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Abstract 

Energy transfer mechanism in most technical flows is through turbulent natural convection due to low viscosity 

of the fluids used in technical applications. Consequently, there is need to establish the parameters that influence 

the flow field of turbulent flow regime in order to enhance the energy-efficacy of many thermal applications. In 

order to establish the influence of the geometrical configuration of the flow domain on the flow field, we obtain 

and analyze the distribution of the velocity and temperature fields of a Boussinesq buoyancy-driven turbulent 

flow field in a locally heated and cooled enclosure for 0.5 1AR  while maintaining the Rayleigh number of 

the flow at 105.5 10 . To filter out the enormous turbulent scales inherent in the turbulent flow regime, we 

decompose the flow variables present in the instantaneous equations governing a viscous Boussinesq buoyant 

flow and subject the resulting equations to the Reynolds averaging process to obtain equations that governs the 

turbulent flow field. We resolve the turbulent quantities emanating from this process using the SST k w  

turbulence model coupled with the Boussinesq approximation. To ensure the satisfaction of the conservation 

laws at the discrete level and over the entire solution domain, the non-dimensionalized equations are discretized 

using the robust finite volume method. The method possesses the ability to adapt a grid structure that captures 

the local features of the flow domain and imposes the integral form of the governing equations to each finite 

volume of the discretized solution domain so that the final mathematical formulation has an intimate connection 

to the actual physical situation. Since the equations are coupled, a segregated pressure-based iterative method is 

used to obtain the solution. The results revealed that the velocity and temperature fields are non-uniformly 

distributed in the enclosure and their magnitude and distribution significantly depend on the Aspect ratio of the 

enclosure. The results are consistent with the experimental results of Markatos and Pericleous (Markatos & 

Pericleous, 1984).  

Keywords: Aspect Ratio, Boussinesq, Buoyancy, Natural Convection, Reynolds Stresses, Turbulent heat flux. 
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1.0 Introduction 

There are two main mechanisms responsible for the transfer of heat in fluid flows. One is due to the random 

molecular movement of the fluid particles known as diffusion and the other is due to the macroscopic movement 

of fluid particles with the flow. However, in convective flows, heat transfer is predominantly due to the 

macroscopic movement of the fluid particles known as convection ( (Rathakrishnan, 2005), (Bejan, 1984)). 

There are two processes in the convective mode of heat transfer, the forced and natural convection. If an external 

agent causes the movement of the fluid, the process is termed as forced convection. In this case, a superimposed 

external field is principally responsible for the fluid motion. The fluid motion is thus noticeable. On the other 

hand, whenever a surface in a fluid is at a temperature higher or lower than that of the fluid, the layer of the fluid 

in contact with the surface assumes the temperature of this surface through conduction. Due to temperature 

difference between this layer and the fluid particles within the vicinity, density gradient develops in the fluid. 

The presence of gravitational force in such a fluid induces buoyancy force that initiates fluid motion (Bergman & 

Incropera, 2011). The resulting fluid motion is termed as natural convection. In this case, the fluid motion is not 

noticeable since an internal condition causes the movement of the fluid particles. In natural convection, the flow 

rate is dependent on a non-dimensional number known as the Rayleigh number. Since the flow rate is a function 

of the coefficient of heat transfer, both the mechanism of heat transfer and the flow behavior are dependent of 

the Rayleigh number. When ,104Ra the mechanism of heat transfer is primarily by conduction whereas for

94 1010  Ra , laminar natural convection is the predominant mechanism of heat transfer. For ,109Ra  

turbulent natural convection is the principal mechanism of heat transfer (Rajput, 2015).  The coefficient of heat 

transfer of such flows is dependent on the fluid properties, the flow conditions and the geometry of the flow 

domain (Rajput, 2015). The Rayleigh number incorporates both the flow properties and flow conditions. 

Consequently, the behavior of a Boussinesq natural convective flow of constant Rayleigh number is dependent 

on the geometrical setup of the flow domain.  However, most of the fluids used in technical applications are of 

low viscosity, hence, fluid flows encountered in technical applications are mostly turbulent. In order to meet the 

ever-increasing need of enhancing the energy-efficacy of many thermal systems, the determination of the 

influence of the Aspect ratio of the flow domain on the flow field of a turbulent natural convective flow is thus 

of great importance to the thermal science community.  

