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Abstract 

In this paper, a non-linear model with three control parameters for household of malaria has been study. The 

disease free equilibrium is obtained and the basic reproduction number is computed using the next generation 

matrix. We carry out cost evaluation of the model to optimize the cost of the intervention in the objective 

functional using Pontryagins’s Maximum Principle (PMP). We apply the optimal control strategy to investigate 

and analyze the optimal cost for controlling the transmission of malaria using treated bednets, treatment and 

indoor residual spray as parameters. Numerical simulation has been carry out using Runge-Kutta of order four to 

calculate the incremental cost effectiveness ratio ( ICER ) for the implementation of various combinations of the 

parameters to determine the most cost effective strategy that check the spread of the disease. Our findings show 

that the most cost-effective strategy to check the spread of malaria is strategy F (the combination of treatment of 

infected individuals and indoor residual spray parameters). 

Keywords: Optimal Control, Malaria Transmission, Cost-Effectiveness, Treated Bednets, Treatment, Indoor 

Spray 

 

1. Introduction 

Malaria is one of the deadliest infectious diseases that have claimed millions of lives around the globe. Malaria 

in human beings is caused by five species of parasites belonging to the genus Plasmodium. Four of these – 

Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale – species affect 

human beings and are spread from one person to another via the bite of female mosquitoes of the genus 

Anopheles. There are about 400 different species of Anopheles mosquitoes, but only 30 of these are major 

vectors. Recently, human infections of malaria due to Plasmodium knowlesi have been recorded – these species 

of malaria are usually found among monkeys in certain forested areas of South-East Asia. Current information 

suggests that Plasmodium knowlesi malaria is not spread from person to person, but rather occurs in people when 

an Anopheles mosquito bites an infected monkey and transmits it to humans (zoonotic transmission) (WHO, 

2015). They also reported that about 3.2 billion people or almost half of the world’s population remain at risk of 

infection by the malaria parasite. Chitnis, Cushing & Hyman (2006) presented a model using ordinary 

differential equation for the spread of malaria in both human and mosquito populations. Obabiyi & Olaniyi 

(2016) formulated a model with discrete-age-structured human population which incorporated a class of vigilant 

human beings who adhered to the vector control measures. Mwanga, Haario & Nannyonga (2014) presented 

proposal to study the robustness of optimal control solutions under such parameter uncertainty. For the given 

model simulation, they created data so that a plausible variability of the epidemiological dynamics was covered. 

Kim et al. (2012) presented a plasmodium vivax malaria transmission model using a deterministic system of 

differential equations and investigated the optimal control strategy for Plasmodium Vivax malaria transmission 

in Korea. Their work shows that, if the cost of reducing the reproduction rate of the mosquito population was 

more than that of prevention measures which aimed to minimize mosquito-human contacts, the time optimal 

control of mosquito-human contacts needed longer time. Malarial infection could be controlled or prevented 

through drug treatment of malaria infected patients which would then reduce transmission of the disease, use of 

insecticide-treated nets (ITNs), indoor residual spraying and, in specific settings, larval control (WHO, 2012). 

Otieno, Koske & Mutiso (2016) studied a deterministic model for malaria transmission was studied and 

incorporated the intervention strategies for the most at risk groups (pregnant women and children under five 

years of age). Analyses of the model for cost effectiveness of the control strategies were undertaken. Silva & 

Torres (2013) studied a Mathematical model for the effects of insecticide treated nets (ITNs) on the transmission 

dynamics of malaria infection which took into account human behavior and introduced a supervision control, 

representing information, education, communication (IEC) campaigns for improving the ITN usage. They 

proposed an optimization model whose aim was to minimize the number of infected human beings while 

keeping the cost low. They found that an effective and optimal use of preventive measure without the use of 

larvacide is not possible if total elimination is the objective (Ozair et al. 2012). Seidu, Makinde & Daabo (2016) 

examined the implementation of various combinations of the parameters in order to determine the cost effective 

strategy that minimized spread of the diseases. An incremental cost-effective ratio was employed for the various 

control strategies which showed that the strategy that involved all the control parameters was the most cost 

effective strategy. This revealed that the fight against the disease should be multidimensional, to include 
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treatment, educational, sensitization and others. Bhatia, Fox-Rushby & Mills (2004) compared ITNs with IRS 

and found that the total costs of ITNs were greater than those of IRS, which was also reflected in the higher cost 

per capita (Rs. 56 versus Rs. 51). This was mainly due to the cost of mosquito nets and despite 74% of the total 

insecticide cost being attributed to IRS. Goodman & Mills (1999) assessed the range and quality of the evidence 

based on the cost-effectiveness of malaria prevention and treatment in sub-Saharan Africa. 

