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1. INTRODUCTION  

In this field of Summability of Fourier series & its allied series, the product Summability 

(E,q)(X),(X)(E,q)  or |E,q| have be studied by a number of researchers  like, Mohanty,R. and 

Mohapatra, S.(1968), Kwee, B.(19722), 
2
chandra, P.(1977), 

1
chandra, P. and Dikshit, G.D.(1981), 

sachan,M.P.(1983), Bhagwat, Purnima(1987), Nigam, H.K. and Sharama, Ajay(2006), lal, S. 

Singh,H.P. Tiwari, 
8
Sandeep kumar, and Bariwal, Chandrashekhar (2010), 

3
Dhakal, Binod Prasad 

(2011), Rathore, H.L. and Shrivasstava, U.K. (2012), Nigam, H.K. and Sharma, K.(2012,2013), Sinha, 

Santosh Kumar and Shrivastava, U.K.(2014), Mishara,V.N. Sonavane, Vaishali(2015) and many 

more, under various type of criteria and conditions. After this, so many results established on double 

factorable Summability of double Fourier series, But nothing seems to  have been done so far to study 

(H,1) (E,q) product Summability of Fourier series and its conjugates series. Therefore, in this paper, 

two theorems on (H,1) (E,q) Summability of Fourier series and its conjugate series have been proved 

under a general condition. 

2. DEFINATION AND NOTATION 

Let f(x) be a 2π- periodic function and Lebesgue integrable over (-π,π). The Fourier series of f(x) is 

given by  

                             f(x)~ 
a0

2
+ ∑ (an cos nx∞

n=1 + bn sin nx) ≡ ∑ An(x)∞
n=1                                       (2.1) 

The conjugate series of Fourier series is given by 

                               ∑ (bn cos nx − ansin nx) ≡ ∑ Bn
∞
n=1

∞
n=1 (x)                                           (2.2) 

We shall use the following notations: 

Φ(t)=f(x+t)+f(x-t)-2S 

     ψ(t)=f(x+t)-f(x-t) 

Kn(t) =
1

2π. log n
∑ [

1

(K + 1)(1 + q)k
{∑ (

k
v

)

k

v=0

qk−v
sin (v +

1
2) t

sin
t
2

}]

n

k=0
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Kñ(t) =
1

2π log n
∑ [

1

(K + 1)(1 + q)k
{∑ (

k
v

)

k

v=0

qk−v
cos (v +

1
2

) t

sin
t
2

}]

n

k=0

 

And τ = [
1

t
], where τ denotes the greatest integer not greater than 

1

t
  

Let ∑ un
∞
n=0  be a given infinite series with sequence of its n

th
 partial some sum of {Sn}. The (H,1) 

transform is defined as the n
th
 partial sum of (H,1) Summability and is given by 

                                       Hn
1 = tk(n) =

1

log n
∑  

Sn−k

K+1
 as n → ∞n

k=0                             (2.3) 

then the infinite series ∑ un
∞
n=0  is summable to the definite number s by (E,q) method. 

 If,  

                                 (E, q) = Ek
q

=
1

(1+q)k
∑ (k

v
)qk−vsv → s as n → ∞k

v=0                                         (2.4) 

then the infinite series ∑ un
∞
n=0  is summable to the definite no. s by (H,1)(E,q) Summability method. 

 If, 

                            Hn
1Ek

q
=

1

log n
∑

1

K+1
Ek

q
→ S, as n → ∞n

k=0                                                             (2.5) 

3. MAIN THEOREMS 

We prove the following theorems, 

3.1 Theorem. Let {pn} be a positive, monotonic, non-increasing sequence of real constants such that 

pn = ∑ pv → ∞ as n → ∞

n

v=0

 

if,  

                                          ∅(t) =  ∫ |∅(u)|du = o [
t

α(
1

t
),pt

] , as t → +0
t

0
                              (3.1) 

Where, α(t) is positive, monotonic and non-increasing function of t and 

                                                               log n = O[{α(n)}. pn], as n → ∞                                         (3.2) 

Then the Fourier series (2.1) is summable (H,1)(E,q) to f(x). 

3.2 Theorem. Let {pn} be a positive, monotonic, non-increasing sequence of real constants such that 

pn = ∑ pv → ∞ as n → ∞

n

v=0

 

If,  

                                                 ψ(t) =  ∫ |ψ(u)|du = o [
t

α(
1

t
),pt

] , as t → +0
t

0
                                    (3.3) 

where α(t) is a positive, monotonic and non-increasing function of t, then the conjugate Fourier series 

(2.2) is summable to (H,1)(E,q) to  
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f̃(x) =
−1

2π
∫ ψ(t) cot (

t

2
)

2π

0
dt 

at any point where this point exists. 

