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Abstract: In this article, we introduced a two parameter Transmuted model of Inverse Log-

logistic Distribution (TILLD) using the quadratic rank transmutation map technique studied by 

Shaw and Buckley [1]. We provide a comprehensive description of the statistical properties of the 

TILLD. Robust measures of skewness and kurtosis of the proposed model have also been derived 

along with the moment generating function, characteristic function, reliability function and hazard 

rate function of the said model. The estimation of the model parameters is performed by 

maximum likelihood method followed by a Monte Carlo simulation procedure. The applicability 

of this distribution to modeling real life data is illustrated by two real life examples and the results 

of comparison to base distribution in modeling the data are also exhibited. 
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1.Introduction 

         Statistical distributions are widely applied to describe real world phenomena. Sometimes 

typical and complicated situations arise in the field of Statistical analysis, as a result of which the 

already existing models does not fit much accurately to the complex data arising in such 

situations. For the purpose of dealing with the complex data, we sometimes require a different 

type of model for its fitting. These models already do not have existence in the statistical 

literature. So in order to surmount such requirements, we approach to develop some new models. 

These newly introduced classes of models provide greater flexibility in modeling complex data 

and the results drawn from them seems quite sound and genuine. Thus our main concern becomes, 

to give importance especially to model specification and the data interpretation. In the current 

article, we have used the transmutation technique for the construction of Transmuted Inverse Log-

logistic Distribution with the help of Quadratic Rank Transmutation Map (QRTM) technique 

given by Shaw and Buckley [1]. Recently, a lot of research has been done in the field of 

transmutation. Ashour and Eltehiwy [2,16] introduced the transmuted model of the 

exponentiated modified Weibull  and exponentiated Lomax distributions as a new generalized 

distributions. Aryal and Tsokos [3] developed the transmuted Extreme valve Distribution. 

Hussain [4] studied the transmuted Exponentiated Gamma Distribution. Merovci [5] proposed the 

transmuted Lindley Distribution. Now we are going to study the transmuted Inverse Loglogistic 

Distribution as a new lifetime model using the quadratic rank transmutation map technique 
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studied by Shaw and Buckley [1], as there is a need to find more plausible probability models 

or survival models in medical sciences and other fields, to fit to various lifetime data sets. It is 

well known in general that a transmuted model is more flexible than the ordinary model and it 

is preferred by many data analysts in analyzing statistical data. Moreover, it presents beautiful 

mathematical exercises and broadened the scope of the concerned model being transmuted. 

 

According to the Quadratic Rank Transmutation Map,(QRTM), approach the cumulative 

distribution function(cdf) satisfy the relationship  

 

)1.1(                        )]([)()1()( 2

112 xFxFxF    

which on differentiation yields, 

)2.1(                           )](21)[()( 112 xFxfxf    

Where )(1 xf  and )(2 xf  and the probability density functions corresponding to )(1 xF  and )(2 xF  

respectively and .1 Using above formulation for the purpose of generalization of a probability 

distribution. Therefore, a random variable X is said to have transmuted distribution if its 

cumulative distribution function is given by 

         )3.1(  1,)()()1()( 2   xGxGxF  

where )(xG  is the cdf of the base distribution. If we put 0 , we get the base distribution. 

In probability theory, the log-logistic distribution is a continuous probability distribution used 

in survival analysis as a parametric model for events whose rate increases initially and 

decreases later, for example mortality rate from cancer following diagnosis or treatment. The 

inverse version of log-logistic model also provide a greater flexibility in survival data sets. 

The probability density function (pdf) of the inverse Log-logistic (ILL) distribution is defined 

as 
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and its corresponding cumulative distribution function (cdf) is given by 
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where  is the shape parameters. 