Since the flow variables at a given point in a turbulent flow field exhibits a net mean behavior accompanied by 

rapid fluctuations about the mean, we subject the equations governing a Newtonian viscous Boussinesq buoyant 

flow to the Reynolds decomposition and averaging process in order to filter out the turbulent scales, moreover, 

we are interested with the gross behavior of the flow and thus equations that describe an average turbulent flow 

field will suffice (Patankar, 1980). The averaging process however introduces two unknown terms each in the 

momentum and energy equations associated with the fluctuations intrinsic in turbulent flow (Launder & 

Spalding, 1974). The determination of these terms poses the greatest challenge in the analysis of the turbulent 

flow field. In the present work, the Shear Stress Transport k w  turbulence model developed (Menter, 1994) 

coupled with the Boussinesq approximation is used to model these terms. 
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1.1 Review of Previous Related Studies 

Due to its many practical applications in the real world, the effect of the Aspect ratio of a flow domain on the 

flow field is receiving increasing research attention. Ganzarolli & Milanez, (1995)  conducted a numerical study 

on natural convection in an enclosure heated from below and cooled symmetrically from the outside for

3 910 10Ra  . Results for Pr 0.7  and Pr 0.67 were obtained using the stream function-vorticity 

formulation. The Aspect ratio of the enclosure was varied between 1  and 9 . The results comprised of isotherms 

and streamlines on different vertical planes and the Rayleigh-Nusselt number variations. They reported the 

effects of varying the Rayleigh number, Aspect ratio and the Prandtl Number of the fluid on heat transfer rate. 

(Sarris, Lekakis, & Vlachos, 2004) studied numerically natural convection in rectangular tanks heated locally 

from below. They investigated the effect of varying the geometry of the heated surface and the length of the tank 

on the flow patterns and heat transfer rates for Rayleigh number between 210
 
and 710 . From the results, it was 

apparent that the intensity of the flow circulation increased with the width of the heated strip and the length of 

the tank.  

Nogueira, Martins, & Ampessan, (2011)  used computational fluid dynamics to analyze the effects of the Aspect 

ratio of the flow domain and the Rayleigh number of a natural convective flow on the rate of heat transfer and 

the flow profiles. The domain of analysis was a rectangular enclosure of different Aspect ratios. They considered 

4 610 10Ra    and Enclosure Aspect ratio of 0.5, 1, 2 and 3. The results indicated that the distribution of the 

flow profiles, the rate of heat transfer and the thickness of the thermal boundary layer significantly depended on 

the Rayleigh number of the flow and the Aspect ratio of the enclosure. In addition, the results revealed that the 

average Nusselt number was a strong function of length to height ratio and increases with width to length ratio. 

During the same year, Gowda, Sridhara, & Seetharamu, (2011) used a finite volume based computational 

procedure to study the effect of the Aspect ratio on the flow profiles and heat transfer in the thermal boundary 

layer of the flow domain. The flow domain used for the analysis was a enclosure consisting of an adiabatic top 

wall, constant temperature cold vertical walls and a horizontal bottom subjected to uniform and linearly varying 

temperatures. Rayleigh number was ranged from 310  to 710  and the Aspect ratio of the enclosure from 0.5 to 

3.0. From the results, whereas the Nusselt number for the bottom wall increased as the Aspect ratio increased 

from one to three, it decreased for the sidewalls. In addition, when they subjected the bottom wall to uniform 

temperature, the results revealed that the Nusselt number was higher than when subjected to linearly varying 

temperature. 

(Falahat, 2014) investigated the influence of Aspect ratio and Rayleigh number on the Nusselt number in a 

laminar natural convection flow inside a water-filled square enclosure. The enclosure consisted of a partially 

heated vertical wall with the opposite vertical wall partially cooled. The top and bottom walls of the enclosure 

were both adiabatic. He solved the governing equations using the finite volume method for 3 610 10Ra  and

0.5 4AR  . The results indicated that heat transfer enhances with increase of Rayleigh number for all 

Aspect ratios. However, the Nusselt number increases for Aspect ratio in the range of 0.5 to 1, beyond this range 

it decreases smoothly. (Salih, 2015) used the robust finite volume method on a collocated grid to investigate a 

steady two-dimensional laminar natural convection flow in a parallelogram shaped enclosure bounded by an 
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adiabatic top wall, constant temperature cold sidewalls and a hot bottom wall at uniform temperature. He 

considered velocity components and pressure as the dependent variables in the momentum equation. He used the 

SIMPLE algorithm to obtain the pressure field. The study considered Rayleigh number ranging from 

3 510 10Ra   and 0.5 1.5AR  . The results showed that the average Nusselt number increases as 

Aspect ratio and Rayleigh number increases. In addition, he asserted that the Aspect ratio of the flow domain is 

one of the most important parameters that determines the rate of heat transfer. 