Mathematical models are used as a tool to study and determine the optimal control strategy against malarial 

infection. This work attempts to study a mathematical model in order to determine the optimal cost control 

strategy using cost effectiveness of insecticide-treated nets (ITNs), indoor residual spraying (IRS), and drug 

treatment of malarial infection as parameters. 

 

2. Model Formulation 

In this paper, we partition the population of human (also referred to as host) at time ,t  denoted by ( )hN t   into 

the following sub-populations: susceptible population ( ),hS t  exposed population ( ),hE t  and infected population 

( ),hI t  Similarly, we partitioned the mosquitoes population (also referred to as vector) at time ,t  denoted by 

( )vN t  into susceptible population ( ),vS t  exposed population ( ),vE t  and Infected sub-population ( ),vI t  

The humans are recruited into the Susceptible population at constant rates h Susceptible individuals became 

exposed following contact with infected mosquito at a rates .  Exposed ( ),hE t individuals became infected at a 

rate h .  The Susceptible and Exposed populations die naturally at a rate .h  Those infected with malaria 

recovered after treatment at a rate h  and recover spontaneously at a rate h  Infected individuals may die 

naturally at a rate h or due to the disease induced death rate h . Similarly, the mosquitoes are recruited into the 

Susceptible population at constant rates .v  Susceptible mosquitoes became exposed following contact with 

infected human. Those exposed to the parasite will move to the Infected class at a rate .v  However, the Infected 

mosquito may transmit the disease following contact with Susceptible humans who are not using the nets at a 

rate ( 11 ( )u t ). All susceptible, exposed and infected mosquitoes can may naturally or due to indoor spray of 

insecticide at a rate .vb  Below are the assumptions of the model with three control parameters; 

(i) Susceptible individuals infected with malaria will move to exposed class before progressing to 

infectious class for both humans and mosquitoes. 

(ii) Individuals infected with malaria will be effectively treated from the infection. 

(iii) Treatment of infected individuals reduces the transmission of the disease. 

(iv) Infectious individuals recover spontaneously. 

(v) Susceptible and exposed individuals die naturally. 

(vi) Infectious individuals die naturally and also due to the malaria disease. 

 

2.1 Model diagram 

The schematic diagram for the model with treated bednet, treatment of infected individual and indoor residence 

spray as control parameters is presented below: 
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Figure 1: Flow diagram for the model with three control parameters 

2.3 Model equations 
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The rate of change of the total populations for human and mosquito are given by 

( ) ( ) ( )h h h h h hN t N t I t 


             (7) 

3( ) ( ) ( )v v vb vN t u N t


             (8) 
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Table 1: Parameters and variables descriptions and values used in the model 

Symbols Description Estimated 

values 

References 

h  Recruitment rate in humans 
 

10
70 365

3


 Silva and Torres (2013) 

v  Recruitment rate in mosquitoes 10
21

4  Silva and Torres (2013) 

h  Natural mortality rate in humans 
 

1
70 365

 Silva and Torres (2013) 

vb  Natural mortality rate of mosquitoes 1
21

 Silva and Torres (2013) 

h  Disease induced mortality rate in humans 310  Silva and Torres (2013) 

h  Spontaneous recovery for humans 0.005 Okosun (2013) 

1p  Probability of disease transmission from mosquito to 

human 

1 Silva and Torres (2013) 

2p  Probability of disease transmission from human to 

mosquito 

1 Silva and Torres (2013) 

h
 

Weight constant for the use of treatment in humans 1
4  

Silva and Torres (2013) 

  Weight constant for the use of indoor spray 2.5 Okosun (2013) 

h  Progression rate from the exposed humans to 

infected humans 

1
17

 Okosun (2013) 

v  Progression rate from the total population of 

mosquitoes 
1
18

 Okosun (2013) 

  Biting rate of mosquito 0.3 Agusto (2012) 

  Discount rate  3 5
365 365

to % Okosun (2013) 

1A  Weight constant on infectious humans 25 Silva and Torres (2013) 