  The rest of this paper is organized as follows. In Section 2 we demonstrate transmuted 

Inverse Log-logistic distribution. In Section 3, various statistical properties, the distributions 

of order statistics, moment generating function and the quantile function are summarized. The 

maximum likelihood estimates (MLE) of the distribution parameters are demonstrated in 

Section 4 followed by Monte Carlo simulation procedure. Robust measures of skewness and 

Kurtosis along with graphical overview is presented in section 5. Simulation procedure for 
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model comparison is given in section 6. Real life application part of the article is presented in 

section 7. 

 

2. Transmuted Inverse Log-Logistic Distribution 

In this section we studied the transmuted Inverse Log-logistic distribution and the sub-models 

of this distribution. Now using (1.3) and (1.4), we have the cdf of TILLD given by 
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Hence the pdf of TILLD with parameters  and is given as 
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Fig.1 to Fig.4 gives the pdf plot for (2.2) for different values of parameters. It is evident 

that the distribution of the transmuted inverse Log-logistic random variable X is right skewed. 

3. Statistical Properties of Transmuted Inverse Loglogistic Distribution 

In this section we shall discuss structural properties of transmuted Inverse Log-logistic 

distribution. Specially moments, order statistics, maximum likelihood estimation, moment 

generating function. 

3.1 Moments: The following theorem gives the rth moment of the transmuted Inverse Log-

logistic distribution.   

Theorem 3.1: If X has the TILLD   ,  distribution with ,1 then the rth non-central 

moments are given by  
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The first two moments about origin for transmuted Inverse Log-logistic distribution given by 
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Thus the variance of TILL distribution is given by                   
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   01 . Thus, for the existence of mean, 

  should be greater than 0 and for convergence of variance  should be greater than 2. 

Similarly, for skewness and kurtosis measures  needs to be greater than 3 and 4 respectively. 

Under the situation of divergence of any of the statistical measures, the problem will be 

approached through robust measures which we will discuss in section 5. 
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The CDF plot of Transmuted Inverse Loglogistic distribution for different values of parameters is 

given in fig.5. The initial rise of the CDF curve increases as the shape parameter increases. 
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3.2 Moment generating function and Characteristic function of TILLD 

We will derive moment generating function and characteristic function of TILLD   ,  in 

this sub section. 

Theorem 3.2: If X has the TILL   ,  distribution with ,1 then the moment generating 

function )(tM X  and the characteristic function  tX  has the following form 
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Proof: We begin with the well known definition of the moment generating function given by 
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3.3. Order Statistics  

Order statistics make their appearance in many statistical theory and practice. We know that if 

)()2()1( .,..,, nXXX denotes the order statistics of a random sample nXXX ,...,, 21 from a 

continuous population with cdf )(xFX and pdf )(xf X , then the pdf of rth order statistics X(r) 

is given by 
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For r = 1, 2, . . . , n  

The pdf of the rth order statistic for a transmuted Inverse Log-logistic distribution is given by 
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Therefore, the pdf of the largest order statistic X(n) is given by 
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and the pdf of the smallest order statistic X(1) is given by 
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Note that 0 yields the order statistics of the Inverse Log-logistic distribution. 

3.4 Quantile and Random Number Generation from TILLD 

Inverse CDF Method is one of the methods used for the generation of random numbers from a 

particular distribution. In this method the random numbers from a particular distribution are 

generated by solving the equation obtained on equating the CDF of a distribution to a number u. 

The number u is itself being generated from  1,0U . Thus following the same procedure for the 

generation of random numbers from the TILLD we will proceed as: 

        uxF ),,(   
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      On solving the equation (3.4.1) for  x , we will obtain the required random number from the 

TILLD. If 25.0p , 5.0p  and 75.0p , the resulting solutions will be the first quartile  1Q , 

Median  2Q and third quartile  3Q  respectively. Similarly we will find out the deciles and 

percentiles of different orders by simply assigning the different values to u. Now, the main 

problem which is being faced while using this method of generating the random numbers is to 

solve the equations which are usually complex and complicated. In order to overcome such 

hindrances we use statistical softwares like R for solving such a complex equation. 
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3.5 Reliability Measures of TILLD 

       In this sub section, we present the reliability function and the hazard function for the 

proposed transmuted inverse log-logistic distribution. The reliability function is otherwise 

known as the survival or survivor function. It is the probability that a system will survive 

beyond a specified time and it is obtained mathematically as the complement of the 

cumulative density function (cdf).  

