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Abstract 

The Erlang distribution belongs to a group of continuous probability distributions 

with universal relevance primarily due to its relation to the exponential and Gamma 

distributions. If the time period of individual telephone calls is exponentially distributed, then 

the duration of the successive calls follows the Erlang distribution. In this paper, we take into 

account the weighted version of Erlang distribution known as weighted Erlang distribution. 

We obtain the posterior mean and posterior variance of the model. Maximum likelihood 

method of estimation is discussed. Bayes estimates of the scale parameter of Weighted Erlang 

distribution is offered for consideration under Squared Error Loss Function (SELF), 

Quadratic Loss Function (QLF) and entropy Loss Function (ELF) using Jeffrey`s, extension 

of Jeffrey`s and Quasi priors.  

Keywords: Erlang distribution, Weighted Erlang distribution, Loss function, Bayesian 

estimation. 

 1. Introduction  

 The Erlang distribution developed by A.K.Erlang (1909) belongs to a group of 

continuous probability distributions with universal relevance primarily due to its relation to 

the exponential and Gamma distributions. The distribution was developed by A.K.Erlang to 

analyze the number of telephone calls that could be made simultaneously to switching station 

operators. This work on telephone traffic engineering has been extended to take into 

deliberation waiting times in queuing systems. Queuing theory came into existence on the 

publication of Erlang’s fundamental paper (1909) pertaining to the study of telephone traffic 

congestion.  If the time period of individual telephone calls is exponentially distributed, then 

the duration of the successive calls follows the Erlang distribution. A random variable X has 

an Erlang distribution with parameters  and   if its probability density function is of the 

form  

               0,...;3,2,1;0,exp
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Where  and   are the shape and the scale parameters, respectively, such that   is a 

positive integer number.  

The Mean and variance of Erlang distribution is given as  

 Mean =    and    Variance = 
2

 
1.1 Weighted Erlang Distribution 

The observations produced from a stochastic process if not given equal chances of 

being recorded leads to the emergence of weighted distributions; rather they are recorded in 

accordance with some weighted function. The concept of weighted distributions is traceable 

to the work of Fisher (1934) in respect of his studies on how methods of ascertainment can 
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affect the form of distribution of recorded observations. Later it was introduced and 

formulated in a more general way by Rao (1965) with respect to modeling statistical data 

where the routine practice of using standard distributions for the purpose was dismissed as 

inappropriate. In Rao’s paper he spotlighted a number of situations that can be modeled by 

weighted distributions. These situations refer to such instances where the recorded 

observations cannot be considered as a random sample from the original distributions. This 

may happen as a result of non-observability of some events or damage inflicted on the 

original observations leading to the reduced value or adoption of a sampling procedure which 

provides unequal chances to the units in the original.   The usefulness and applications of 

weighted distributions to biased samples in various areas including medicine, ecology, 

reliability and branching processes can be seen in Patil and Rao (1978), Gupta and Keating 

(1985), Gupta and Kirmani (1990), Oluyede (1999). Within the context of cell kinetics and 

the early detection of disease, Zelen (1974) introduced weighted distributions to represent 

what he broadly perceived as length biased sampling (introduced earlier in Cox, D.R. 

(1962)). For additional and important results on weighted distributions, see Zelen and 

Feinleib (1969), Patil and Ord (1976), Rao (1997). Applications examples for weighted 

distributions as El-Shaarawi and Walter (2002), and there are many researches for weighted 

distributions as Castillo and Perez-Casany (1998) introduced new exponential families that 

come from the concept of weighted distribution that include and generalize the Poisson 

distribution, Jing (2010) introduced the weighted inverse Weibull distribution and beta 

inverse Weibull distribution and theoretical properties of them, Das and Roy (2011) 

discussed the length biased weighted generalized Rayleigh distribution with its properties. 

Das and Roy (2011) also develop the length biased form of the weighted Weibull 

distribution. Priyadarshani (2011) introduced a new class of weighted generalized gamma 

distribution and related distributions, Sofi Mudasir and S.P. Ahmad (2015) study the length 

biased Nakagami distribution.   