2A  Weight constant on the total population of 

mosquitoes 

25 Silva and Torres (2013) 

1C  relative cost of the intervention associated with the 

control using  ITNs 

20 Okosun (2013) 

2C  relative cost of the intervention associated with the 

control using treatment 

65 Okosun (2013) 

3C  relative cost of the intervention associated with the 

control using indoor residual spray 

10 Okosun (2013) 

tbC  Cost of treated bednet per unit $(2.5-5) Okosun (2013) 

trC  Cost of treatment per unit $2 or more Okosun (2013) 

vSC  Cost of IRS per unit area $1.5 Okosun (2013) 

 0hS  Susceptible humans initial value 800 Silva and Torres (2013) 

 0hE  Exposed humans initial value 20 Okosun (2013) 

 0hI  Infected humans initial value 0 Okosun (2013) 

 0vS  Susceptible mosquitoes initial value 9500 Okosun (2013) 

 0vE
 

Exposed mosquitoes initial value 20 Okosun (2013) 

 0vI
 

Infected mosquitoes initial value 30 Okosun (2013) 

 

 

3. Mathematical Analysis 

3.1 Equilibrium State of the Model 

In the absence of disease, we set equations (1) – (6) to zero and it is obtained as 

* * * * * *

0

3

( , , , , , ) , 0, 0, , 0, 0
( )

h v

h h h v v v

h vb

M S E I S E I
u  

  
   

 
     (10) 

 

3.2 Basic Reproduction Number of the Model 

The basic reproduction number can be defined as the average number of secondary infectious individual 

in a completely susceptible population. We use the next generation matrix method of computing 0R  described 
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by (Van den Driessche & Watmough, 2002) on the model (1) to (6). Let ( , , , , , ),h h h v v vx S E I S E I  and 

( ) ( ).
dx

F x V x
dt

   Thus,  1

0R FV  . 

1

10 0( ) ( )i i

i i

j j

F M V M
F V

X X




    

     
       

       (11) 
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1 1
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 

  

     (13) 

Using 1 1
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V
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Therefore, 
2

2 1 2

0 1

2 3 3 3

(1 )
( )( )( )( )( )

v h v h

h h h h h h h v vb vb vb

p p
R u

u u u u

   

            

 
  

         

   (15) 

 

3.3 Optimal Control 

The objective functional for the model with treated bednet, treatment of infected individual and indoor residence 

spray is formulated and presented as control parameters aimed at controlling the transmission of the malaria 

infection. However, the optimal level of efforts needed to control the transmission of malaria at minimal cost had 

been investigated by minimizing the objective functional. 

2 2 231 2

1 2 3 1 2 1 2 3
0

( , , ) ( ( ) ( ) ( ) ( ) ( ))
2 2 2

ft

h v

CC C
J u u u A I t A N t u t u t u t dt         (16) 

Given the objective functional (16), where ft
 
is the final time and the coefficients 1 2 3, ,C C C  are the positive 

weights to balance the factors. The aim is to minimize the number of infected humans ( )hI t  and the total 

population of mosquitoes ( ),vN t  while minimizing the cost of control of implementing 1 2( ), ( )u t u t and 3 ( )u t  

respectively. 1A  is the cost of treatment associated with the infected human and 
2A  is the cost associated with  

the control of total population of the mosquitoes while 
2 21 2

1 2,
2 2

C C
u u   and 

23

3
2

C
u   represent the costs for the use 

of insecticide treated bednets, treatment of infected human and use of indoor residence spray respectively. 

If the elimination of malaria is unachievable as a result of costs or social and environmental reasons, then we 

need to investigate the optimal level of efforts that will be needed in reducing the disease transmission, i.e. we 

analyze the objective functional in (16). Our aim is to minimize the number of infected humans at the least cost 
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with respect to the control parameters 1(t),u  2 (t)u  and 3 (t).u  We seek cost optimal control 
1

*,u  *

2u  and 
3

*u  such 

that  

1 2 3
1 1 2 3

, ,

* * *

2 3 ? min ( , , )( ,u ,u ,
u u u

u J uJ u u


        (17) 

where   is the bounded interval   <  0, 1  such that ( )iu t t   0, ft    and 1, 2, 3.i   The necessary 

conditions for an optimal control is determined by Pontryagin’s Maximum Principle. 

 

 

Theorem 
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where , , , , ,
h h h v v vS E I S E I       and  

fC  are the adjoint variables or co-state variables. 