 

The survivor function is given by 

 

            )(1)( xFxs   
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The hazard function also known as the hazard rate, failure rate or force of mortality. This is an 

important quantity characterizing life phenomenon. It can be interpreted as the conditional 

probability of failure, given it has survived to time x. 

 The hazard rate function of Transmuted Inverse Loglogistic distribution is given by 
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Fig.5 to Fig.9 exhibits the hazard rate function plot for (3.5.2) for different values of 

parameters.  
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4. Maximum Likelihood Estimation 

We estimate the parameters of the TILL distribution using the method of maximum likelihood 

estimation (MLE) as follows; 

Let nXXX ,...,, 21 be a random sample of size n from TILL distribution. Then the likelihood 

function is given by 
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By taking logarithm of (4.1), we find the log likelihood function 
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To obtain the MLE’s of  and , we differentiating loglikelihood with respect to  and  
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These two derivative equations cannot be solved analytically, therefore  ˆ ˆ and will be 

obtained by maximizing the log likelihood function numerically using Newton-Raphson 

method which is a powerful technique for solving equations iteratively and numerically. We 

can compute the second partial derivatives, which are useful to obtain the Fisher’s 

information matrix as follows. 
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One can show that the transmuted Inverse Loglogistic distribution satisfies the regularity 

conditions (see, e.g., [6]). Hence, the MLE vector  T ˆ,ˆˆ   is consistent and 

asymptotically normal; that is,    




 

TT

n  ,ˆ,ˆ converges in distribution to a normal 

distribution with the (vector) mean zero and the identity variance covariance matrix of 

unknown parameter  T , . That is,   ))ˆ(,0(ˆ 1

2   xINn , Also, the Fisher’s 

information matrix can be computed using the approximation 
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where  ˆ  ˆ and  are the MLEs of    and , respectively (see, e.g.,[7]). Using this 

approximation, we may construct confidence intervals for parameters of the transmuted 

inverse Log-logistic model. Approximate )%1(100   confidence intervals for    and are, 

respectively, given by 
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where 
2

z  is the upper th
2


 percentiles of the standard normal distribution. Using R studio 

statistical software, we can easily compute the Hessian matrix and its inverse and hence the 

values of the standard error and asymptotic confidence intervals.  

       We can compute the maximized unrestricted and restricted log likelihoods to construct 

the likelihood ratio (LR) statistics for testing the significance of transmuted parameter of the 

proposed model. For example, we can use LR test to check whether the fitted transmuted 

Inverse Loglogistic distribution for a given data set is statistically “superior” to the fitted 

Inverse Loglogistic distribution. In any case, hypothesis tests of the type   : 00  H versus 

01  :  H  can be performed using LR statistics. In this case, the LR statistic for testing H0 

versus H1 is ))ˆ()ˆ((2 0 LL  where̂ and 0̂ are the MLEs under H1 and H0. The statistic 

  is asymptotically nas ( ) distributed as 2

k , with k degrees of freedom which is equal 

to the difference in dimensionality of ̂ and 0̂ . H0 will be rejected if the LR-test p-value is 

<0.05 at 95% confidence level. 

 

 

4.1 Monte Carlo Simulation for ML estimates: 

       In this section, we investigate the behavior of the ML estimators for a finite sample size n. 

Simulation study based on different   ,,xTILLD  is carried out. The random observations are 

generated by using the inverse cdf method presented in section 3.4 from TILLD   , . Monte 

Carlo simulation study was carried out for four parameter combinations as )6.0,8.0(    , 

)8.0,5.1(    , )0.1,5.2(   and )5.0,2.1(   .The process was repeated 2000 

times by taking different sample sizes n = (25,50,75,100,150,200,300,500). We observe in table 

1 that the agreement between theory and practice improves as the sample size n increases. 

