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Abstract

Estimation of finite population total using calibration has been considered by several authors. A distance measure
is minimized subject to some calibration constraints, usually by way of introducing langrage equation whose
solution gives the design weights used in estimation of population total. Sometimes a solution to the langrage
constants does not exist. In this paper, we have considered the calibration problem as a nonlinear constrained
minimization problem, which we transform to an unconstrained optimization problem using penalty functions.
The design weights are obtained iteratively in a numerical manner. We show that the resulting estimator is
more accurate than the popular Horvitz Thompson design estimator
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1. Introduction

The notion of calibration was introduced by Deville and Sarndal [1] in the context of using auxiliary information
from survey data. Suppose U = a,2,..., N }is the set of labels for the finite population. Let (yI , X )be the
respective values of the study variable Y and the auxiliary variable X attached to the i unit. If we let
s = {1,2,..., n} be the set of sampled units under a general sampling design p, and let 7; = = p(i €S) be the
first order |ncIuS|on probabilities, then the conventional calibration estimator for the populatlon total Y, is
defined by 9. = ZI“ w,y, Where W S are design weights which are as close

as possible tod, = ~* and are obtained by minimizing a given distance measure between Wi'S and

d;S subject to some constraints. A common distance measure is the chi-square distance measure below.

_ zs: (Wq dy)’ 1)

where qi'S are some constants unrelated to di'S . Other distance functions were considered by Deville et al. [2],

Singh and Mohl [7] as well as Stukel et al. [8].  Deville and Sarndal [1] considered the calibration constraint

Zn:WiXi = ZN:Xi (2)

i=1

Minimizing (1) subject to (2) by way of Lagrange equation, they obtained the equation

i=1

w, =d, = Z,l .CI.X. {ix,—zn:dx} ©))

Wu and Sitter [10] introduced yet another calibration constraint
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n
> w, =N (4)
i=1

and minimizing (1) subject to (2) and (4) and by way of Lagrange equation, they obtained

Ziesdiqixi Ziesdiqixi

dqg, diq{Xi j Zissdiqi - Ziesdiqi
Wi:di‘i‘(N—;di) Z dq_ Z qu 2
jes N Ziesdiqi(xi _'ES"'J

Zies diqi

LA

Z- dig;X i
o dig | x —es——
Zles q ( Ziesdiqi

HE % -2 dx)

Obtaining  the weights W;S as derived in (3) and (5) and hence obtaining the estimator g — Zi Wy,

is quite tedious and may not be feasible in day to day applications. Also, the solution for A4  may not always
exist in which case Deville and Sarndal [1] recommend that A be set to0. Ralf et al [5] considered
transforming the calibration problem for general functions f into a nonlinear equation depending on the
Lagrange multiplier A  and since the mapping was no longer differentiable, they used, semismooth Newton
method to solve the resulting equation numerically. We propose use of penalty function to obtain the design
weights W;S , a procedure that does not require introduction of langrage multipliers.

2. Penalty Function Method
The penalty function methods transform the basic constrained optimization problem into an unconstrained

optimization problem. Consider an optimization problem of the form

minimize f(X) subject to

{gj(X) <0, j=12,..,mand ©6)
h(X)=0, j=12,.., p

By the interior penalty function method (also called barrier method), an unconstrained problem may be
constructed as follows.

#(X, 1) = F(X)+y.(n, 9; (X)) +w, (1, 1;(X)) )
where y/l(rk, g; (x)) and y, (r,, I, (X))are penalty functions and which are such that w;, (i =1,2) is
continuous, t)y>0 for all r and teR" and v, (r.,t) is strictly increasing for
r > 0 and t > b A common form similar to the one discussed in Rao [6] is given below

ZEIOERICORIS S B IHES ®)