Most of the previous researches have considered the effect of the Aspect ratio on a laminar flow field. This paper 

documents the effect of the Aspect ratio on the distribution of the flow fields in a Boussinesq buoyancy-driven 

turbulent airflow in a locally heated and cooled enclosure with adiabatic walls.  

2. Governing Equations  

2.1 The Assumptions  

The equations that govern Boussinesq buoyancy-driven turbulent flow result from invoking the laws of 

conservation of mass, momentum and energy. We however modify the momentum equation to incorporate the 

buoyancy term and neglect energy transfer through thermal conduction and radiation in the energy equation. 

Therefore, the derivation of the equations governing this flow regime is based on the premise that  

 The fluid is Newtonian  

 The flow is buoyancy-driven and turbulent. 

 The dynamic and chaotic behavior inherent in turbulent flow does not violate the conservation 

laws  

 All the flow variables are continuous functions of space 

 Density is constant in the continuity equation and in all inertial terms in the momentum equation 

except in the buoyancy term. 

 The heat transferred by conduction and radiation means is negligible. 

 The viscous dissipation effects in the energy equation are negligible. 

 The only body force acting on the fluid is gravity. 

 Density gradients is purely as a result of temperature difference. 

 

In a buoyant flow, a fluid of density 0   displaces a fluid of density  , where  0  is the reference fluid density 

and   is the instantaneous fluid density and 0  . This is due to buoyancy force caused by the imbalance 

between the gravitational and pressure forces acting on the fluid particles arising from density variations 

associated with temperature difference. A recirculating process thus characterizes buoyant flows. From 

Archimedes principle, the net force
bF  acting on a unit mass of the fluid is  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

57 

 

 gVFb   0      (1)

        

  

Where V is the volume of the fluid displaced. But the volume of a unit mass of a fluid is  

0

1


V                (2)          

Hence 

 
gFb

0

0



 
       (3)

  

The density gradients that induces the buoyant force are due to temperature difference in fluid particles, thus, 

temperature is the primary variable in the flow. We thus express the buoyancy force in terms of temperature 

using the coefficient of volumetric expansion of the fluid. From definition, this coefficient is a measure of the 

rate of change of the volume of a fluid with temperature at constant pressure (Rajput, 2015) 
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For a unit mass of a fluid, density is inversely proportional to the volume, therefore 
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Hence, 

 0TT
o

o 






     (8)

          

Substituting equation (8) into (3) gives 

 0bF g T T       (9)

          

It is apparent from equation (9) that the buoyancy force is a function of the coefficient of volumetric expansion 

of the fluid, the gravitational field strength and the temperature difference. Hence, for a Boussinesq fluid, 

buoyancy is purely a function of the temperature difference.  

Considering a fluid flow with velocity component 
iu  in time t  and spatial Cartesian co-ordinate ix , the 

equations of continuity, momentum and energy respectively becomes (Currie, 2012) 
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          (12)                                                                                                                         

2.2 Decomposition and Averaging of the Conservation Equations 

In order to incorporate the fluctuations that characterizes a turbulent flow, we subject equations (10) to (12) to 

the Reynolds decomposition and averaging process so that a flow variable   is expressed as sum of a mean 

value and a fluctuation value as illustrated in the equation below 

(x,t) (x) '(x,t)         (13)
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where   denotes the instantaneous value of the variable whereas   and '  denotes the associated mean and 

fluctuating value respectively. The mean value is determined by taking the time average of the variable over a 

long period compared with the time scale of a typical fluctuation as expressed in the equation below
  

 

lim (x,t)
t t

tt
dt 



 
        (14)

  

where t  is the time averaging interval. Consequently,  does not change with time but with space.  

We substitute the decomposed forms of the instantaneous variables present in equations (10) to (12) and subject 

the resulting equations to the Reynolds rules of averaging to obtain the time-averaged equations below  
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The time-averaged equations (15) to (17) describes an average turbulent flow field. However, equation (16) and 

(17) contains unknown quantities ' '

i j
u u  and ' '

j
u T  respectively. These terms referred to as turbulent stresses 

and turbulent heat flux respectively represents the additional transfer of momentum and energy due to the 

fluctuations in the turbulent flow. 

