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Abstract 

The purpose of this paper is to introduce two new classes of homeomorphisms namely ω̂ -homeomorphism and ω̂ *
-

homeomorphism and investigate some of their properties in topological spaces. Moreover we have shown that one of 

these classes has a group structure. 
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1. Introduction 

        The notion homeomorphism plays a dominant role in topology. Many researchers have generalized the notion 

of homeomorphisms in topological spaces. Maki et al [7] introduced g-homeomorphism and gc-homeomorphism and 

Devi et al[2]introduced generalized semi-homeomorphism and semi-generalized homeomorphism in topological 

spaces. In this paper we introduce new classes of homeomorphisms namely ω̂ -homeomorphism and 
*ω̂ -

homeomorphism and investigate some of their properties in topological spaces. We prove that ω̂ -homeomorphisms 

and 
*ω̂ -homeomorphisms are independent notions. It turns out that the set of all 

*ω̂ -homeomorphisms forms a group 

under composition of mappings. 

2. Preliminaries 

           Throughout the paper (X,τ ) and (Y,σ ) and (Z,
η

) (or simply X,Y and Z) represent topological spaces on 

which no separation axioms are assumed.  

We recall the following definitions which are useful in the sequel. 

Definition 2.1 A subset A of a topological space (X,τ ) is called δ -closed [10] if A=cl δ (A) where cl δ (A) = {x∈

X :int (cl(U))∩ A φ≠ , U τ∈ and x∈U}.The complement of δ -closed set is called δ -open set.  

Definition 2.2 A subset A of a topological space (X,τ ) is called an a-open set [4] if A⊂ int (cl (int δ (A))).The 

complement of an a-open set is called an a-closed set.The a-closure of a subset A of X is the intersection of all a-

closed sets containing A and is denoted by acl(A). 

Definition 2.3 A subset A of a topological space (X,τ ) is called a 

(i) generalized closed (briefly g-closed) [8] if cl(A)⊆U whenever A⊆U and U is open in X. 

(ii) generalized semi-closed (briefly gs-closed) [8] if scl(A)⊆U whenever A⊆U and U is open in X. 

(iii)α -generalized closed (briefly gα -closed) [8] if α cl(A)⊆U whenever A⊆U and U is open in X. 

(iv)generalized α -closed (briefly αg -closed) [8] if α cl(A)⊆U whenever A⊆U and U is α -open in X. 

(v) ĝ -closed [9] if cl(A)⊆U whenever A⊆U and U is semi-open in X. 

(vi) ĝα -closed [3] if α cl(A)⊆U whenever A⊆U and U is ĝ -open in X. 

(vii)ω̂ -closed [8] if acl(A)⊆U whenever A⊆U and U is ĝα -open in X. 

     The complement of 
ĝ

-closed (resp.g-closed, gs-closed, gα -closed, αg -closed, ĝα -closed andω̂ -closed) set is 

called 
ĝ

-open (resp. g-open, gs-open, gα -open, αg -open, ĝα -open and ω̂ -open) . 
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Definition 2.4  A function f : (X,τ )→  (Y,σ ) is called  

(i) a-continuous [4] if f 
-1

(V) is a-open in X for every open set V in Y. 

(ii) a-closed [6] if f (F) is a-closed in Y for every closed set F in X. 

(iii)ω̂ -closed [6] if f (F) is ω̂ -closed in Y for every closed set F in X. 

(iv)ω̂ -irresolute [6] if f 
- 1

(V) is ω̂ -closed in X for every ω̂ -closed set V in Y. 

(v)ω̂ -continuous [5] if f 
-1

(V) is ω̂ -closed in X for every closed set V in Y. 

 

Definition 2.5  A function f : (X,τ )→  (Y,σ ) is said to be  

(i) g-homeomorphism [7] if f is bijective, g-open and g-continuous. 

(ii) gs-homeomorphism [2] if f is bijective, gs-open and gs-continuous. 

(iii) gα -homeomorphism [1] if f is bijective, gα -open and gα -continuous. 

(iv) αg -homeomorphism [1] if f is bijective, αg -open and αg -continuous. 

3. ω̂ - homeomorphisms 

In this section we introduce the concept of ω̂ -homeomorphisms and study some of their properties. 