Theorem 

Given an optimal controls * * *

1 2 3, ,u u u  and the relation * * * * * *, , , ,h h h v v vS E I S E I   of the corresponding state 

systems (1) – (6) that minimizes 1 2 3J( , , )u u u  over [0, ].ft  Then there exists adjoint variables 

, , , , , ,
h h h v v v fS E I S E I C         satisfying 
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 

 
          

 

 







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
















  (19) 

with transversality conditions: 

( ) ( ) ( ) ( ) ( ) ( ) 0
h h h v v vS f E f I f S f E f I ft t t t t t                   (20) 

And the controls * *

1 2, ,u u and *

3u  satisfy the optimality conditions:  

   
1

2

3

* * * *

1 2 *

*

1

* *

*

2

* * *

*

max 0, min 1,

( )
max 0, min 1,

( )
max 0, min 1,

v h h

h h v v h f

h h h h f
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v
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t
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
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     

     
  

  
  

    
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 

   

  


* * *

3

( )
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t

S E I

C e 

















       

      




          (21) 

Proof 

The differentiable equations governing the adjoint variables are obtained by differentiating the (18) and 

evaluated at the control parameter. Then the adjoint system can be written as 

 

,hS c

h

d H

dt S

 
 


 ,hE c

h

d H

dt E

 
 


 ,hI c

h

d H

dt I

 
 


 ,vS c

v

d H

dt S

 
 


 ,vE c

v

d H

dt E

 
 


 ,vI c

v

d H

dt I

 
 


 

fC c

f

d H

dt C

 
 


                           (22) 
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 

 

 
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h E I h E

h

v
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      

  


    




  




         




      




 



 

3 3 2

1
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0

v v f

h h v f

I vb E sv C

h

S E vb I sv C

v h

f

u C u A
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u u C u A

I N

H

C

    


      
















   




       
 




 

        (23) 

 

with transversality conditions: 

 

( ) ( ) ( ) ( ) ( ) ( ) 0
h h h v v vS f E f I f S f E f I ft t t t t t                       (24) 

 

Hence, solving 
1 2 3

0, 0, and 0,
H H H

u u u

  
  

  
 gives the characterization of the control parameters. 

 

   
* * * *

1 2 *

*

1

1

v h h v

h h v v h f

t

E S E S tb C

h h

p I S p I S
C S e

N N
u

C


 

    
 

    
  

            (25) 

2

* *

*

2

( )
h h h h f

t

h I S tr h CI C I e
u

C

      
 

              (26) 

3

* * * * * *

*

3

( ) ( )
v v v v v v v f v v v

t

S E I S CS E I C S E I e
u

C

          
 

             (27) 

 

The optimality condition via Pontryagin’s Maximum Principle states that  

* 1

1, ( , , ) 0

sgn[ ' ( ) ( , , )] 0, ( , , ) 0

1, ( , , ) 0

u

u u

u

if f t x u

u X t f t x u if f t x u

if f t x u

 

 


  
 

    

   

Because of the apriori boundedness of the solutions of both the state and the adjoint equations, we obtain the 

uniqueness of the system (19) – (21). The restriction on the length of time interval [0, 
ft ] in order to guarantee 

the uniqueness of the system. This is due to the opposite time orientations of (19) – (21); the state problem has 

initial values while the adjoint problems has final values. This restriction is common in control problems [14], 

[16] and [18]. 

 

3.4 Cost Evaluation Analysis 

The cost evaluation for the control parameters has been analyzed using the objective functional given as  

 

 
1 2 3

1 2 3
0, ,

min ( ) ( ) ( ) ( ) ( )( ( ) ( ) ( ))
ft

t

f tb h tr h h sv v v v
u u u

C C u t S t C u t I t C u t S t E t I t e dt          (28)  

 

subject to (1) – (6). Therefore, the corresponding Hamiltonian is given as 
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h
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3
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v

v

h
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h
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p I
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N
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
   
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












 

 

      
 


   

   (29) 

 

where ,
hS  ,

hE  ,
hI  ,

vS  ,
vE  ,

vI  are the shadow prices associated with their respective classes. The changes 

in the objective value of the optimal solution of an optimization problem are obtained by relaxing the constraint 

by one (1) unit. We use Pontryagin’s Maximum Principle to obtain 

 

,hS c

h

d H

dt S

 
 


 ,hE c

h

d H

dt E

 
 


 ,hI c

h

d H

dt I

 
 


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v

d H
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 


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d H

dt E

 
 


 vI c

v

d H
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 
 


  (30) 