 In order to introduce the concept of weighted distribution, let us suppose that X is a 

non-negative random variable with probability density function (p.d.f.) ),(xf then the p.d.f. of 

the weighted random variable
wX is given as  

 0,

)()(

)()(
)( 






x

dxxfxw

xfxw
xfw                                                                                     (2) 

Here the recording (weight) function )(xw  is a non-negative function representing the 

recording (sighting) mechanism. The random variable wX is called the weighted version 

of X, and its distribution in relation to that of X is called the weighted distribution with 

weight function )(xw . Note that the weight function )(xw  need not lie between zero and one, 

and actually may exceed unity.  

Let
xxw )(                                                                                                                      (3) 

Also,      
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Substitute the value of equations (1), (3), and (4) in equation (2), we get 
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This is the required probability density function of weighted Erlang distribution. 

The cumulative distribution function corresponding to (5) is given as 
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Also the mean and variance of weighted Erlang distribution is 

 

  mean  

    2variance

 Special cases 

1)  If θ=0 in (5), we get Erlang distribution 
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2)  If

 

θ=1 in (5), we get length biased Erlang distribution 
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3)  If θ=2 in (5), we get area biased Erlang distribution 
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4)  If θ=0, λ=1 in (5), we get exponential distribution 
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2. Estimation of Scale Parameter  

In this section we provide the maximum likelihood and Bayes estimates of the scale 

parameter of weighted Erlang distribution. 

2.1 Maximum likelihood estimation 

Let nxxx ,...,, 21  be a random sample from weighted Erlang distribution. Then the 

likelihood function is given by 
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Using equation (6), the log likelihood function is given by 
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Now differentiate the above equation with respect to  and equate to zero, we get
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This is the required MLE of   

2.2 Bayesian method of estimation 

In this section Bayesian estimation of the scale parameter of weighted Erlang 

distribution is obtained by using Jeffery’s, extension of Jeffrey’s and quasi priors under 

different loss functions. 

2.2.1 Posterior distribution under Jeffrey’s prior )(1   

Let nxxx ,...,, 21  
be a random sample of size 𝑛 having the probability density function 

(5) and the likelihood function (6). 

The Jeffery’s prior relating to the scale parameter  is given by 




1
)(1  ; 0                                                                                                   (7) 

According to Bayes theorem, the posterior distribution is given by 

   )(),,;(| 11  xLxP                                                                                  (8) 

Using equations (6) and (7) in equation (8), we get 
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Where k is independent of β and is given by 
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Thus, from equation (9), posterior distribution is given by 
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2.2.2 Posterior distribution under extension of Jeffrey’s prior )(2   

Let nxxx ,...,, 21  
be a random sample of size 𝑛 having the probability density function 

(5) and the likelihood function (6). 

The extension of Jeffery’s prior relating to the scale parameter  is given by 

 
C22

1
)(


  ; 0                                                                                          (11)                                          

By using the Bayes theorem, we have                                                                                     

   )(),,;(| 22  xLxP                                                                               (12) 

Using equations (6) and (11) in equation (12), we get 
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Where k is independent of β and is given by 
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Thus, from equation (13), posterior distribution is given by 
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2.2.3 Posterior distribution under Quasi prior )(3 
 

Let nxxx ,...,, 21  
be a random sample of size 𝑛 having the probability density function 

(5) and the likelihood function (6). 

The quasi prior relating to the scale parameter  is given by 

 0,0;
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According to Bayes theorem, the posterior distribution is given by 
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Using equations (6) and (15) in equation (16), we get 
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Where k is independent of β and is given by 
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Thus, from equation (17), posterior distribution is given by 
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2.3. Bayesian estimation by using Jeffrey’s’ prior under different loss functions 

Theorem 1: Assuming the square error loss function (SELF),     ,ˆˆ,
2

 L  the bayes 

estimate of the scale parameter  , when the shape parameter  is known, is of the form  
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Proof: By using the square error loss function    2ˆˆ,  L , the risk function is given 
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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Substitute the value of equation (10) in equation (20), we get 
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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 Theorem 3: Assuming the Entropy loss function (ELF),
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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2.4. Bayesian estimation by using extension of Jeffrey’s’ prior under different loss 

functions 

Theorem 4: Assuming the square error loss function (SELF),    2ˆˆ,  L , the bayes 

estimate of the scale parameter  , when the shape parameter  is known, is of the form 
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Proof: By using the square error loss function    2ˆˆ,  L , the risk function is given 

by 
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    




0

2

2
|ˆ)(  dxPR                   (22) 