Definition 3.1 A bijective map  f : (X,τ )→ (Y,σ ) is called ω̂ -homeomorphism if f is both ω̂ -continuous and ω̂ -

closed. 

Example 3.2 Let X= {a,b,c,d} = Y, τ  = { 
φ

, {a}, {b}, {a,b}, {a,b,c}, X } and σ = {
φ

, {a},{b},{a,b},Y}.Let  

f : (X,τ )→ (Y,σ ) be the identity function. Then f is an ω̂ -homeomorphism. 

Theorem 3.3 Let f : (X,τ )→  (Y,σ ) be a bijective and ω̂ -continuous map. 

Then the following are equivalent. 

(i) f is an ω̂ -closed map. 

(ii) f is an ω̂ -homeomorphism. 

(iii) f is an ω̂ -open map. 

Proof: 

(i)⇒ (ii)Let f be an ω̂ -closed map. By hypothesis f is bijective and ω̂ -continuous.Hence f is an ω̂ -homeomorphism. 

(ii)⇒ (iii) Let f be an ω̂ -homeomorphism. Then f is ω̂ -closed. By theorem 3.31[6], f is ω̂ -open.  

(iii)⇒ (i) Let f be an ω̂ -open map. By theorem 3.31[6], f is ω̂ -closed.  

 

Theorem 3.4 Every ω̂ -homeomorphism is an gα –homeomorphism. 

Proof. Let f : (X,τ )→ (Y,σ ) be  an ω̂ -homeomorphism. Then f is bijective,ω̂ -continuous and ω̂ -closed. Let V be 

a closed set in Y. Since f is ω̂ -continuous, f 
-1

(V) is ω̂ -closed in X. Since every ω̂ -closed set is gα -closed [8], f 
-

1
(V) is gα -closed in X which implies f is gα -continuous. 

Let W be a closed set in X. Since f is ω̂ -closed, f (W) is ω̂ -closed in Y and so f (W) is gα -closed in Y which 

implies f is gα -closed. Thus f is an gα –homeomorphism. 

Theorem 3.5 Every ω̂ -homeomorphism is an αg –homeomorphism. 

Proof. Let f : (X,τ )→ (Y,σ ) be  an ω̂ -homeomorphism. Then f is bijective, ω̂ -continuous and ω̂ -closed. Let V be 

a closed set in Y. Since f is ω̂ -continuous, f 
-1

(V) is ω̂ -closed in X. Since every ω̂ -closed set is αg -closed [8], f 
-

1
(V) is αg -closed in X which implies f is αg -continuous. 

Let W be a closed set in X. Since f is ω̂ -closed, f (W) is ω̂ -closed in Y and so f (W) is αg -closed in Y which 

implies f is αg -closed. Thus f is an αg –homeomorphism. 

Theorem 3.6 Every ω̂ -homeomorphism is an gs –homeomorphism. 
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Proof. Let f : (X,τ )→ (Y,σ ) be  an ω̂ -homeomorphism. Then f is bijective, ω̂ -continuous and ω̂ -closed. Let V be 

a closed set in Y. Since f is ω̂ -continuous, f 
-1

(V) is ω̂ -closed in X. Since every ω̂ -closed set is gs-closed [8], f 
-1

(V) 

is gs -closed in X which implies f is gs-continuous. 

Let W be a closed set in X. Since f is ω̂ -closed, f (W) is ω̂ -closed in Y and so f (W) is gs -closed in Y which 

implies f is gs-closed. Thus f is a gs –homeomorphism 

Remark 3.7 The converses of theorem 3.4, 3.5 and 3.6 are not true as shown by the following example. 

 

Example 3.8 Let X={a,b,c}=Y, τ ={
φ

,{a,b},X} andσ ={
φ

,{a},{a,b},Y}.Define a function f : (X,τ )→ (Y,σ ) by 

f(a)=b, f(b)=a, and f(c)=c.Then f is not an ω̂ -homeomorphism since there exists a closed set {c} of X such that f({c}) 

={c} is not ω̂ -closed in Y. However f is a gα -homeomorphism, αg -homeomorphism and gs- homeomorphism. 