MSE and Variance of the estimators suggest us that the estimators are consistent and the maximum 

likelihood method performs quite well in estimating the model parameters of the proposed 

distribution. 
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Table 1: Average Bias, MSE and Variance for simulated results of ML estimates. 

sample size n 
 6.0,8.0    8.0,5.1    

parameters Bias Variance MSE Bias Variance MSE 

25 
  0.026917 0.020948 0.021672 0.058485 0.066683 0.070104 

  0.000855 0.087407 0.087408 -0.02165 0.058143 0.058612 

50 
  0.01366 0.009804 0.00999 0.025411 0.032544 0.03319 

  0.001442 0.047641 0.047643 -0.00981 0.032229 0.032325 

75 
  0.008365 0.006356 0.006426 0.018239 0.021671 0.022004 

  -0.00413 0.028813 0.02883 -0.00999 0.021504 0.021604 

100 
  0.00727 0.004725 0.004778 0.010229 0.01565 0.015755 

  0.001204 0.024411 0.024413 -0.00227 0.017766 0.017771 

150 
  0.004978 0.003113 0.003138 0.00723 0.010605 0.010658 

  -0.00088 0.015891 0.015891 -0.00659 0.012211 0.012255 

200 
  0.005056 0.002199 0.002225 0.005293 0.007957 0.007985 

  -0.00283 0.012485 0.012493 -0.00054 0.00902 0.00902 

300 
  0.000233 0.001493 0.001493 0.003153 0.005829 0.005838 

  -0.00231 0.00822 0.008225 -0.00081 0.006089 0.00609 

500 
  -0.00033 0.000849 0.000849 0.001243 0.00311 0.003112 

  0.002101 0.004759 0.004763 0.001232 0.003568 0.00357 

   0.1,5.2    5.0,2.1    

25 
  0.118382 0.21104 0.225055 0.046584 0.045726 0.047896 

  -0.08558 0.023005 0.030329 -0.00189 0.102553 0.102556 

50 
  0.077836 0.083471 0.08953 0.0166 0.020595 0.02087 

  -0.05536 0.010032 0.013097 -0.00719 0.050258 0.05031 

75 
  0.045996 0.058048 0.060164 0.009597 0.014499 0.014591 

  -0.04195 0.005853 0.007613 0.000392 0.033607 0.033607 

100 
  0.035689 0.040749 0.042023 0.011486 0.014284 0.014416 

  -0.03261 0.003627 0.00469 0.006135 0.035459 0.035496 

150 
  0.028784 0.028163 0.028991 0.002757 0.006714 0.006722 

  -0.02682 0.00221 0.002929 0.003851 0.016898 0.016913 

200 
  0.030127 0.021343 0.022251 0.005566 0.005196 0.005227 

  -0.02243 0.001572 0.002075 0.002313 0.012557 0.012563 

300 
  0.011998 0.01351 0.013654 0.002676 0.003457 0.003464 

  -0.01882 0.001054 0.001408 -8.9E-05 0.008339 0.008339 

500 
  0.010415 0.007595 0.007703 0.001843 0.002068 0.002071 

  -0.013 0.00051 0.000679 -0.00037 0.005037 0.005037 

 

5. Robust Skewness and Kurtosis measures for TILLD 

To illustrate the effect of the parameter    and  on skewness and kurtosis, we consider 

measures based on quantiles. The shortcomings of the classical kurtosis measure are well known. 