4. LEMMAS 

Lemma 1. |kn(t)| = O(n),    for 0 ≤ t ≤
1

n
; sin nt ≤ n sin t ; | cos nt ≤ 1 | 

Proof: |kn(t)| ≤
1

2π .log n
|∑ [

1

(k+1)(1+q)k
∑ (k

v
)qk−v

sin(v+
1

2
)t

sin
t

2

k
v=0 ]n

k=0 | 

≤
1

2π. log  n
|∑[

1

(k + 1)(1 + q)k
∑ (

k

v
) qk−v

(2v + 1)sin
t
2

sin
t
2

k

v=0

]

n

k=0

| 

≤
1

2π. log n
|∑[

1

(k + 1)(1 + q)k
(2k + 1) ∑ (

k

v
) qk−v

k

v=0

]

n

k=0

| 

=
1

2π. log n
 ∑

1

k + 1
(2k + 1)

n

k=0

 

=
1

2π. log n
(2n + 1) ∑

1

k + 1

n

k=0

 

=
2𝑛+1

2π.log n
 

= O(n) 

Lemma 2 |kn(t)| = o (
1

tn
) , for

1

n
≤ t ≤ π; sin(t

2⁄ ) ≥ t
2⁄ and sin nt ≤ 1 

|𝐤𝐧(𝐭)| ≤
𝟏

2π. log n
|∑[

𝟏

(𝐤 + 𝟏)(𝟏 + 𝐪)𝐤
∑ (

𝐤

𝐯
) 𝐪𝐤−𝐯

𝐬𝐢𝐧 (𝐯 +
𝟏
𝟐) 𝐭

𝐬𝐢𝐧
𝐭
𝟐

𝐤

𝐯=𝟎

]

𝐧

𝐤=𝟎

| 

≤
𝟏

2π. log n
|∑[

𝟏

(𝐤 + 𝟏)(𝟏 + 𝐪)𝐤
∑ (

𝐤

𝐯
) 𝐪𝐤−𝐯.

𝟏
𝐭

𝟐⁄

𝐤

𝐯=𝟎

]

𝐧

𝐤=𝟎

| 

=
𝟏

πt. log n
[∑ (

𝟏

(𝐤 + 𝟏)(𝟏 + 𝐪)𝐤
) ∑ (

𝐤

𝐯
)

𝐤

𝐯=𝟎

𝐧

𝐤=𝟎

] 

=
𝟏

πt. log n
[∑ (

𝟏

𝐤 + 𝟏
)

𝐧

𝐤=𝟎

] 

=
𝟏

πt. log n
 

= O (
1

tn
) 
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Lemma 3. kñ(t) = O (
1

tn
) , for 0 ≤ t ≤

1

n
;  sin(t

2⁄ ) ≥ t
2⁄ ; |cos nt| ≤ 1 

|kñ(t)| ≤
1

2π. log n
|∑[

1

(k + 1)(1 + q)k
∑ (

k

v
) qk−v

cos (v +
1
2) t

sin
t
2

k

v=0

]

n

k=0

| 

≤
1

2π. log n
∑ [

1

(k + 1)(1 + q)k
∑ (

k

v
) qk−v

k

v=0

|
cos (v +

1
2

) t

sin t
2⁄

|]

n

k=0

 

= 

=
1

πt. log n
[∑

1

(k + 1)(1 + q)k
∑ (

k
v

) qk−v

k

v=0

n

k=0

] 

=
1

πt. log n
[∑ (

1

k + 1
)

n

k=0

] 

=
1

πt. log n
 

= O (
1

tn
) 

Lemmas 4. |kñ(t)| = O (
1

tn
) , for

1

n
≤ t ≤ π, sin(t

2⁄ ) ≥ t
2⁄  

Proof:-|kñ(t)| ≤
1

2π.log n
|∑ [

1

(k+1)(1+q)k
∑ (k

v
)qk−v.

cos(v+
1

2
)t

sin
t

2

k
v=0 ]n

k=0 | 

≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−ve
i(v+

1
2

)t
}]

n

k=0

| 

≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

n

k=0

| |e
it

2⁄ | 

≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

n

k=0

| 

≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

τ−1

k=0

| + 

1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

n

k=τ

| 

                               = k1 + k2 

Now, 
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|k1| ≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

τ−1

k=0

| 

≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
∑ (

k

v
)

k

v=0

qk−v]