Definition 3.9 A function f : (X,τ )→ (Y,σ ) is said to be an a-homeomorphism if f is both a-continuous and a-

closed. 

Theorem 3.10 Every a-homeomorphism is an ω̂ -homeomorphism. 

Proof. Let f : (X,τ )→ (Y,σ ) be  an a-homeomorphism. Then f is bijective, a-continuous and a-closed. Let V be a 

closed set in Y. Since f is a-continuous, f 
-1

(V) is a-closed in X. Since every a-closed set is ω̂ -closed [8], 

f 
-1

(V) is ω̂ -closed in X which implies f is ω̂ -continuous. 

Let W be a closed set in X. Since f is a-closed, f (W) is a-closed in Y and so f (W) is ω̂ -closed in Y which implies f 

is ω̂ -closed. Thus f is anω̂ –homeomorphism 

Remark 3.11 The converse of theorem 3.10 is not true as shown by the following example. 

Example 3.12 Let X={a,b,c,d}=Y, τ ={
φ

,{a},{b},{a,b},X} and σ ={
φ

,{a,b},Y}.Define a function  f : (X,τ )→

(Y,σ ) by f(a)=b, f(b)=a, f(c)=d and f(d)=c. Then f is an ω̂ -homeomorphism but not an a-homeomorphism since 

there exists a closed set {c,d} of X such that f({c,d}) ={c,d} is not a-closed in Y. 

Remark 3.13 The following examples shows that the concept of homeomorphism and ω̂ -homeomorphism are 

independent of each other . 

Example 3.14 Let X={a,b,c,d}=Y,τ ={
φ

,{a},{b,c},{a,b,c},X}and σ ={
φ

,{a,b,c},Y}.Define a function  

f :(X,τ )→ (Y,σ ) by f(a)=b, f(b)=c, f(c)=a and f(d)=d.Then f is an ω̂ -homeomorphism but not a homeomorphism 

since there exists an open set {b,c} of X such that f({b,c}) ={a,c} is not open in Y.  

Example 3.15 Let X= {a,b,c}=Y, τ  ={
φ

,{c},{a,c},{b,c},X} andσ ={
φ

,{b}, {a,b},{b,c},Y}. Define a function  

f :(X,τ )→ (Y,σ ) by f(a)=c, f(b)=a,  and f(c)=b.Then f is a homeomorphism but not an ω̂ -homeomorphism since 

there exists a closed set {b} of X such that f({b}) ={a} is not ω̂ -closed  in Y.  

Remark 3.16 The following examples shows that the concept of g-homeomorphism and ω̂ -homeomorphism are 

independent of each other . 

Example 3.17 Let X={a,b,c}=Y, τ ={
φ

,{a},X} and σ ={
φ

,{a},{b},{a,b},{a,c},Y}.Define a function  

f : (X,τ )→ (Y,σ ) by f(a)=a, f(b)=c,and f(c)=b.Then f is a g-homeomorphism but not an ω̂ -homeomorphism since 

there exists a closed set {b} of Y such that f
-1

({b}) ={c} is notω̂ –closed in X.  

Example 3.18 Let X={a,b,c,d}=Y,τ ={
φ

,{a},{b},{a,b},{a,b,c},X} and σ ={
φ

,{a}, {b}, 

{a,b},{a,b,c},{a,b,d},Y}.Let f : (X,τ )→ (Y,σ ) be the identity map. Then f is an ω̂ -homeomorphism but not a g-

homeomorphism since there exists an open set {a,b,d} of Y such that f
-1

({a,b,d}) = {a,b,d} is not g-open in X.  

Remark  3.19  From the above discussions we have Figure -1 where 

A              B   represents  A  implies  B  and  A                  B  represents A does not imply B .  
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4.
*ω̂ –homeomorphisms 

     In this section we introduce another class of homeomorphisms called
*ω̂ –homeomorphisms and investigate some 

of their properties. 

Definition 4.1 A bijective  map  f : (X,τ )→  (Y,σ ) is called 
*ω̂ -homeomorphism if both  f and f 

-1
are ω̂ -irresolute. 