23


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) L '.i.l
Vol.7, No.6, 2017 NS'E

where  H (r, ) is some function of the parameter Iy tending to infinity as I, tends to zero and so that
Z’11|J9(X) also tend to zero. A common choice for value of qis 2 .Also, the function ¢ will

always be greater than f since gj(X) is negative for all feasible points X . The penalty terms are chosen
such that their values will be small at points away from the constraint boundaries and will tend to infinity as the
constraint boundaries are approached. Hence the value of ¢ will also blow up as the constraint boundaries are
approached. Frank and Jorge [3] have discussed flexible ways of choosing the penalty. In an iterative process, the
unconstrained minimization of ¢@ is started from any feasible solution for the inequality constraint but not
necessarily so for the equality constraints. The subsequent points generated will always lie within the feasible
region since the constraint boundaries act as barriers during the minimization process. The rationale of the
penalty terms as described by Ozgur [4] is that if the constraint is violated, that means
g,(X)>00r,(X) =0, a big term will be added to ¢ function such that the solution is pushed back
towards the feasible region. In the minimization of ¢, for the solution to be the global minimum, we must have

that £ (x) .g,;(X) j=22,..,m.and >" Ii(x) being
convex and we must also have one of the functions f (X) ,g;(X) j=12,.,m and 3" 19(X)being
strictly convex. See Rao [6]. =

Using the exterior penalty function method, a solution to the constrained problem (6) would be given by

HX,1) = f(X)+rki<gj(X)>q+H(rk)il?(X) (©)

where g,(X)) = max(g,(X),0) Also, ask — oo, I, >ocand H(r,) — . For exterior penalty
function method in the iterative minimization of @, the starting point X does not have to be feasible. Looking
at the equations (8) and (9), we see that, when the optimization problem has only the equality constraints, both
interior and exterior penalty functions yield a function of the form

XY = T +HE)DI(X) (10)

Setting H(r,) =1, ,where I, o0 ask —>oo0, and settingq =2 we have from (10)
P

p(X 1) = F(X)+r D1 (X) (11)
=1

3. Penalty Function Method of Estimating Population Total

Let there be a population of size N for our variable of interest 'y from which we draw a sample of size N . Let
the auxiliary value X; be available for every element of the population of variable y . We

wish to estimate the population total y, = ZNﬂ y, fromasample of size N and incorporating the

auxiliary information present. To obtain design weights, we reduce the chi-square distance measure (1) subject to
the constraints (2) considered by Deville and Sarndal [1]. Using the penalty function method we obtain the
penalty function

@ (W, rk’X):i%Z—i—rk{iwixi _ixi:| 12)

where T, is some penalty. We need to find the weights W, that minimize the penalty function (12) above.

Differentiating (12) partially with respectto W; we have

& (W, X) = (qd + 26X {ZWX _ZX} (13)
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We equate (13) to zero and solve for W, to obtain

d; —rxqd, ZH:WJXJ' —ix,-

= i

1= 14
I l+rk(xi2qidi) 4

We have the following estimator of population total

. n n yidi n ]
ytlzzvviyi ZZ 2 _Z 1+:_k(xzqd) (15)

— =1+, (xi qidi) i1

Minimizing (1) subject to both (2) and (4) as considered by Wu and Sitter [10], we have the penalty function

gm0 =3 W=d) +r{ZWiXi _2’(‘}2”{2” _NT

i=1 q|d| (16)
Differentiating (16) partially with respectto W; we have
(17)
— n N n
By (W, 5, X) = Z(W‘—ddi)+2kai[zwjxj —ZXJ—}LZF{ZN - N:|
itdi = = i=1
Equating (17) to zero and solving for w; we have
n N
d; —rgd;| Dow; (X +1D) =D (% X; —1)
j=1 i=t
J#l
W, =
1+ ((x +Da,d,) 18)

We therefore have the following estimator of population total
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n N
r.a:d;y; ZWj(Xin +1)_Z(Xixj -1
j=1 =

n N N yid; _ N 1=
Yiz _§Wiyi B §1+rk((xi2+l)qidi) ; 1+ rk((xi2 +1)qidi)

(19)

The beauty with this approach is that to obtain the weights W, , (i=12,..,n),we solve the penalty functions
(12) and (16) as unconstrained minimization problems in which case we only require to start with some initial

guess for w; and I, and then iteratively improve on the initial values until we have optimal values. Since the

constraints (2) and (4) are equality constraints, we need not start with a feasible guess for w,. We appeal to

Newton method of unconstrained optimization. See Rao [6].