3.0 MODELING THE TURBULENT QUANTITIES 

3.1 The Boussinesq Approximation 

Boussinesq postulated that turbulent stresses is linked to the mean strain rate through an apparent viscosity t , 

whereas the turbulent heat flux is linked to the temperature gradient through an apparent coefficient of 

conduction
tk  . This implies that, an average turbulent flow field is comparable to the corresponding laminar 

flow field (Versteeg & Malalasekera, 2007).   However, both 
t  and ,tk  unlike the laminar viscosity  and 

thermal conductivity are not fluid properties but flow properties. Based on this analogy referred to as the 

Boussinesq approximation the turbulent stresses and the turbulent heat flux are expressed in terms of the mean 

strain rate and temperature gradients respectively as  
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 where k  is the turbulent kinetic energy. The turbulent viscosity is a function of turbulent kinetic energy k  and 

the turbulent scale length L  (Rodi, 1993) 

    t c L k 
      

 (20) 

where c  
is an empirical constant determined experimentally. Thus, to complete the model, we require an 

equation for the determination of turbulent kinetic energy and another equation that allows for the determination 

of the turbulent length scale.  

 3.2 Transport equations for the turbulent scalar quantities  

3.2.1 Equation for Turbulent Kinetic Energy  

This equation derived from the Navier-Stokes equation is of the form (Gatheri et al., 1993) 

' '
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(21)

  

Each term in equation (21) represents an energy process occurring within the flow field. Apart from the terms

,I II and VII  representing the temporal, convection and molecular diffusion respectively, all other terms in the 

equation contains unknown correlations associated with the turbulent fluctuations. The correlations are modeled 

using similarity considerations coupled with the Boussinesq approximation as below.  

Applying the Boussinesq approximation, the production term III , denoted as 
kP  becomes 
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However, from the equation of continuity, 0.
i
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
 Equation (22) thus becomes 
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Similarly, from equation (19), the buoyancy generation term IV , denoted by kG  becomes 
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Thus  

   

t
k

k i

T
G g

x










                   

  (26) 

where 
k is the turbulent Prandtl number. 

The turbulent diffusion term V , is modeled using the assumption that kinetic energy diffuses down the gradient. 

The Fourier’s law of heat flux supports this assumption. According to this law, heat diffuses from hot to cold 

regions (Rajput, 2015). Applying this law, we obtain 
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 (27)   

The diffusion of turbulent kinetic energy due pressure gradient is small and consequently negligible. In addition, 

instead of modeling the turbulent dissipation term, an equation for its transport is developed.  

Now using the modeled terms, we obtain the modeled equation for the transport of turbulent kinetic energy as 

' '
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                  

  

          (28) 

3.2.2 Equation for the Turbulent Dissipation Term 

From equation (28) for the transport of turbulent kinetic energy, the turbulent dissipation term is dependent on 

the descriptors of the large-scale motion k   and L . The relation between these descriptors and the dissipation 
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rate is as given in the equation below

        

 

  

    
2

3

L

k
cd        (29) 

where dc
 
is an empirical constant. Rearrangement of equation (29) gives 

    
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3
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 (30) 

Substituting equation (30) into (20) results into 

    



 

2k
ct         (31) 

where c  is an empirical constant. From Wilcox (1998) 

    

c k 

      

 (32) 

where  is the specific turbulent dissipation. This implies that 

.





k
t 

          

 (33) 

From the Wilcox formulation, the transport equation for  is given as  

2
2.

j

i j i

k
u G

t x x x kc


  

     
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  (34) 

Equations (28) and (34) provide the transport equations for the turbulent scalar quantities for the standard 

k turbulence model. However, this model is sensitive in the freestream region. 

3.3 The Modified Turbulent Transport Equations 

On realizing the strengths and weaknesses of the standard turbulence models, Menter developed a blended model 

referred to as the Shear Stress Transport k turbulence model to overcome the strong freestream sensitivity 

of the k model in order to improve its predictions in regions with adverse pressure (Menter, 1994). He 

based its development on the results of physical experiments conducted to reveal flow behavior for engineering 

applications. The blended model switches to the k turbulence model in the inner regions of the boundary 
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layer and transition regions and to k  turbulence model in the freestream regions. Therefore, in order to 

adequately reveal the flow behavior in the entire flow domain, the SST k  turbulence model is the most 

appropriate model for resolving turbulence. The model is a variant of the k  model obtained by expressing 

the k  model in terms of k and  resulting into an additional term in the transport equation for   called 

the cross-diffusion term defined as  

    

 
jj xx

k
FD













 

1
12

12
1     (35) 

where 1F is a blending function. The turbulent viscosity of the model is obtained by modifying the turbulent 

viscosity term of the standard k  model given in equation (33) to include a term that make the model switch 

to k  turbulence model in the freestream regions. The modified turbulent viscosity is as given in the equation 

below   
 21

1

,max F

k
t







       (36) 

where 
2F  is a function defined as  

    
)tanh( 2

22 F
     

 (37) 

.
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






yC

k










     (38) 

The first term in equation (36) originates from the definition of t  for a k  model while the second term 

vary with the normal distance from the boundary layer. This term reduces the turbulent viscosity in the regions 

where adverse pressure gradients are present thus enhancing the performance of the model.  