There are many heavy-tailed distributions for which this measure is infinite, so it becomes 

uninformative. They are less sensitive to outliers and they exist for the distributions even without 

defined moments.  The Galtons’s skewness [8] is one of the earliest skewness measures based on 

the octiles, given by 
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and the Moors kurtosis [9] is based on octiles and is given by 
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For any distribution symmetrical to 0 the Moors kurtosis reduces to 
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It is easy to calculate that for standard normal distribution E1 = −E7 = −1.15, E2 = −E6 = −0.67 and 

E3 = −E5 = −0.32. Therefore, M = 1.23. Hence, the centered Moor’s coefficient is given by: 
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        Fig. 10 and fig. 11 provides the graphical overview of robust measures of skewness and 

kurtosis for Transmuted Inverse Loglogistic distribution. Table 2 provides the numerically 

calculated Galtons Skewness and Moors kurtosis of two parameter Transmuted Inverse log-

logistic distribution for different values of parameters using R studio statistical software. For fixed

 , the Galton’s skewness and Moor’s Kurtosis are decreasing functions of . For fixed value of

 , the Galton’s skewness and Moor’s Kurtosis exhibit both decreasing and increasing nature for 

different values of transmuted parameter . 
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Table 2: Galton's Skewness and Moors Kurtosis  of Transmuted Inverse log-logistic distribution 

for different values of parameters 

 

Parameters 
Galton’s Skewness of Transmuted ILLD 

  

  0.3 0.8 1.5 2.0 2.6 3.2 4.1 4.5 5.6 

  

-1.0 0.92880 0.56821 0.35254 0.28196 0.23130 0.19903 0.16795 0.15807 0.13808 

-0.8 0.93432 0.57220 0.34761 0.27360 0.22041 0.18651 0.15387 0.14348 0.12248 

-0.6 0.93982 0.57803 0.34499 0.26761 0.21192 0.17639 0.14218 0.13130 0.10929 

-0.3 0.94685 0.58916 0.34695 0.26564 0.20697 0.16951 0.13341 0.12192 0.09870 

0.1 0.94950 0.59473 0.34984 0.26726 0.20762 0.16950 0.13277 0.12108 0.09744 

0.6 0.93147 0.54953 0.31080 0.23227 0.17596 0.14012 0.10567 0.09472 0.07260 

0.7 0.92440 0.53332 0.29644 0.21913 0.16380 0.12864 0.09487 0.08414 0.06248 

0.8 0.91632 0.51577 0.28091 0.20485 0.15056 0.11609 0.08302 0.07252 0.05133 

1.0 0.89782 0.47888 0.24843 0.17494 0.12271 0.08964 0.05797 0.04792 0.02766 

Moors Kurtosis of Transmuted ILLD 

  

Parameters 

  

  0.3 0.8 1.5 2.0 2.6 3.2 4.1 4.5 5.6 

  

-1.0 14.58998 2.61021 1.70238 1.54309 1.45566 1.41009 1.37303 1.36257 1.34330 

-0.8 15.03530 2.62154 1.69667 1.53808 1.45276 1.40924 1.37467 1.36512 1.34784 

-0.6 15.53027 2.63657 1.69010 1.53087 1.44675 1.40470 1.37209 1.36326 1.34763 

-0.3 16.29179 2.66658 1.68295 1.51987 1.43496 1.39324 1.36155 1.35315 1.33856 

0.1 16.64456 2.68350 1.68218 1.51655 1.43052 1.38837 1.35647 1.34803 1.33345 

0.6 12.60513 2.39974 1.59621 1.46441 1.39721 1.36507 1.34152 1.33550 1.32545 

0.7 11.16733 2.28146 1.55441 1.43612 1.37657 1.34859 1.32857 1.32358 1.31549 

0.8 9.73829 2.15318 1.50690 1.40314 1.35191 1.32847 1.31232 1.30847 1.30255 

1.0 7.28318 1.90062 1.40796 1.33269 1.29797 1.28362 1.27529 1.27375 1.27226 
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Fig.10: Galton's Skewness for two parameter TILLD
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6. Model comparison based on simulated data from TILLD 

       In order to compare the Transmuted Model with the base model on the basis of simulated 

data. We proceed by simulating a data from TILLD using data generation technique discussed in 

section 3.4. The data generation is based on two sets of parameter combinations 

0.2) 5,.0(    and 0.8) 5,.1(    with sample sizes (n=10, 25, 75,150,300). It is clear 

from the table 3(a) and table 3(b) that transmuted parameter plays a significant role for the large 

samples. Even though in small as well as large samples the AIC, AICC, BIC and Negative 

Loglikelihood values are minimum in case of Transmuted model but the likelihood ratio test 

reveals that the role of transmuted parameter exhibits a significant role in case of large samples 

only. 
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Fig.11: Moors Kurtosis for two parameter TILLD

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

174 

Table 3(A): Model Comparison Based On Simulated Data From TILLD. 