τ−1

k=0

| |eivt| 

≤
1

πt. log n
|∑

1

(k + 1)(1 + qk)
(

n

k
) ∑ (

k

v
)

k

v=0

qk−v

τ−1

k=0

| 

≤
1

πt. log n
∑ (

1

(k + 1)
)

τ−1

k=0

 

=
1

πt.log n
 

= O (
1

tn
) 

And 

|k2| ≤
1

πt. log n
|∑ [

1

(k + 1)(1 + q)k
Re {∑ (

k

v
)

k

v=0

qk−veivt}]

n

k=τ

| 

≤
1

πt. log n
∑

1

(k + 1)(1 + q)k
(

n

k
)

max

0 ≤ m ≤ k
|∑ (

k

v
) qk−veivt

k

v=0

|

n

k=τ

 

≤
1

πt. log n
(1 + q)τ ∑

1

(k + 1)(1 + q)k

n

k=τ

 

=
1

πt. log n
∑

1

(k + 1)

n

k=τ

 

= O (
1

tn
) 

 

 

 

5. PROOF OF MAIN THEOREMS 

5.1 Proof of theorem 

Following Titchmash [8] and using Riemann-Lebesgue theorem, Sn(f; x) of the series (2.1) is given by  
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Sn(f; x) − f(x) =
1

2π
∫ ∅(t)

sin (n +
1
2) t

sin
t
2

dt
π

0

 

Therefore using (2.1), the (E,q), transform En
q

 of Sn(f; x) is given by 

En
q

− f(x) =
1

2π(1 + q)k
∫ ∅(t) {∑ (

k

v
) qk−v

k

v=0

sin (k +
1
2) t

sin
t
2

} dt
π

0

 

Now denoting (H,1)(E,q) transform of Sn(f; x) by Hn
1En

q
 we write 

Hn
1En

q
− f(x) =

1

2π. log n
∑ [

1

(k + 1)(1 + q)k
∫ ∅(t) {∑ (

k

v
) qk−v

k

v=0

sin (k +
1
2) t

sin
t
2

} dt
π

0

]

n

k=0

 

                                                                = ∫ ∅(t)kn(t)dt
π

0
                                                                (5.1) 

we have to show that, under the hypothesis of theorem  

∫ ∅(t)kn(t)dt = o(1), as n → ∞
π

0

 

For 0 < δ < π, We have 

∫ ∅(t)kn(t)dt
π

0

= [∫ ∅(t)

1
n⁄

0

+ ∫ ∅(t)
δ

1
n⁄

+ ∫ ∅(t)
π

δ

] kn(t)dt 

                                                           = I1 + I2 + I3 (say)                                                                 (5.2) 

We consider, 

|I1| ≤ ∫ |∅(t)||kn(t)|dt

1
n⁄

0

 

=O(n) [∫ |∅(t)|dt
1

n⁄

0
] by lemma 1 

= O(n) [o {
1

nα(n).pn
}] by  (3.1) 

= o {
1

α(n). pn
} 

            = o {
1

log n
}   using  (3.2) 

                                                                     = o(1), as n → ∞                                                           (5.3) 

Now, 

|I2| ≤ ∫ |∅(t)||kn(t)|dt
δ

1
n⁄
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                                               = 𝑂 [∫ |∅(t)| (
1

tn
) dt

δ
1

n⁄ ] by lemma 2 

= O (
1

n
) [{

1

t
∅(t)}

1
n⁄

δ

+ ∫
1

t2
∅(t)

δ

1
n⁄

dt] 

= O (
1

n
) [o {

1

α(
1

t
).pt

}
1

n⁄

δ

+ ∫ o (
1

tα(
1

t
).pt

)
δ

1
n⁄

dt] by (3.1) 

Putting 
1

t
= u in second term, 

= O (
1

n
) [o {

1

α(n). pn
} + ∫ o (

1

uα(u). pu
)

n

1
δ⁄

du] 

= o {
1

α(n). pn
} + o {

1

nα(n). pn
} ∫ 1. du

n

1
δ⁄

 

= o {
1

log n
} + o {

1

log n
} by (3.2) 

Using second mean value theorem for the integral in the second term as α(n) is monotonic 

= o(1) + o(1) as, n → ∞ 

                                                             = o(1), as n → ∞                                                                   (5.4) 

By Rieman-Lebesgue theorem and by regularity condition of the method of Summabilty, 

|I3| ≤ ∫ |∅(t)||kn(t)|dt
π

δ

 

                                                          = o(1), as n → ∞                                                                      (5.5) 

Combining (5.3), (5.4) and (5.5) we have 

Hn
1En

q
− f(x) = o(1), as n → ∞ 

This completes the proof of theorem 1. 