The turbulent kinetic energy production term for the model is obtained using the equation below 

    2SG tk         (39) 

S is the modulus of the mean strain rate tensor 
ijS , defined as 

                                             2 .ij ijS S S                                                        (40) 

and  
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(41) 

The production term for  is given by 

    
k

t

GG 



 

      

 (42) 

where 

    

0 Re /

1 Re /
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
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 
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 (43) 

The dissipation rate of k  and   are respectively given as  

     kk

        (44) 

    
2          (45) 

Where 
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and  
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)( tmF  is a compressibility function defined as,  
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(50) 

    
  .1 2,11,1 iii FF  

    
 (51) 

The modified turbulent transport equations thus becomes: 

Transport equation for turbulent kinetic energy k  

   

2 2

1 1

1 2 1 2max , max ,
i
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         (52) 

Transport equation for specific turbulent dissipation  
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 (53) 

The coefficients in the modified transport equations are blended forms of the standard k and k  models 

coefficients. The blended coefficients are obtained using the blending function 
1F  

defined as 

    
 4

11 tanh F      
 (54) 
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 (55) 
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y  is the normal distance to the wall and 
KCD  is the positive component of the cross-diffusion term defined 

as 
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xx
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 (56) 

Accordingly, the blended coefficients are obtained using the relation below 

     1211 1 FF        (57) 

where  is the blended coefficient, 1  is a coefficient from the standard k model while 2  is the 

corresponding coefficient from the standard k
 
model. The blended coefficients for the model are given in 

table 1 below. 

                                                  Table 1: Coefficients for the SST k   model 

1,k  2,k  1,  2,  1  

    
0  1,i  2,i  

1.176 1.0 2.0 1.168 0.31 1 0.52 1/9 0.075 0.0828 

 



  R  kR  R  
  0t

m  k    C  
  

0.09 8 6 2.95 1.5 0.25 2.0 2.0 0.09 0.41 

 

3.4 The Modeled Equations for an Average Turbulent Flow Field  

For clarity, the upper-case letters represent the mean-value component of the flow quantities while the lower-

case letters represent the corresponding fluctuating component. For temperature, T  represent the mean-value 

component while   represent the fluctuating component. Accordingly, the equations governing a Boussinesq 

buoyancy-driven mean turbulent flow field are 

Equation of Continuity  
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 (58) 

Equation of Momentum  
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  (59) 

Equation of Energy 

   


























jpjp

ji

p ucTUc
x

T

xt

T
c 

  

 (60) 

Transport equation for turbulent kinetic energy 
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 (61)                                                                                                                      

Transport equation for specific dissipation rate 
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 (62)

  

4.0 MATHEMATICAL FORMULATION  

When the Rayleigh number of the flow is constant, the coefficient of heat transfer is dependent on the 

geometrical setup of the flow domain. This implies that the geometry of the flow domain affects the flow 

behavior. In order to establish the effect of the Aspect ratio of the flow domain on the flow field, we determine 

and analyze  the distribution of velocity and temperature fields for a Boussinesq buoyancy-driven turbulent 

airflow of 105.5 10Ra     in a locally heated and cooled enclosure for 0.5 1AR   and Pr 0.71 . The 

distribution of the flow field is revealed by the distribution of the velocity and temperature contours.  Figure 1 

below shows the physical set-up of the flow domain. 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

68 

 

 

 

 

 

                                                                                                                                              

              

 

                O  

                       Figure 1: The physical set-up of the Enclosure 

We define the Aspect ratio AR  as the ratio of the convection height to a horizontal length of the flow domain. 

Accordingly, the Aspect ratio of the enclosure is defined in the equation below.  

          y

x

L
AR

L
        (63) 

From the figure, 2.5yL   whereas 2.5 4.5xL  , hence 0.5 1AR  .  