0.2 5,.0    Parameter Estimates Likelihood 

Ratio 

Statistic 
Criterion 

Transmuted 

Distribution 

Base 

Distribution Sample Size (n) TILLD ILLD 

-logL 28.92071 31.68451 

10 
(0.525) 11.0ˆ

(0.128) 498.0ˆ








 (0.09) 37.0ˆ   

5.5276 AIC 61.84141 65.36902 

AICC 65.84141 69.36902 

BIC 62.44658 65.67161 

-logL 70.8628 77.69515 

25 
)0.011(0.33ˆ

(0.08) 514.0ˆ








 (0.06) 38.0ˆ   

13.6647 AIC 145.7256 157.3903 

AICC 146.8685 158.53315 

BIC 148.1634 158.60917 

-logL 164.1412 177.0951 

75 
1)0.178(0.19ˆ

96(0.057)5.0ˆ








 47(0.04).0ˆ   

25.9078 AIC 332.2824 356.1902 

AICC 332.6205 356.5283 

BIC 336.9174 358.5077 

-logL 352.1891 382.0877 

150 
)0.151(0.14ˆ

65(0.04)5.0ˆ








 44(0.022).0ˆ   

59.7972 AIC 708.3783 766.1754 

AICC 708.5426 766.3398 

BIC 714.3995 769.186 

-logL 638.5797 685.6495 

300 
0.27(0.09)ˆ

58(0.02)5.0ˆ








 45(0.021).0ˆ   

94.1396 AIC 1281.1594 1373.2989 

AICC 1281.2405 1373.38 

BIC 1288.567 1377.0027 
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Table 3(B): Model Comparison Based On Simulated Data From TILLD. 

0.8 5,.1    Parameter Estimates Likelihood 

Ratio 

Statistic Criterion 

Transmuted 

Distribution 

Base 

Distribution Sample Size (n) TILLD ILLD 

-logL 14.98281 17.05532 

10 
(0.54) 52.0ˆ

1.61(0.42)ˆ








 (0.353) 45.1ˆ   

4.14502 AIC 33.96562 36.11065 

AICC 37.96562 40.11065 

BIC 34.57079 36.41323 

-logL 29.83482 31.86065 

25 
0.59(0.29)ˆ

(0.26) 62.1ˆ








 (0.22) 434.1ˆ   

4.05166 AIC 63.66964 65.72129 

AICC 64.8125 66.86415 

BIC 66.1074 66.94017 

-logL 98.26392 106.6319 

75 
(0.13)87.0ˆ

1.75(0.16)ˆ








 (0.15)68.1ˆ   

16.73596 AIC 200.52784 215.2639 

AICC 200.86587 215.6019 

BIC 205.16282 217.5813 

-logL 151.5693 156.6266 

150 
)0.786(0.10ˆ

1.69(0.11)ˆ








 (0.10)58.1ˆ   

10.1146 AIC 307.1386 315.2531 

AICC 307.303 315.4175 

BIC 313.1599 318.2637 

-logL 336.4271 353.3758 

300 
0.63(0.08)ˆ

)1.457(0.06ˆ








 (0.0.05)30.1ˆ   

33.8974 AIC 676.8542 708.7516 

AICC 676.9352 708.8327 

BIC 684.2617 712.4554 

 

7. Applications of Transmuted Inverse Log-logistic Distribution in Medical Science and 

Reliability 

       In this section, we compared the performance of the Transmuted Inverse Log-logistic 

distribution with the base model on some survival data sets already in literature. First of all, we 

apply the two parameter Transmuted Inverse Log-logistic distribution to the data set  of the life of 

fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level 

until all had failed, so we have complete data with the exact times of failure. For previous studies 

with the data sets, see Andrews and Herzberg [10], Barlow et al. [11], and Abdul-Moniem and 

Seham [12]. The data is given in table 4. 
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Table. 4 Lifetime of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% 

stress level until all had failed. 
 