Let w = {w;,w,,..., w, } bethesetof the weights. We need to obtain v -such that
gW"™) =[¢' (W, rk,x),...,¢’(wn,rk,x)f =0 (20)

We first start with some initial approximation W, of W™ so thatw”™ =W, +Z . The Taylor’s series

expansion of g(W ") gives
gW ) =gW, +Z) =gW,) + Iy Z +...... (1)
By neglecting the higher order terms in (21) and setting 9(W ™) = Owe obtain

g(V\/i)+JWIZ:0 (22)
Where Jy, is the matrix of second derivatives evaluated atW; - In general, when we consider the

constraint (2) alone, then Jisa n by n matrixwith 1 =12,...,n rowsand j=212,...,N columns. It

has diagonal elements 2 . and elements 2r, X;X; elsewhere.  If we consider both constraints
a;d; <
(2) and (4), then J has diagonal elements _2 21 (x2 +1) and elements 21, (X;X; +1)

elsewhere. If JWi is nonsingular, then, from the set of linear equations (22) we have for vector Z

Z=J39WwW,) . (23)
The following iterative procedure is used to find the improved approximations of W
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Wi, =W, +S; =W, _Jv;}g(\A/i) (24)

The sequence of the points W, W,,...., W,,, eventually converges to the actual solutionW ™. Since our
penalty functions (12) and (16) are quadratic, we find the minimum in a single step using equation (24) since the

Taylor’s series expansion is exact.

Now, if we let .. be the minimum of W " obtained for a particular penalty [k , we obtain a sequence of

*

minimum  points Wi ,W, ..., W,,  for the penalties TiPores B until Wi =W,

or (W, 1., X) = @(W, 1,1, X) for some specified accuracy level. The accuracy level may for example be,
to certain decimal points or significance level. The penalty values are set such that the starting point . > O
andr,,, = cr, , wherec > 1 We can now generalize our estimator for the population total as

Vo =D WY, =W7Y,, v=12 (25)
i=1

where Y, = (y,, Y,,..., ¥, ) is the sample from the population of y and v =1 if W;'Sare obtained as

defined in (14) and v =2 if W,'Sare obtained as defined in (18).

4. Empirical Analysis

Using R program, we simulated a population of independent and identically distributed variable X using uniform
(0, 1). Using X as the auxiliary variable we generated the populations of size 300 for random variable Y as
a linear function y =2+5X and quadratic function y = (2+5X)2 . For both populations, the estimators
exhibited same properties. We will therefore report the results for the linear function y = 2+5X. For each of
different sample sizes N, 5 samples were generated. Our initial penalty constant was set at I; = 0.00010. The
convergence criteria considered was . —w;", and @(W, L, X) =@(W,F,,,,X) to six decimal places. In
section 4.1, we report on the performance of

estimator Y,, and compare its performance with that of Horvitz Thompson estimator Vi = Z” y.d.
i=1 S

discussed in Thompson [9], while in section 4.2, we report on the results for estimator Y,, and again compare
with Horvitz Thompson estimator.

4.1 Results for Estimator Y,,

We let Y, = ZL Y, be the actual population total, I,  be the penalty parameter, and Y, —Y,, and
Y: — Vi be the errors in the estimation.