In order to reduce the number of variables in the governing equations we non-dimensionalize equations (58) to 

(62) using a non-dimensional scheme that combines several dimensionless variables into non-dimensional 

numbers that are significant to the prevailing flow conditions and ensures that the solution is bounded. Since the 

main goal is to find the value of iu   and iT  at position ix   in the enclosure, each of the flow variables is non-

dimensionalized using a characteristic dimensionless variable in respect to the non-dimensional scheme 

proposed by Lankhorst in which the characteristic velocity 
U   is defined as (Lankhorst & Marinus, 1991) 

     

00

0

0

lc
U

p




     (64)

              

We further select 0l   and 
T as the characteristic length and temperature respectively. All other flow variables 

are non-dimensionalized by their respective values at temperature T
. Accordingly, we introduce the following 

non-dimensional scaling variables in which the superscript prime denotes the non-dimensional quantities, the 

subscript star denotes a variable defined in respect to the non-dimensional scheme and the subscript 0 denotes 

1 

x-axis 

g

y

  
Ly =2.5 

y-axis  
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the variables evaluated at a reference state. The mean value and the corresponding fluctuation component of a 

variable share the same scaling variables  
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Using this scheme, the non-dimensional form of equations (58) to (62) respectively becomes 
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Temperature boundary conditions                                                        

For a bounded solution, we bound the non-dimensional temperature 










T

TT
  within the flow domain. We 

conveniently choose 
cT T   so that on the heated region,

hTT   hence, 

    1.h c h c

h c

T T T T

T T T




 
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 
     (71) 

On the cold region, 
cT T  hence 

    0.c c c

h c

T T T T

T T T
 



 
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 
     (72) 

Thus within the enclosure, 10  .  

The walls of the enclosure are adiabatic, thus taking n as a scalar of the outward unit vector normal to the walls,  

.    0




n


        (73) 

Velocity boundary conditions                                                        

The walls of the enclosure are stationary and impermeable. We specify the state of the fluid motion at the 

boundaries in terms of the velocity of the fluid particles. The non-slip velocity boundary condition apply on all 

the bounding surfaces of the enclosure as outlined below.  

u (x=0, y,) = v (x=0, y) =  0                                            (74) 

x xu (x=L , y) = v (x= L , y)=0                                              (75)                                                           

                   u (x, y = 0) = v (x, y = 0) = 0                                                     (76)                      

         
y yu (x, y = L ) = v (x, y = L )=0                                               (77)                      

However, the pressure field is not specified since it is deduced from the velocity field.  

5. Numerical Method 

Based on the assumption that a piecewise profile describing the variation of the dependent variable across 

neighbouring nodes exist, the solution domain is decomposed into a union of non-overlapping finite volumes 

whose centroids are the computational nodes. To ensure that the conservation laws are satisfied at both the local 

and global level, quantity balance of each dependent variable at each node of the computational domain is 
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determined using a generic conservation equation that comprises of all physical processes of transporting a 

quantity in the flow domain. We thus express each of the equations (66) to (70) in a conservative form as 

   ( )j

j j j

u S
t x x x

    
     

            

   (78) 

where 
  is the exchange coefficient of  and 

S  is its source (Pinho, 2001). The equation contain four 

distinct terms. The first term on the left shows the change of the variable with time; the second term shows the 

advection of the variable with the flow whereas the third term shows the diffusion of the quantity. Both the 

second and third term thus represent the flux of  across the boundaries of the finite volume. The term on the 

right hand side shows the source of the quantity. Consequently, the rate of change of   in a finite volume with 

respect to time is equal to the sum of the net flux of  due to convection into the finite volume, the net flux of 

 due to diffusion into the finite volume and the generation rate of  inside the finite volume (Douglas, 

Gasiorek, Swaffield, & Jack, 2005). The equation thus incorporates all the transport processes of a quantity and 

hence represents the flux balance in a finite volume. Therefore, by sequentially setting  to 

1, , , , ,u v w T k    and with the appropriate values of 
 and 

S , the equation of continuity, momentum, 

energy and the turbulent transport equations can all be written in the form of equation (78).  

Integrating equation (78) over a finite volume, we obtain 

  ( ) .j

j j jV V V V

dV u dV dV S dV
t x x x

    
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         
                     (79) 

Using the Gauss’s divergence theorem, we convert the volume integrals in equation (79) into integrals over the 

entire surface S  bounding the finite volume to obtain 

  ( ) ( )
jV S V

dV u ds ds S dV
t x

   
   

          
                    (80) 

The integrals are discretized using the finite volume method to obtain a system of algebraic equations of the 

form 

    nb nb

nb

a a b          (81) 

The coefficient a  contains the contributions of all the terms corresponding to  .
 