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.565 0.5671 0.6566 0.6748 

0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.912 0.9836 

1.0483 1.0596 1.0773 1.1733 1.257 1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 

1.488 1.5728 1.5733 1.7083 1.7263 1.746 1.763 1.7746 1.8275 1.8375 1.8503 

1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.133 2.21 

2.246 2.2878 2.3203 2.347 2.3513 2.4951 2.526 2.9911 3.0256 3.2678 3.4045 

3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.096   

 

    The parameter estimation of TILLD (Transmuted Model) and ILLD (Base Model) is done by 

using ML estimation technique using R studio statistical software. The ML estimates, model 

functions and standard errors of parameters are given in table 5 below. 

Table 5: ML estimates with standard Errors of parameters for TILLD and ILLD. 

Model Model Function ML Estimates Standard Errors 

Transmuted 

Model 

   
 31 1

211

a

a

xx

x












 701.0ˆ  ,856.1ˆ    13.0)ˆ( ,17.0)ˆ(   SESE  

Base Model 
 2)1( 1 


  xx

 19.1ˆ   11.0)ˆ( SE  

 

       The Likelihood Ratio statistics to test the influence of the transmuted parameter, the 

hypotheses  0:H0   versus 0:H1   ; )01.0(6.63585.624 2

1   , so we reject the 

null  hypotheses. And conclude that the parameter  plays statistically a significant role. 

        We also compare the models using AIC (Akaike Information Criterion) given by Akaike 

[13], AICC (Akaike Information Criterion Corrected) and BIC (Bayesian information criterion) 

given by Schwarz [14]. Generic functions calculating AIC, AICC and BIC for the model having 

p  number of parameters are given by 

)log(22 lpAIC 

 

1

)1(2






pn

pp
AICAICC

 

 

      Table 6 exhibits the AIC, AICC, BIC and Negative Loglikelihood values for the models 

fitted to the data in table 4. It is obvious that AIC, AICC, and BIC criterion favors discrete 

Transmuted Inverse Log-logistic distribution in comparison with the one parameter inverse 

Loglogistic distribution, which is the base distribution for the proposed model. 

  

)log(2)log( lnpBIC 
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Table 6: AIC, AICC ,BIC, K-S Statistic  and  Negative Loglikelihood values for fitted 

distributions 

Model -logL AIC AICC BIC 
K-S 

distance 

K-S Stat 

p-value 

LR-

Stat 

TILLD 125.0546 254.1093 254.4426 258.7707 0.26329 0.000039 
85.624 

ILLD 167.8668 337.7336 338.067 340.0644 0.11792 0.22290 

 

Fig. 12 provides the graphical overview of CDF plot of empirical, Transmuted Inverse Loglogistic 

and Inverse Loglogistic distribution. 

 

 

Data set II)  

      Here we consider a data set which represents the survival times (in years) after diagnosis 

of 43 patients with a certain kind of leukemia studied by Kotz and Johnson [17]. The data set 

is given in table 7. 
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Fig.12 : Empirical, fitted TILLD and ILLD CDF of Lifetime of fatigue fracture of Kevlar 373/epoxy 
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Table 7: Survival times (in years) after diagnosis of 43 patients with a certain kind of 

leukemia 

0.0190 0.1290 0.1590 0.2030 0.4850 0.6360 0.7480 0.7810 0.8690 

1.1750 1.2060 1.2190 1.2190 1.2820 1.3560 1.3620 1.4580 1.5640 

1.5860 1.5920 1.7810 1.9230 1.9590 2.1340 2.4130 2.4660 2.5480 

2.6520 2.9510 3.0380 3.6000 3.6550 3.7450 4.2030 4.6900 4.8880 

5.1430 5.1670 5.6030 5.6330 6.1920 6.6550 6.8740     

 

Table 8. exhibits some descriptive statistical measures of  survival times (in years) after 

diagnosis of 43 patients with a certain kind of leukemia based on 1000 bootstrap samples. The 

data set has a skewed nature with mean lifetime of patient 2.53 years.  

