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Abstract 

Estimation of finite population total using calibration has been considered by several authors. A distance measure 

is minimized subject to some calibration constraints, usually by way of introducing langrage equation whose 

solution gives the design weights used in estimation of population total. Sometimes a solution to the langrage 

constants does not exist. In this paper, we have considered the calibration problem as a nonlinear constrained 

minimization problem, which we transform to an unconstrained optimization problem using penalty functions. 

The design weights are obtained iteratively in a numerical manner.  We show that the resulting estimator is 

more accurate than the popular Horvitz Thompson design estimator    

Keywords: calibration, interior penalty function, exterior penalty function  

 

1. Introduction 

The notion of calibration was introduced by Deville and Sarndal [1] in the context of using auxiliary information 

from survey data.  Suppose  NU ,...,2,1 is the set of labels for the finite population.  Let ),( ii xy be the 

respective values of the study variable y and the auxiliary variable x  attached to the i
th

 unit.  If we let 

 ns ,...,2,1 be the set of sampled units under a general sampling design p , and let )( sipi  be the 

first order inclusion probabilities, then the conventional calibration estimator for the population total 
ty  is 

defined by  


n

i iit ywy
1

ˆ  where swi

'
are design weights which are as close  

as possible  to 1 id  and are obtained by minimizing a given distance  measure between swi

'
and 

 sd i

'
 subject to some constraints.  A common distance measure is the chi-square distance measure below. 







si ii

ii

dq

dw 2)(
                                            (1) 

 

where sqi

'
are some constants unrelated to sd i

'
 . Other distance functions were considered by Deville et al. [2], 

Singh and Mohl [7] as well as Stukel et al. [8].   Deville and Sarndal [1] considered the calibration constraint  


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                     (2) 

 

Minimizing (1) subject to (2) by way of Lagrange equation, they obtained the equation 
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Wu and Sitter [10] introduced yet another calibration constraint  
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and minimizing (1) subject to (2) and (4) and  by way of Lagrange equation, they obtained 
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Obtaining   the weights swi

'
as derived in (3) and (5) and hence obtaining the estimator  


n

i iit ywy
1

ˆ    

is quite tedious and may not be feasible in day to day applications. Also, the solution for    may not always 

exist in which case Deville and Sarndal [1] recommend that      be set to 0 .  Ralf et al [5] considered 

transforming the calibration problem for general functions f   into a nonlinear equation depending on the 

Lagrange multiplier    and since the mapping was no longer differentiable, they used, semismooth Newton 

method to solve the resulting equation numerically. We propose use of penalty function to obtain the design 

weights swi

'
 , a procedure that does not require introduction of langrage multipliers. 

 

2. Penalty Function Method  

The penalty function methods transform the basic constrained optimization problem into an unconstrained 

optimization problem. Consider an optimization problem of the form 
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                     (6) 

 

 

By the interior penalty function method (also called barrier method), an unconstrained problem may be 

constructed as follows. 

))(,())(,()(),( 21 XlrXgrXfrX jkjkk                    (7) 

where ))(,(1 Xgr jk  and ))(,(2 Xlr jk are penalty functions  and which are such that )2,1(, ii is 

continuous, 0),( trki  for all kr and 
nt  ,and ),( trki  is strictly increasing for  

0kr and 0t . A common form similar to the one discussed in Rao [6] is given below 
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where )( krH is some function of the parameter kr  tending to infinity as kr  tends to zero and so that 

  

p

j

q

j Xl
1

)(  also  tend to zero. A common choice for value of q is 2  . Also, the function   will  

always be greater than f  since )(Xg j
 is negative for all feasible points X . The penalty terms are chosen 

such that their values will be small at points away from the constraint boundaries and will tend to infinity as the 

constraint boundaries are approached. Hence the value of   will also blow up as the constraint boundaries are 

approached. Frank and Jorge [3] have discussed flexible ways of choosing the penalty. In an iterative process, the 

unconstrained minimization of   is started from any feasible solution for the inequality constraint but not 

necessarily so for the equality constraints. The subsequent points generated will always lie within the feasible 

region since the constraint boundaries act as barriers during the minimization process. The rationale of the 

penalty terms as described by Ozgur [4] is that if the constraint is violated, that means 

0)( Xg j
or 0)( Xl j

, a big term will be added to  function such that the solution is pushed back 

towards the feasible region. In the minimization of , for the solution to be the global minimum, we must have 

that )(Xf  , mjXg j ,...,2,1)(  , and   

p

j

q

j Xl
1

)(   being  

convex and we must also have one of the functions )(Xf , mjXg j ,...,2,1)(   and  

p

j

q

j Xl
1

)( being 

strictly convex. See Rao [6]. 