               We denote the family of all 
*ω̂ -homeomorphisms of a topological space (X,τ ) onto itself by 

*ω̂ -h(X,τ ) . 

Example 4.2 Let X={a,b,c}=Y,τ ={
φ

,{a},{a,b},X}and σ ={
φ

,{a},{a,b},{a,c},Y}.Define a function  

f : (X,τ )→ (Y,σ ) by f(a)=a, f(b)=c and f(c)=b. Then f is an 
*ω̂ -homeomorphism  

Theorem 4.3 The composition of two 
*ω̂ -homeomorphisms is a 

*ω̂ -homeomorphism. 

Proof. Let f : (X,τ )→ (Y,σ ) and g:(Y,σ )→ (Z,
η

) be two 
*ω̂ -homeomorphisms. Let V be a ω̂ -closed in Z. Since 

g is ω̂ -irresolute, g 
-1

(V) is ω̂ -closed in Y. Since f is ω̂ -irresolute, f 
-1

(g
-1

(V)) =( g o f)
-1

(V) is ω̂ -closed in X which 

implies go f is ω̂ -irresolute. 

Let W be a ω̂ -closed in X. Since f
-1

 is ω̂ -irresolute, (f
-1

)
-1

(W) =f(W) is ω̂ -closed in Y. Since g
-1

 is ω̂ -irresolute,(g 
-

1
)

-1
(f(W))=g(f(W))= (go f )(W)=(( go f)

-1
)

-1
(W) is ω̂ -closed in Z which implies (go f )

-1 
is ω̂ -irresolute. Hence go f 

is an 
*ω̂ -homeomorphism. 

Remark 4.4 The following example shows that ω̂ -homeomorphisms and 
*ω̂ -homeomorphisms are independent 

notions. 

 

Example 4.5 Let X= {a,b,c,d}=Y,τ  ={
φ

,{a},{b},{a,b},X} andσ ={
φ

,{a,b},Y}. Define a function f : (X,τ )→  

(Y,σ ) by f(a)=b, f(b)=a, f(c)=d and f(d)=c. Let f : (X,τ )→ (Y,σ ) be the identity map. Then f is an ω̂ -

homeomorphism but not an 
*ω̂ -homeomorphism since there exists an ω̂ -closed set {c} of X such that f({c}) = {d} 

is not ω̂ -closed in Y.  

Example 4.6 The function f defined in example 4.2 is an 
*ω̂ -homeomorphism but not an ω̂ -homeomorphism since 

there exists a  closed set {c} of X such that f({c}) = {b} is not ω̂ -closed  in Y. 

Theorem 4.7 The set 
*ω̂ -h(X,τ ) is a group under the composition of mappings. 

Proof: Define a binary operation ∗ : 
*ω̂ -h(X,τ ) X 

*ω̂ -h(X,τ ) →
*ω̂ -h(X,τ ) by f∗g = go f for all f,g ∈

*ω̂ -h(X,τ ) 

where o  is the usual operation of composition of mappings. By theorem 4.3, f∗ g= g o f ∈
*ω̂ -h(X,τ ).We know that 

composition of mappings is associative and the identity map I : (X,τ ) → (X,τ ) ∈
*ω̂ -h(X,τ ).Also if f ∈

*ω̂ -h(X,

τ ),then f
 -1

 ∈
*ω̂ -h(X,τ ) such that f∗  f

 -1
= f

 -1∗f =I and so inverse exists for every f ∈
*ω̂ -h(X,τ ).Thus 

*ω̂ -h(X,τ ) 

a group under the composition of mappings. 

Theorem 4.8 Let f : (X,τ )→ (Y,σ ) be an 
*ω̂ -homeomorphism. Then f induces an isomorphism from the group 

*ω̂

-h(X,τ ) onto the group 
*ω̂ -h(X,τ ). 

Proof: Using the map f, define a map 
:fψ *ω̂ -h(X,τ ) →

*ω̂ h(X,τ ) by fψ
(h) = f o ho f 

-1
 for every h ∈

*ω̂ -h(X,

τ ).Then fψ
 is a bijection. Also for all h1, h2

∈ *ω̂ -h(X,τ ), fψ
(h1o  h2) = f o (h1 o  h2)o f

-1
 =(fo h1o f

-1
) o ( fo h2 o

f
-1

)= fψ
( h1) o

fψ
( h1).Hence fψ

 is a homomorphism and so it is an isomorphism induced by f. 