 

Table 8: Descriptive Statistics of Survival times (in years) after diagnosis of 43 patients 

Descriptive measures Statistic Std. Error Bootstrapa 

Bias Std. Error 95% Confidence Interval 

Lower Upper 

Mean 

Std. Deviation 

Variance 

Skewness 

Kurtosis 

2.5340 .29389 -.0078 .2859 1.9599 3.0894 

1.92719  -.03247 .17500 1.53096 2.21376 

3.714  -.094 .656 2.344 4.901 

.772 .361 -.003 .270 .239 1.326 

-.481 .709 .075 .668 -1.329 1.245 

N 43  0 0 43 43 

a. Bootstrap results are based on 1000 bootstrap samples 

 

  We have fitted Transmuted Inverse Log-logistic distribution and Inverse Loglogistic 

distribution to the data set in Table 7. For the purpose of parameter estimation, we employ the 

fitdistr procedure in R studio statistical software to find out the estimates of the parameters. 

The ML estimates and their standard errors provided by the fitdistr procedure are given in the 

table 9. 

Table 9: ML estimates with standard Errors of parameters for fitted TILLD and ILLD for 

Survival times (in years) after diagnosis of 43 patients with a certain kind of leukemia. 

Model Model Function ML Estimates Standard Errors 

Transmuted 

Model 

   
 31 1

211

a

a

xx

x












 735.0ˆ  ,432.1ˆ    166.0)ˆ( ,18.0)ˆ(   SESE  

Base Model 
 2)1( 1 


  xx

 902.0ˆ   112.0)ˆ( SE  

 

      Table 10 exhibits the AIC, AICC, BIC and Negative Loglikelihood values for the models 

fitted to the data in table 7. It is obvious that AIC, AICC, and BIC criterion favors discrete 

Transmuted Inverse Log-logistic distribution in comparison with the one parameter inverse 

Loglogistic distribution, which is the base distribution for the proposed model. The 

Likelihood Ratio statistics to test the influence of the transmuted parameter in a data set 
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studied by Kotz and Johnson [17] which represents the survival times (in years) after 

diagnosis of 43 patients with a certain kind of leukemia, the hypotheses  0:H0   versus 

0:H1   ; )01.0(6.6353785.52))ˆ()ˆ((2 2

10   LLStatisticLR , so we 

reject the null  hypotheses and conclude that the parameter  plays statistically a significant 

role. 

Table 10: AIC, AICC, BIC , Negative Loglikelihood and LR statistic values for fitted 

distributions   

Model -logL AIC AICC BIC 
K-S 

distance 
K-S Stat 
p-value 

LR-Statistic 

TILLD 87.52947 179.05895 179.67433 182.58135 0.16676 0.1829 
52.3785 

ILLD 113.7187 229.4374 230.0528 231.1986 0.32701 0.0002 

 

  

 

Conclusion: 

          In the present study we have introduced a new generalization of the inverse Loglogistic 

distribution called the Transmuted inverse Loglogistic distribution. The subject distribution is 

generated by using the quadratic rank transmutation map and taking the inverse Loglogistic 

distribution as the base distribution. Some mathematical properties along with reliability 

measures are discussed. The hazard rate function and reliability behavior of transmuted 
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Fig.13 : Empirical, fitted TILLD and ILLD CDF of Survival Times (in years) of Leukemia Patients
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inverse Loglogistic distribution exhibits that subject distribution can be used to model 

survival data from medical sciences and other fields of interest. 
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