Substitute the value of equation (14) in equation (22), we get
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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Theorem 5: Assuming the quadratic loss function (QLF)
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
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

 





L , the bayes 

estimate of the scale parameter  , when the shape parameter  is known, is of the form  
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Proof: By using the quadratic loss function
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Substitute the value of equation (14) in equation (23), we get
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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x
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Theorem 6: Assuming the Entropy loss function (ELF),



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1)log()ˆ,(







L , the 

bayes estimate of the scale parameter  , when the shape parameter  is known, is of the form  

 
12

ˆ 1







Cnn

x
n

i

i


  

Proof: By using the Entropy loss function
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Substitute the value of equation (14) in equation (24), we get 
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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Remark: If ,
2

1
C estimates obtained by using extension of Jeffrey’s prior coincides with the 

estimates obtained by using Jeffrey’s prior. 

 

2.5. Bayesian estimation by using Quasi’ prior under different loss functions 

Theorem 1: Assuming the square error loss function (SELF),    2ˆˆ,  L , the bayes 

estimate of the scale parameter  , when the shape parameter  is known, is of the form  
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Proof: By using the square error loss function    2ˆˆ,  L , the risk function is given 

by 
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|ˆ)(  dxPR                          (25) 

Using (18) in (25), we get
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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 Theorem 2: Assuming the quadratic loss function (QLF)
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L , the bayes 

estimate of the scale parameter  , when the shape parameter  is known, is of the form  
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Proof: By using the quadratic loss function
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Substitute the value of equation (18) in equation (26), we get
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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 Theorem 3: Assuming the Entropy loss function (ELF),
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bayes estimate of the scale parameter  , when the shape parameter  is known, is of the form  
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Proof: By using the Entropy loss function
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Substitute the value of equation (18) in equation (27), we get
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Minimization of risk function with respect to ̂  gives us the optimal estimator as 
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Remark: If ,1d  estimates obtained by using quasi prior coincides with the estimates 

obtained by using Jeffrey’s prior. 

3. Posterior Mean and Posterior Variance of Scale Parameter   under Different Priors  

 In this section, the posterior mean and posterior variance of the scale parameter   

under Jeffrey’s, extension of Jeffrey’s and quasi priors are obtained.  

3.1 Posterior Mean and Posterior Variance of   under Jeffrey’s prior 

 Posterior distribution under Jeffrey’s prior is given as 
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By using equation (28) in equation (29), we get            
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Put r=1 in equation (30), we get 
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This is the posterior mean. 

Put r=2 in equation (30), we get 
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Thus, the posterior variance is given as 
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3.2 Posterior Mean and Posterior Variance of   under extension of Jeffrey’s 

prior 

Posterior distribution under extension of Jeffrey’s prior is given as 
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By using equation (31) in equation (32), we get  
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Put r=1 in equation (33), we get 
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This is the posterior mean. 

Put r=2 in equation (33), we get 
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Thus, the posterior variance is given as 
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Remark: If
2

1
C , the posterior mean and posterior variance obtained under extension of 

Jeffrey’s prior coincides with the posterior mean and posterior variance obtained under 

Jeffrey’s prior. 

3.3 Posterior Mean and Posterior Variance of   under Quasi prior 

Posterior distribution under Quasi prior is given as 
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By using equation (34) in equation (35), we get  
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Put r=1 in equation (36), we get 
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This is the posterior mean. 

Put r=2 in equation (36), we get 
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Thus, the posterior variance is given as 
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Remark: If 1d , the posterior mean and posterior variance obtained under Quasi prior 

coincides with the posterior mean and posterior variance obtained under Jeffrey’s prior. 

4. Real Data 
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For analysis the strength data, reported by Badar and Priest (1982), It may be noted that 

Raqab et al.(2008) fitted the 3-parameter generalized exponential distribution to the same 

data set. Badar and Priest (1982) reported strength data measured in GPA for single carbon 

fibre and impregnated 1000 carbon fibre tows. Single fibres were tested at gauge lengths of 1, 

10, 20 and 50 mm. Impregnated tows of 1000 fibres were tested at gauge lengths of 20, 50, 

150 and 300 mm. The transformed data sets that were considered by Raqab and Kundu 

(2005) are used here.  