 

Thus solving (29), we have 
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h
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d
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

  
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  


        

 
         

  







 (31) 

 

3.4.1 Cost evaluation for treated bednet 

Differentiating (29) partially with respect 
1u  (treated bednet) as control parameter, we get 

1 2

1

( ) ( )
h h v v

tC v h h v

tb h S E S E

h h

H p I S p I S
C S e

u N N

  
   

    


     (31) 

This expression  1 2( ) ( )
h h v vv h E S h v E S hp I S p I S N         in (31), is the total marginal benefit of the use of 

treated bednets and the tb hC S  is the marginal cost. If the marginal cost of the treated bednets is equal to the 

marginal benefit, then the optimal policy is achieved. 
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


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 
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
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
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

    


  (32) 

This means that the use of treated bednets in preventing malaria will be cost optimal only when the expected 

marginal benefit is greater than the marginal cost. 

 

3.4.2 Cost evaluation for treatment of infective humans 

Similarly, differentiating (29) partially with respect 2u  (treatment) as control parameter, we get 

2

( )
h h

tC

tr h h h h S I

H
C I e I

u

   
  


       (33) 

These tr h hC I  and ( )
h hh h I SI    are the respective marginal cost and marginal benefit for treatment. 
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
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
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    (34) 

If the marginal benefit is greater than the marginal cost, then the cost optimal target for treatment is achieved. 

 

3.4.3 Cost evaluation for indoor residual spray 

Differentiating (29) partially with respect 
3u  (indoor residual spray) as control parameter, we get 
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
     (35) 

The marginal cost for indoor spray against the total population of mosquitoes is given by ( )
vS v v vC S E I    

while ( )
v v vv S v E v IS E I      being the marginal benefit derived as a result of the indoor spray. The cost 

optimal target will be achieved if 
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   (36) 

If the marginal benefit for the cost optimal indoor spray is greater than the marginal cost of indoor spray, then 

the indoor residual spray is cost optimal. 

 

4. Numerical simulation 

Numerically, we investigate the effect of the cost optimal control strategies on the spread of malaria in a 

population using parameters and variables values in table 1. The strategies are: 

Strategy A: use of treated bednet and treatment 

Strategy B: use of treated bednet and indoor residual spray 

Strategy C: use of treatment and indoor residual spray 

Strategy D: use of treated bednet, treatment and indoor residual spray 

The optimality system (19) – (21) is solved to obtain the optimal strategy. An iterative scheme has been used for 

solving the optimality system. Because of the transversality conditions (21), the adjoint equations are solved by 

the backward fourth order Runge-Kutta scheme using the iterative solutions of the state equation. 
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4.1 Strategy A: use of treated bednets and treatment 
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Figure 2. Implementing strategy (A) as the control parameter 

 

In this strategy, the treated bednets 1( )u  and the treatment 2( )u  is used to optimize the cost objective functional 

( )J  while we set the indoor spray 3( )u  to zero. We observe a significant difference in the infected humans ( )hI  

and infected mosquitoes ( )hI  with control when compared to ( hI )  and  ( vI ) without control, see figure 2(a) – 

2(d). 

 

4.2 Strategy B: use of treated bednets and indoor residual spray 
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Figure 3. Implementing strategy (B) as the control parameter 
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In this strategy, the treated bednets parameter 1( )u  and the indoor residual spray parameter 3( )u  is used to 

optimize the cost objective functional ( )J  while we set the treatment parameter 2( )u  at zero. We obseved in 

figure 3(a) – 3(d) a significant difference in the infected humans ( )hI  and infected mosquitoes ( )hI  with control 

when compared to ( hI ) and ( vI ) without control. 

 

4.3 Strategy C: use of treatment and indoor residual spray 
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Figure 4. Implementing strategy (C) as the control parameter 

In this strategy, the treatment parameter 2( )u  and the indoor spray parameter 3( )u  is used to optimize the cost 

objective functional ( )J  while we set the treated bednets parameter 1( )u  at zero. We observed in figure 4(a) – 

4(d) a significant difference in the infected humans ( )hI  and infected mosquitoes ( )vI  with control when 

compared to ( )hI  and ( )vI  without control. 
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4.4 Strategy D: use of treated bednet, treatment and indoor residual spray 
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Figure 5. Implementing strategy (D) as the control parameter 

 

In this strategy, the treated bednets parameter 1( ),u  the treatment parameter 2( )u  and the indoor spray parameter 

3( )u   is used to optimize the cost objective functional ( ).J  We observe in figure 5(a) – 5(d) a significant 

difference in the infected humans ( )hI  and infected mosquitoes ( vI ) with control when compared to ( hI ) and 

( vI ) without control. 