 

Using the exterior penalty function method, a solution to the constrained problem (6) would be given by 





p

j

q

jk

m

j

q

jkk XlrHXgrXfrX
11

)()()()(),(                (9) 

 

where )0),(max()( XgXg jj  . Also, as ,k  kr and )( krH . For exterior penalty 

function method, in the iterative minimization of , the starting point X does not have to be feasible. Looking 

at the equations (8) and (9), we see that, when the optimization problem has only the equality constraints, both 

interior and exterior penalty functions yield a function of the form 





p

j

q

jkk XlrHXfrX
1

)()()(),(                  (10) 

 

Setting kk rrH )(  , where kr  as ,k   and  setting 2q  we have from (10) 





p

j

jkk XlrXfrX
1

2 )()(),(                    (11) 

 

3. Penalty Function Method of Estimating Population Total  

Let there be a population of size N for our variable of interest y from which we draw a sample of size n . Let 

the auxiliary value 
ix be available for every element of the population of variable y . We  

wish to estimate the population total  


N

i it yy
1

 from a sample of size n  and incorporating the  

auxiliary information present. To obtain design weights, we reduce the chi-square distance measure (1) subject to 

the constraints (2) considered by Deville and Sarndal [1]. Using the penalty function method we obtain the 

penalty function 
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where 
kr is some penalty. We need to find the weights

iw  that minimize the penalty function (12) above.  

Differentiating (12) partially with respect to 
iw  we have 
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We equate (13) to zero and solve for 
iw  to obtain 
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We have the following estimator of population total 
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Minimizing (1) subject to both (2) and (4) as considered by Wu and Sitter [10], we have the penalty function 
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Differentiating (16) partially with respect to 
iw  we have

 

(17)                         

            

  

 

Equating (17) to zero and solving for
iw  we have  
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We therefore have the following estimator of population total 
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The beauty with this approach is that to obtain the weights ),...,2,1(, niwi  , we   solve the penalty functions 

(12) and (16) as unconstrained minimization problems in which case we only require to start with some initial 

guess for
iw and 

kr and then iteratively improve on the initial values until we have optimal values. Since the 

constraints (2) and (4) are equality constraints, we need not start with a feasible guess for
iw . We appeal to 

Newton method of unconstrained optimization. See Rao [6]. 

Let  ni wwwW ,...,, 2  be the set of the weights.  We need to obtain *W such that   

  0),,(),...,,,()( 1

* 


 xrwxrwWg knk                       (20) 

We first start with some initial approximation  
iW  of *W  so that ZWW i * . The Taylor’s series 

expansion of )( *Wg gives 

......)()()( *  ZJWgZWgWg
iWii                       (21) 

By neglecting the higher order terms in (21) and setting 0)( * Wg we obtain 

0)(  ZJWg
iWi                                       (22) 

Where 
iWJ  is the matrix of second derivatives evaluated at iW .  In general, when we consider the  

constraint (2) alone, then J is a nbyn  matrix with ni ,...,2,1  rows and nj ,...,2,1 columns. It  

has diagonal elements 22
2

ik

ii

xr
dq


 and elements jik xxr2 elsewhere.  If we consider both constraints 

 

 (2) and (4), then J  has diagonal elements 
)1(2

2 2  ik

ii

xr
dq

 and elements )1(2 jik xxr
 

 

elsewhere. If 
iWJ  is nonsingular, then, from the set of linear equations (22) we have for vector Z  

)(1

iW WgJZ
i

  .                                 (23) 

The following iterative procedure is used to find the improved approximations of
*W . 
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1 iWiiii WgJWSWW
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                                 (24) 

The sequence of the points 121 ,....,, iWWW  eventually converges to the actual solution
*W .  Since our 

penalty functions (12) and (16) are quadratic, we find the minimum in a single step using equation (24) since the 

Taylor’s series expansion is exact. 

Now, if we let 
*

kW be the minimum of 
*W  obtained for a particular penalty kr , we obtain a sequence of  

minimum points 
*

1

*

2

*

1 ,....,, kWWW  for the penalties 121 ,....,, krrr   until 
*

1

*

 kk WW  

or ),,(),,( 1 xrwxrw kk  for some specified accuracy level.  The accuracy level may for example be, 

to certain decimal points or significance level. The penalty values are set such that the starting point 01 r  

and kk crr 1 , where 1c . We can now generalize our estimator for the population total as 

2,1,ˆ *

1
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vYWywy s

n

i

iitv
                            (25) 

 

where  ns yyyY ,...,, 21  is the sample from the population of y  and 1v  if swi ' are obtained as 

defined in (14) and 2v  if swi ' are obtained as defined in (18). 