The coefficient nba  contain 

the corresponding contributions of each of the neighbouring finite volumes whereas the coefficient b  contains 

the contributions of the source terms.  The SIMPLER algorithm is used to obtain the pressure field. Since each 
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finite volume provides one equation for each dependent variable, we obtain an equation set for each finite 

volume. However, these equations are coupled in sense that the coefficients in the equations depend on the 

previous values of the dependent variables. This implies that the coefficients are functions of the solution. 

Consequently, we use an iterative segregated pressure-based solver built in Fluent 16.0 that solves equations 

sequentially for each dependent variable. In each equation, the unknown is assumed to be a single field variable 

and hence the equation is solved without regard to the solution of other field variables. In order to improve the 

stability of the iteration process, we use under-relaxation factors to lower the variations of the dependent variable 

from one iteration to the next. The absolute residual measure of   at a point in the computational domain is 

obtained using the equation below. 

    nb nb

nb

R a a b         (82) 

In every iteration, the value of the coefficients nba  and b  changes in each finite volume. The overall measure 

of the scaled residual in the entire computational domain thus becomes 

    

nb nb

nball cells

all cells

a a b

R
a



 



 



 


             (83) 

For convergence, we set
610R  . 

6. Results and Discussion 

6.1 Validation of the results 

For validation of the results, we compare the current results with the experimental results of Markatos & 

Pericleous, (1984) Figures 2 and 3 below respectively shows a comparison between the distribution of the 

velocity and temperature contours obtained in the current study at 1010Ra and the Markatos and Pericleous 

experimental results at the same Rayleigh number. 

 

 

Current results  

Figure 2: The distribution of velocity contours 

Markatos and Pericleous experimental results  
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From figure 2, both results reveals the presence of recirculating vortices in the central region of the flow domain. 

It is also apparent from both results that velocity in the upper left and lower right regions of the flow domain is 

higher than the upper right and lower left regions. In addition, the results shows that the flow velocity is high in 

the regions near the heater and the cold wall while the interior is virtually stagnant. In both cases, the distribution 

of the velocity contours in the flow domain agree considerably. From figure 3, it is apparent from both results 

that the alignment of temperature contours is the same. In both cases, the temperature of the contours decrease 

gradually from the upper region of the flow domain to the lower side. Therefore, both results indicate that the 

flow domain is thermally stratified.  Both results further reveals the existence of high temperature gradients 

along the vertical walls. This due to the effects of the buoyant forces. The results are therefore consistent with 

the experimental results. We therefore conclude that the results obtained satisfactorily reveals realistic flow 

behavior and hence are valid.  

 

  

Figure 3: The distribution of temperature contours  

Current results   Markatos and Pericleous experimental results 
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6.2 The distribution of velocity field in the Enclosure at different Aspect ratios 

Figure 4 below shows the distribution of velocity contours in the enclosure at the indicated Aspect ratio.  

  

 

 

 

 

 

The distribution of the velocity contours provides a snapshot of the velocity field in the enclosure at the indicated 

values of the Aspect ratio. Therefore, the variation of the alignment of the velocity contours with the Aspect ratio 

as evidenced in figure 4 is a demonstration that the velocity field is dependent of the Aspect ratio of the flow 

domain. As the Aspect is increased from 0.5 to 1, the intensity of the velocity contours along the walls of the 

enclosure increases significantly leaving the central region with a low concentration of the velocity contours. 

These distributions depicts the distribution of kinetic energy in the enclosure at the specified Aspect ratio. It is 

also apparent from results that the distribution of the velocity of flow is high along the walls of the enclosure 

than the inner region. In addition, the flow velocity is generally high in the upper left and lower right hand 

regions of the enclosure whereas in the central region the velocity is low by one order of magnitude. Further, the 

velocity is low in the upper right and lower left regions of the enclosure, hence, the enclosure is velocity 

stratified. As the Aspect ratio increases, the alignment of the contours generally remains unchanged but the 

 (a) 
100.56, 5.5 10AR Ra    

 

 

 

(b) 
100.71, 5.5 10AR Ra    

 

 

 

 (c) 101, 5.5 10AR Ra    

 

 

 

Figure 4. The distribution of velocity contours in the enclosure  
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magnitude of the flow velocity in the entire enclosure reduces significantly. Since the flow velocity is dependent 

on the buoyancy forces, we conclude that at constant Rayleigh number, distribution and the magnitude of the 

force that induces and sustains the flow is a function of the Aspect ratio of the flow domain. Therefore, for a 

confined convective flow, the velocity field is a function of the Aspect ratio of the flow domain.  