27


http://www.iiste.org/

Mathematical Theory and Modeling

ISSN 2224-5804 (Paper)
Vol.7, No.6, 2017

ISSN 2225-0522 (Online)

www.iiste.org
[T1HT |

ST

Table 1. Population Total Estimates and the Errors in the Estimation for y,, and Y,,

sample number | 1 2 3 4 5

sample size n 100 100 100 100 100

Y, 1361.13529 | 1361.13529 | 1361.13529 1361.13529 | 1361.13529
Yu 1349.07154 | 1376.48127 | 1360.3058151 | 1400.78331 | 1364.304392
Vit 1348.87572 | 1376.73391 | 1360.2924510 | 1401.46633 | 1364.356816
Yi — Ya 12.06375 -15.34597 0.8294757 -39.64802 | -3.169101

Vi — Yue 12.25957 -15.59861 0.8428398 -40.33104 | -3.221525

I 0.00010 0.00010 0.00010 0.00010 0.00010

Looking at table (1), we see that the estimators

consistently, Y,, has a smaller error margin.

value of 0.00010 and which was the initial penalty value.

Yy and Y, have almost equal error margins, but

For all the samples, convergence is achieved at the same penalty

For different sample sizes, we observed that the

penalty value ranged between 0.00010 and 0.0013 with no particular pattern that could be attributed to the

sample size. In most of the cases however, the penalty was 0.00010.

vyt1 variance vs sample size

variance
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0
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Fig 1:
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Variance for Estimator Y,
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Fig 2: Variance for Horvitz Thompson Estimator Y,

In Fig (1) and Fig (2), the variances for y,, and Y, have asimilar pattern. As the sample size increases, the
variance decreases. From Fig (3), the ratio \var('y,,)/var(y,,) settles almost to a constant as the sample size
increases. The constant is found to be about 0.97, which indicates that Y, has a smaller variance than y,,,
and which is consistent with the smaller error margin for Y, as seen in table (1).

variance ratio vs sample size
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Fig 3: Variance Ratio var(y,,)/var(y,)
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4.2 Results for Estimator Y,,
Table 2:  Population Total Estimates and the Errors in the Estimation for y,, and Y,
sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 1384.49498 1384.49498 1384.49498 1384.49498 1384.49498
t
y 1400.01439 1406.98567 1398.03903 | 1321.13222 1330.37056
t2
y 1400.27413 1407.37208 1398.26738 1320.20986 1329.55309
ht
-15.51940 | -22.49068 -13.54405 63.36276 54.12442
Yi = Yo
-15.77915 -22.87709 -13.77240 64.28512 54.94189
Yi = Yhe
. 0.00010 0.00010 0.00010 0.00010 0.00010
k
Intable (2) Y, —Y,, and Y, —Y,, are the errors in the estimation. From the table, Y,, and Y,

error margins are quite close, but with y,, consistently, having the smaller error margin. Also the penalty value
is 0.00010 for all the samples.
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Fig 4: Variance for Estimator Y,
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Fig 5: Variance for Horvitz Thompson Estimator Y,

Fig (4) and Fig (5), show similar patterns for the variances of Y,, and yht As  the sample size increases,
the variances are decreasing. From Fig (6), the ratio var( yt25/ var(y,,) tends to a constant, estimated to
about 0.97 and which indicates that Y,, has a smaller variance than Y, .

variance ratio vs sample size
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Fig 6: Variance Ratio var(y,,)/var(y,)

5. Conclusion

We conclude that both estimators Yy,; and Y,, are more accurate than the Horvitz Thompson design estimator
Y1 since they both have smaller margin of errors and smaller variance thany,,. From the variance ratios
var(y,)/var(y,) and var(y,,)/var(y,) both of which are about 0.97, we conclude that var(y,;)
and \ar('y,,)are not significantly different and that estimators y,; and Y,, are not different in terms of the

31


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) lJ-.i.l
Vol.7, No.6, 2017 NS'E

accuracy in estimation. We conclude that the estimators y,, and Y,,are consistent in the sense that as the
sample size increases, their variances tend to zero.
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