5. Applications  

Definition 5.1[6] A topological space (X,τ ) is said to be an ω̂aT -space  if every ω̂ -closed set in X is a-closed. 
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Theorem 5.2 Every ω̂ -homeomorphism from an ω̂aT
-space into another ω̂aT -space is an a-homeomorphism. 

Proof: Let f : (X,τ )→ (Y,σ ) be an ω̂ -homeomorphism where X and Y are ω̂aT -spaces. Let V be a closed set in 

Y. Since f is ω̂ -continuous, f 
-1

(V) is ω̂ -closed in X. Since X is an  ω̂aT -space, f
 -1

(V) is a-closed in X and hence f 

is a-continuous. 

Let W be a closed set in X. Since f is ω̂ -closed, f (V) is ω̂ -closed in Y. Since Y is an ω̂aT -space, f
 
(V) is a-closed 

in Y and hence f is a-closed. Thus f is an a-homeomorphism. 

Definition 5.3 A topological space (X,τ ) is said to be a ωδ ˆT -space if every ω̂ -closed set in X is δ -closed. 

Theorem 5.4 Every ω̂ -homeomorphism from a ωδ ˆT -space into another ωδ ˆT -space is an 
*ω̂ -homeomorphism. 

Proof: Let f : (X,τ )→ (Y,σ ) be an ω̂ -homeomorphism where X and Y are ωδ ˆT -spaces. Let V be an ω̂ -closed set 

in Y. Since Y is a ωδ ˆT -space,V is δ -closed in X and so V is closed in Y. Since f is ω̂ -continuous, f 
-1

(V) is ω̂ -

closed in X and hence f is ω̂ -irresolute. 

Let W be a ω̂ -closed set in X. Since X is a ωδ ˆT -space,W is δ -closed in X and hence W is closed in X. Since f is 

ω̂ -closed, f(W)=(f
-1

)
-1

(W)is ω̂ -closed set in Y and hence f
-1 

is ω̂ -irresolute.Thus f is an 
*ω̂ -homeomorphism. 

Remark 5.5.The following example shows that the composition of two ω̂ -homeomorphisms need not be  a ω̂ -

homeomorphism. 

Example 5.6 Let X= {a,b,c,d} = Y, τ  = {
φ

, {a}, {b},{a,b}, {a,b,c},X},σ = {
φ

, {a},{b},{a,b},Y} and η

={
φ

,{a,b},Z}. Let f : (X,τ )→ (Y,σ ) and g: (Y,σ )→ (Z,η ) be the identity maps.Then both f and g are ω̂ -

homeomorphisms but go f: (X,τ )→  (Z,
η

) not an ω̂ -homeomorphisms since (go f )
 
({d})={d} is not ω̂ - closed in 

Z where {d} is closed in X. 

Theorem 5.7 Let f : (X,τ )→ (Y,σ ) and g: (Y,σ )→ (Z,
η

) be ω̂ -homeomorphisms. Then g o f : (X,τ )→ (Z,
η

) 

is an ω̂ -homeomorphism if Y is a ωδ ˆT -space. 

Proof: Let V be a closed set in X. Since f is ω̂ -closed, f (V) is ω̂ -closed in Y. Since Y is a ωδ ˆT -space, f (V )is δ -

closed in Y and so f (V) is closed in Y. Since g is ω̂ -closed, g(f(V) =(go f )
 
(V )is ω̂ -closed in Z. and hence go f 

 
is 

ω̂ -closed. 

Let W be a closed set in Z. Since g is ω̂ -continuous, g 
-1 

(W) is ω̂ -closed set in Y. Since Y is a ωδ ˆT - space ,  

g 
-1 

(W) is δ -closed in Y and hence g 
-1 

(W) is closed in Y. Since f is ω̂ -continuous, f 
-1

(g
-1 

(W) ) =(go f )
-1

(W) is ω̂ -

closed in X and hence go f  is ω̂ -continuous. Thus go f is an ω̂ -homeomorphism. 
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