0.031, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.977, 1.006, 

1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 

1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 

1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697,1.726, 1.770, 1.773, 

1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084,2.090, 2.096, 2.128, 

2.233, 2.433, 2.585, 2.585 

Programs have been developed in R software to obtain the bayes estimates and 

posterior mean and variance and are presented in the tables below 

         

 

 

           Table 1. Bayes estimates of   under Jeffrey’s prior 

 

  

 

  

 

MLE 

 

SELF 

 

QLF 

 

ELF 

 

 

 

0.97 

 

1.0 

 

0.7345 

 

0.7399 

 

0.7291 

 

0.7345 

 

3.2 

 

0.3469 

 

0.3482 

 

0.3457 

 

0.3469 

 

4.0 

 

0.2911 

 

0.2919 

 

0.2902 

 

0.2911 

 

 

 

1.77 

 

1.0 

 

0.5223 

 

0.5251 

 

0.5196 

 

0.5223 

 

3.2 

 

0.2911 

 

0.2919 

 

0.2902 

 

0.2911 

 

4.0 

 

0.2507 

 

0.2514 

 

0.2501 

 

0.2507 

 

 

 

3.97 

 

 

1.0 

 

0.2911 

 

0.2919 

 

0.2902 

 

0.2911 

 

3.2 

 

0.2018 

 

0.2022 

 

0.2014 

 

0.2018 

 

4.0 

 

0.1815 

 

0.1818 

 

0.1812 

 

0.1815 
     MLE=Maximum Likelihood Estimator, SELF= Square Error Loss Function, QLF=Quadratic Loss Function, ELF=Entropy Loss 

Function 
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Table 2. Bayes estimates of   under extension of Jeffrey’s prior 

    c  MLE SELF QLF ELF 

 

 

 

0.97 

 

1.0 

 

0.5 

 

0.7345 

 

0.7399 

 

0.7291 

 

0.7345 

 

3.2 

 

3.0 

 

0.3469 

 

0.3422 

 

0.3399 

 

0.3410 

 

4.0 

 

5.5 

 

0.2911 

 

0.2836 

 

0.2820 

 

0.2828 

 

 

 

1.77 

 

1.0 

 

0.5 

 

0.5223 

 

0.5251 

 

0.5196 

 

0.5223 

 

3.2 

 

3.0 

 

0.2911 

 

0.2877 

 

0.2861 

 

0.2869 

 

4.0 

 

5.5 

 

0.2507 

 

0.2452 

 

0.2440 

 

0.2446 

 

 

 

3.97 

 

 

1.0 

 

0.5 

 

0.2911 

 

0.2919 

 

0.2902 

 

0.2911 

 

3.2 

 

3.0 

 

0.2018 

 

0.2001 

 

0.1993 

 

0.1997 

 

4.0 

 

5.5 

 

0.1815 

 

0.1786 

 

0.1779 

 

0.1783 
 

Table 3. Bayes estimates of   under Quasi prior 

    d  
MLE SELF QLF ELF 

 

 

 

0.97 

 

1.0 

 

1.0 

 

0.7345 

 

0.7399 

 

0.7291 

 

0.7345 

 

3.2 

 

3.0 

 

0.3469 

 

0.3457 

 

0.3434 

 

0.3446 

 

4.0 

 

4.5 

 

0.2911 

 

0.2890 

 

0.2873 

 

0.2881 

 

 

 

1.77 

 

1.0 

 

1.0 

 

0.5223 

 

0.5251 

 

0.5196 

 

0.5223 

 

3.2 

 

3.0 

 

0.2911 

 

0.2902 

 

0.2886 

 

0.2894 

 

4.0 

 

4.5 

 

0.2507 

 

0.2492 

 

0.2480 

 

0.2486 

 

 

 

3.97 

 

 

1.0 

 

1.0 

 

0.2911 

 

0.2919 

 

0.2902 

 

0.2911 

 

3.2 

 

3.0 

 

0.2018 

 

0.2014 

 

0.2005 

 

0.2009 

 

4.0 

 

4.5 

 

0.1815 

 

0.1807 

 

0.1800 

 

0.1804 
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                Table 4. Posterior mean and variance under Jeffrey’s prior 

