \times J\)
Then \(I \times J \) is (* -closed ideal)

Proposition 3.14

Let \(X \) is BCK-algebra and let \(\Gamma' = \{(a , 0) / a \in X \} \) and \(J' = \{(0 , b) / b \in X \}. \)
Then \(\Gamma' \) and \(J' \) are (* -closed ideal) of \(X \times X. \)

Proof

Let \(X \) is BCK-algebra to prove that \(\Gamma' \) is (* -closed ideal).

1) Let \(x, y \in \Gamma' \Rightarrow x = (a, 0), y = (b, 0) \)
\[x \ast y = (a , 0) \ast (b , 0) = (a \ast b , 0) \in \Gamma; \]
[since \(a \ast b \in X \)]
\[x \ast y \in \Gamma' \]

2) Let \(x = (a, 0) \in \Gamma' \) and \(t = (r, s) \in X \times X \)
\[x \ast t = (a , 0) \ast (r , s) = (a \ast r , 0 \ast s) = (a \ast r , 0); \]
[by 5 of definition 2.1]
\[x \ast t = (a \ast r , 0) \in \Gamma; \]
\[\Gamma' \times X \times X \subseteq \Gamma' \] then \(\Gamma' \) is (* -closed ideal) of \(X \times X. \)

In a similar way, we can prove that \(J' \) is (* -closed ideal) of \(X \times X. \)

Remark 3.15

Let \(X \) is BCK-algebra and let \(\Gamma' \) and \(J' \) be defined as in the above proposition.
Then \(\Gamma' \cap J' = (0, 0). \)

Proof

Let \(X \) is BCK-algebra and let \(\Gamma' \) and \(J' \) is (* -closed ideal) and

let \(x \in \Gamma' \cap J' \Rightarrow x \in \Gamma' \) and \(x \in J' \) then \(x = (a, 0) \) and
\[x = (0, b) \] where \(a \in X \) and \(b \in X \Rightarrow (a, 0) = (0, b) \Rightarrow a = 0, b = 0 \)

\[\Rightarrow x = (0, 0) \Rightarrow \Gamma' \cap J' = (0, 0). \]

References

http://projecteuclid.org/euclid.pja/1195522169

http://projecteuclid.org/euclid.pja/1195522171

http://fs.gallup.unm.edu/IntroductionToNeutrosophicBCI.pdf

http://www.m-hikari.com/mathnet/kms_tex/980603.pdf