 

5. Cost-Effectiveness Analysis 

We want to measure the cost effectiveness of the control strategies for the purpose of the study; we consider the 

incremental cost effectiveness ratio ( ).ICER  which allow comparing the cost-effectiveness of; combination of at 

least two (2) of the control parameter; use of treated bednets, treatment of infected humans and the indoor 

residual spray. In ICER , when comparing two (2) competing intervention parameter incrementally, one 

intervention should be compared with the next-less-effective alternative. Based on the model simulation results, 

table 2 shows the strategies and their respective total infections averted and total costs of the strategies. The 

ICER  is given by; 

 

 

 
0

1 0

cC C
ICER

E E





         (37) 

Table 2: The Total Infection Averted and Total Costs for the Strategies 

S/N0 Strategies Total infection averted Total cost ($) 

1 A 703.2915 164740 

2 B 697.8022 84307 

3 C 712.6687 71427 

4 D 711.6938 73732 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

136 

Table 3: Arrangement of Strategies in Order of Increasing Effectiveness and the Incremental Cost Effectiveness 

Ratio Which was Obtained Using (37) 

S/N0 Strategies Total infection averted Total cost ($) ICER  

1 No strategy 0 0 - 

2 EB 697.8022 84307 120.8179 

3 DA 703.2915 164740 14652.6880 

4 GD 711.6938 73732 -10831.32 

5 FC 712.6687 71427 -2364.3451 

 

 

Table 4: The New ICER  when Strategy A is Eliminated 

S/N0 Strategies Total infection averted Total cost ($)      ICER  

1 B 697.8022 84307 120.8179 

2 D 711.6938 73732 -761.2514 

3 C 712.6687 71427 -2364.3451 

 

The comparison of the strategies in table 4 indicates that strategy A is dominant over strategy B. Therefore, 

strategy A is costliest and less effective than strategy B. We therefore, eliminate A set of alternatives. We 

recalculate ICER  in table 5. 

Table 5: The ICER  when strategy B is eliminated 

S/N0 Strategies Total Infection Averted Total Cost ($) ICER  

1 D 711.6938 73732 103.6007 

2 C 712.6687 71427 -2364.3451 

 

The comparison between strategies B and D shows that strategy B is costlier and less effective than strategy D. 

Therefore, we eliminate strategy B and recalculate ICER  in table 5. 

With the result in table 5; we conclude that strategy D (combination of treated bednets, treatment of infected 

individuals and indoor residual spray) dominates in cost less effective than strategy C. Therefore, we recommend 

strategy C (combination of treatment and indoor spray) as the most cost-effective strategy. 

 

6. Conclusion 
This work considers a non-linear model with three control parameters of malaria transmission. We obtain disease 

free equilibrium (DFE) and the basic reproduction number 0R  of the model with three (3) control parameters 

using the next generation matrix. We carried out cost evaluation of the model and compared the cost of the 

intervention(s) in the cost objective functional using Pontryagin’s Maximum Principle (PMP) where we found 

out that if the marginal cost is greater than the marginal benefit the strategy(s) will not be effective could not be 

consider in controlling the malaria transmission. Similarly, if the marginal cost is equal to the marginal benefit, 

the strategy(s) could be considered over a finite time as transmission control strategy. Furthermore, whenever the 

marginal benefit of strategy is larger than the marginal cost, then the strategy could be considered as the best 

prevention strategy for controlling the transmission. We applied the optimal control to investigate and analyze 

the optimal strategies for controlling the transmission of malaria using treated bednets, treatment and indoor 

spray as the control parameters. The results show significantly how the transmission is controlled whenever a 

control(s) is used. The numerical simulation using Runge-Kutta of order four, the result shows how malaria 

transmission could be reduced whenever a control or combination(s) of the controls is/are applied. The 

incremental cost effectiveness ratio ( ICER ) is computed for the implementation of various combinations of the 

controls to determine the most cost effective strategy that can control the disease. The ICER for the various 

control strategies shows that the most cost-effective strategy for the malaria control is the combination of 

treatment and indoor spray together, follow by the combination of all the three (3) control strategies.  
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