    
Posterior mean 

 

Posterior variance 

 

 

 

0.97 

 

1.0 

 

0.7399466 

 

0.0040881134 

 

3.2 

 

0.3482056 

 

0.0004243417 

 

4.0 

 

0.2919925 

 

0.0002500796 

 

 

 

1.77 

 

1.0 

 

0.5251197 

 

0.0014579953 

 

3.2 

 

0.2919925 

 

0.0002500796 

 

4.0 

 

0.2514063 

 

0.0001595566 

 

 

 

3.97 

 

 

1.0 

 

0.2919925 

 

2.7978683220 

 

3.2 

 

0.2022178 

 

17.5592301980 

 

4.0 

 

0.1818829 

 

11.4116890570 

 

 

          Table 5. Posterior mean and variance under extension of Jeffrey’s prior 

    c  Posterior mean 

 

Posterior variance 

 

 

 

0.97 

 

1.0 

 

0.5 

 

0.7399466 

 

0.0040881134 

 

3.2 

 

3.0 

 

0.3422377 

 

0.0004028708 

 

4.0 

 

5.5 

 

0.2836956 

 

0.0002293426 

 

 

 

1.77 

 

1.0 

 

0.5 

 

0.5251197 

 

0.0014579953 

 

3.2 

 

3.0 

 

0.2877843 

 

0.0002394120 

 

4.0 

 

5.5 

 

0.2452313 

 

0.0001480766 

 

 

 

3.97 

 

 

1.0 

 

0.5 

 

0.2919925 

 

2.797868322 

 

3.2 

 

3.0 

 

0.2001905 

 

16.887064341 

 

4.0 

 

5.5 

 

0.1786288 

 

10.545967942 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                               www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.6, 2017 

 

19 
 

         Table 6. Posterior mean and variance under Quasi prior 

    d  
Posterior mean 

 

Posterior variance 

 

 

 

0.97 

 

1.0 

 

1.0 

 

0.7399466 

 

0.0040881134 

 

3.2 

 

3.0 

 

0.3457936 

 

0.0004155745 

 

4.0 

 

4.5 

 

0.2890340 

 

0.0002425475 

 

 

 

1.77 

 

1.0 

 

1.0 

 

0.5251197 

 

0.0014579953 

 

3.2 

 

3.0 

 

0.2902945 

 

0.0002457380 

 

4.0 

 

4.5 

 

0.2492100 

 

0.0001554078 

 

 

 

3.97 

 

 

1.0 

 

1.0 

 

0.2919925 

 

2.797868322 

 

3.2 

 

3.0 

 

0.2014020 

 

17.287105723 

 

4.0 

 

4.5 

 

0.1807306 

 

11.101541255 

 

Conclusion: In this research work, we have primarily estimate the scale parameter of the new 

model known as weighted Erlang distribution under different prior distributions assuming 

different loss functions. For comparison, we use the real life data set and the results are 

shown in the tables above. 

 Table 1, table 2 and table 3 shows maximum likelihood and the bayes estimates of the 

scale parameter  for different values of the shape parameter under the Jeffrey’s, 

extension of Jeffrey’s and Quasi priors. The values of the shape parameter are obtained 

through R-software. From the tables it is clear that as we increase the value of , the value 

of estimates of  decreases. The bayes estimates have minimum value for extension of 

Jeffrey’s prior as compared to Jeffrey’s and quasi priors. The estimates under the quadratic 

loss function have overall the minimum value than the square error loss function and entropy 

loss function. The estimates obtained under extension of Jeffrey’s prior and quasi prior 

coincides with the estimates obtained under Jeffrey’s prior when the value of hyper-

parameters c and d is 0.5 and 1.       The posterior mean and posterior variance are presented 

in table 4, table 5 and table 6        for different values of dc and,, . From these tables, it is 

clear that the posterior mean and variance obtained under extension of Jeffrey’s prior and Quasi 
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prior coincides with the posterior mean and variance obtained under jeffrey’s prior when 

1and5.0  dc . We also infer that the posterior variance using extension of Jeffrey’s prior 

have minimum value as compared to Jeffrey’s and Quasi priors. So we conclude that the 

extension of Jeffrey’s prior is more efficient as compared to other priors which we have used 

in this paper. 
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