 

4. Empirical Analysis   

Using R program, we simulated a population of independent and identically distributed variable x  using uniform 

(0, 1).  Using x  as the auxiliary variable we generated the populations of size 300 for random variable y  as   

a linear function xy 52  and quadratic function
2)52( xy  . For both populations, the estimators 

exhibited same properties. We will therefore report the results for the linear function xy 52 . For each of 

different sample sizes n , 5 samples were generated.  Our initial penalty constant was set at 00010.01 r . The 

convergence criteria considered was *

1

*

 kk WW and ),,(),,( 1 xrwxrw kk   to six decimal places. In 

section 4.1, we report on the performance of  

estimator 1ty  and compare its performance with that of Horvitz Thompson estimator  


n

i iiht dyy
1

 

 discussed in Thompson [9], while in section 4.2, we report on the results for estimator 2ty  and again compare 

with Horvitz Thompson estimator. 

 

4.1 Results for Estimator 1ty  

We let  


N

i it yy
1

 be the actual population total, kr   be the penalty parameter, and  1tt yy   and  

htt yy   be the errors in the estimation. 
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Table 1:  Population Total Estimates and the Errors in the Estimation for
1ty  and

hty  

sample number 1 2 3 4 5 

sample size n 100 100 100 100 100 

ty  1361.13529 1361.13529 1361.13529 1361.13529 1361.13529 

1ty  1349.07154 1376.48127 1360.3058151 1400.78331 1364.304392 

hty  1348.87572 1376.73391 1360.2924510 1401.46633 1364.356816 

1tt yy    12.06375   -15.34597     0.8294757   -39.64802    -3.169101 

htt yy    12.25957   -15.59861     0.8428398   -40.33104    -3.221525 

kr  0.00010     0.00010     0.00010     0.00010     0.00010     

 

Looking at table (1), we see that the estimators   
1ty  and 

hty  have almost equal error margins, but 

consistently, 
1ty  has a smaller error margin.  For all the samples, convergence is achieved at the same penalty 

value of 0.00010 and which was the initial penalty value.  For different sample sizes, we observed that the 

penalty value ranged between 0.00010 and 0.0013 with no particular pattern that could be attributed to the 

sample size. In most of the cases however, the penalty was 0.00010. 

 

 

Fig 1:  Variance for Estimator 1ty  
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Fig 2: Variance for Horvitz Thompson Estimator
hty  

In Fig (1) and Fig (2), the variances for 
1ty  and  

hty  have a similar pattern. As the sample size increases, the 

variance decreases.  From Fig (3), the ratio )var(/)var( 1 htt yy settles almost to a constant as the sample size 

increases.  The constant is found to be about 0.97, which indicates that  
1ty  has a smaller variance than

hty , 

and which is consistent with the smaller error margin for 
1ty as seen in table (1).  

 

Fig 3: Variance Ratio )var(/)var( 1 htt yy  
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4.2 Results for Estimator 
2ty  

  Table 2:  Population Total Estimates and the Errors in the Estimation for
2ty  and

hty  

sample number 1 2 3 4 5 

sample size n 100 100 100 100 100 

ty  
1384.49498  1384.49498  1384.49498  1384.49498  1384.49498  

2ty  
1400.01439   1406.98567   1398.03903  1321.13222  1330.37056 

hty  
1400.27413   1407.37208   1398.26738   1320.20986  1329.55309 

2tt yy   
  -15.51940   -22.49068   -13.54405    63.36276    54.12442 

htt yy   
-15.77915   -22.87709   -13.77240    64.28512    54.94189 

kr  
  0.00010       0.00010       0.00010       0.00010       0.00010     

 In table (2)   
2tt yy   and 

htt yy   are the errors in the estimation.  From the  table,   
2ty  and 

hty   

error margins are quite close, but with 
2ty  consistently, having the smaller error margin. Also the penalty value 

is 0.00010 for all the samples. 

 

Fig 4: Variance for Estimator
2ty  
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Fig 5: Variance for Horvitz Thompson Estimator
hty  

Fig (4) and Fig (5), show similar patterns for the variances of 
2ty  and  

hty . As   the sample size increases, 

the variances are decreasing.  From Fig (6), the ratio )var(/)var( 2 htt yy  tends to a constant, estimated to 

about 0.97 and which indicates that  
2ty  has a smaller variance than

hty . 

 

 

Fig 6: Variance Ratio )var(/)var( 2 htt yy  

 

5. Conclusion 

We conclude that both estimators 1ty  and 2ty  are more accurate than the Horvitz Thompson design estimator 

hty  since they both have smaller margin of errors and smaller variance than hty .  From the variance ratios 

)var(/)var( 1 htt yy  and )var(/)var( 2 htt yy   both of which are about 0.97, we conclude that )var( 1ty  

and )var( 2ty are not significantly different and that estimators 1ty  and 2ty  are not different in terms of the 
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accuracy in estimation. We conclude that the estimators
1ty  and 

2ty are consistent in the sense that as the 

sample size increases, their variances tend to zero. 

.  
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