6.3 The distribution of Temperature field in the Enclosure at different Aspect ratios 

The influence of the Aspect ratio of the flow domain on the temperature field is revealed by the distribution of 

the temperature contours in the enclosure at the indicated values of the Aspect ratio as shown in the figure 5 

below.   

 

     

  

 

 
Figure 5. The distribution of temperature contours in the enclosure  

 

 

 

 (a) 
100.56, 5.5 10AR Ra    

 

 

 

(b) 
100.71, 5.5 10AR Ra    

 

 

 

 (c) 101, 5.5 10AR Ra    
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The results reveals that the magnitude and distribution of the temperature contours is dependent of the Aspect 

ratio of the enclosure. Generally, the upper region of the enclosure is at higher temperature than the lower region. 

However, the contours are highly concentrated in the upper left and lower right regions of the enclosure while in 

the central region the contours are sparsely distributed. As the Aspect ratio increases, the gradient of the contours 

increases significantly and they split into two sets. One set of the contours diverges towards the upper left corner 

while the other set diverges towards the lower right corner of the enclosure. The enclosure is thus stratified into 

three regions; the upper left region where the temperature is high, the lower right region where the temperature is 

low and the central region where the temperature is moderate. We thus conclude that at constant Rayleigh 

number, the temperature field is a strong of function of the Aspect ratio of the flow domain.  

7.0 Conclusion 

 At constant Rayleigh number, the magnitude of the buoyancy force is a function of the Aspect ratio of 

the flow domain. 

  The Aspect ratio of a flow domain significantly influences both the distribution and the magnitude of 

the flow field. 

 The thermal state of a confined flow domain is a function of its Aspect ratio.  

8.0 Recommendations 

 In the management of the thermal state of a confined flow domain, the Aspect ratio of the flow domain 

should be considered. 

 Further research on the effect of the ratio of the heated area to cooled area on the distribution of the 

flow field to be conducted.   

Nomenclature 

 Roman Symbols 

AR          Aspect ratio of the flow domain 

nba     Coefficients of the neighbouring finite volumes 

pC  Specific heat capacity at constant pressure 

C                   Empirical turbulence constant    

DC   Cross-diffusion term 
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dc
 
                 An empirical constant 

1 2,c c            Model constants 

F                 External body force per unit volume 

bF                 Buoyancy force per unit volume  

1F            Blending functions 

g                  Acceleration due to gravitational  

k                  Turbulent Kinetic energy
 

tk            Turbulent coefficient of conduction  

kG            Buoyant production of turbulent kinetic energy 

kP            Shear production of turbulent kinetic energy  

0L                   Characteristic length of the convection 

P            Thermodynamic Pressure 

T                    Thermodynamic Temperature
 

T                    Characteristic Temperature 

T                Temperature difference
 

 t                    Time 

t                  Time interval 

iu                    Instantaneous velocity components 

iU                            Mean velocity components 

U                           Characteristic velocity 

,i j                Unit vectors in the ,x y  directions respectively 
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,x yL L           Dimensionless lengths of the flow domains in the ,x y  directions respectively 

S          Source term 

d                  Diffusion term 

n          Normal vector 

R                  Residual measure 

Pr                 Prandtl   number 

Ra                Rayleigh number 

Gr                Grashof number 

Nu               Nusselt number 

Gn                Gravity number 

  Greek Symbols 

                  Thermal diffusivity 

                 Co-efficient of volumetric expansion 

                  Density of fluid 

                  Dissipation rate per unit of turbulent kinetic energy 

                  Dynamic viscosity of the fluid 

t                          Turbulent viscosity 

                  Thermal conductivity 

                   Non-dimensional temperature 

                   Dissipation rate of turbulent kinetic energy 

                   A flow-field variable 

                  Blended coefficients 

,k            Dissipation rate of k  and   respectively 
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                 Coefficient of thermal conductivity of the medium 

i                 Flux vector 

                  Non-dimensional temperature difference 

                   Differential operator 

k               Turbulent Prandtl number for k  

Subscripts 

0                   Reference state 

h          Heater 

t                    Turbulent 

nb                 Neighbuor 

                   Characteristic value 

Superscripts 

         Mean value 

'          Fluctuating component 

,

         Non-dimensional quantity 

t
         Time 

m
                   Momentum equation 

k
                   Turbulent kinetic energy equation 


                   Specific dissipation rate Equation  

Acronyms 

SIMPLER     SIMPLE Revised 

CPU              Computer Processing Unit 
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