 

5.2 Proof of Theorem. Let sñ(f; x) denotes the partial sum of series (2.2). 

Then following Lal[4] and using Riemann-Lebesgue Theorem , sñ(f; x) of series (2.2) is given by 

sñ(f; x) − f̃(x) =
1

2π
∫ ∅(t)

cos (n +
1
2) t

sin
t
2

dt
π

0

 

Therefore using (2.2), the (E,q) transform En
q

 of sñ(f; x) is given by 

Ẽn
q

− f̃(x) =
1

2π(1 + q)k
∫ ψ(t) {∑ (

k

v
) qk−v

k

v=0

cos (k +
1
2) t

sin
t
2

} dt
π

0
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Now denoting (H, 1)(E, q)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ transform of sñ(f; x) by  Hn
1En

q̅̅ ̅̅ ̅̅ ̅  we write 

Hn
1En

q̅̅ ̅̅ ̅̅ ̅ − f̃(x) =
1

2π. log n
∑ [

1

(k + 1)(1 + q)k
∫ ψ(t) {∑ (

k

v
) qk−v

k

v=0

cos (k +
1
2

) t

sin
t
2

} dt
π

0

]

n

k=0

 

                                                  = ∫ ψ(t)kñ(t)dt
π

0
                                                                              (5.6) 

In order to prove the Theorem, we have to show that , under the hypothesis of theorem  

                                                 ∫ ψ(t)kñ(t)
π

0
dt = o(1)    as  n→ ∞ 

For 0< δ < π, we have  

∫ ψ(t)kñ(t)dt
π

0

= [∫ ψ(t)

1
n⁄

0

+ ∫ ψ(t)
δ

1
n⁄

+ ∫ ψ(t)
π

δ

] kñ(t)dt 

                                                           = J1 + J2 + J3   (Say)                                                               (5.7) 

We consider, 

|J1 ≤| ∫  |ψ(t)|
1

n⁄

0
|kn(t)̃|dt 

= O[∫
1

tn
|ψ(t)|dt

1
n⁄   

0
]    by lemma 3 

= 𝑂(
1

𝑛
) [∫  

1

t
|ψ(t)|

1
n⁄

0

dt] 

= O(n) (
1

n
) [o {

1

nα(n).pn
}] by 2.1 

 = o {
1

α(n).pn
} 

                  = o {
1

log n
}   using 2.2    

                                                                          = o(1), as n → ∞                                                     (5.8) 

Now,                                                    | J2| ≤ ∫ |ψ(t)|
δ

1
n⁄ |kñ(t)|dt 

                                                    = O[∫
1

tn
|ψ(t)|dt

δ 
1

n⁄ ]  by lemma 4 

=O
(1)

n
[∫

1

t
|ψ(t)|dt

δ 
1

n⁄ ] 

= O(
1

𝑛
) [{

1

t
ψ(t)}

1
n⁄

δ

+ ∫
1

t2 ψ
δ

1
n⁄

(t)dt] 

                        = O (
1

n
) [o {

1

α(
1

t
)pt

}
1

n⁄

δ

+ ∫ o (
1

tα(
1

t
).pt

)
δ

1
n⁄

dt] by (3.3) 
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Putting  
1

t
 = u, in second term, 

   = O (
1

n
) [o {

1

α(n).pn
} + ∫ o (

1

uα(u).pt
)

n
1

δ⁄
du] 

 = o {
1

α(n).pn
} + o {

1

nα(n).pn
} ∫ 1. du

n
1

δ⁄
                                                                                                  

= o {
1

log n
} + o {

1

log n
} by (3.2)    

Using second -mean value theorem for the integral in the second term as α(n)  is  monotonic 

= o(1) + o(1) , as n→ ∞ 

                                                               = o(1) , as n→ ∞                                                                  (5.9) 

By Riemann – Lebesgue theorem and by regularity condition of the method of Summability 

                                                      | J3| ≤ ∫ |ψ(t)|
π

δ
|kñ(t)|dt 

                                                              = o(1) , as  n→ ∞                                                                (5.10) 

Combining (5.8) , (5.9) and (5.10)  we  have,  

 𝐻n
1E

n

q
  - f̃(x) = o(1) , as n→ ∞ 

This completes the proof of theorem 2. 

CONCLUSION 

In the field of Summability theory, various results pertaining (H,1) and (E,q), (H,1)X and X(H,1) 

Summability of Fourier series as well as its allied series have been reviewed.In future, the present 

work can be extended to establish new results under certain conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.5, 2017 

 

10 

 

 REFERENCES 

1] Chandra, p. “On the |E, q| summability of a Fourier series and its conjugate series”  Riv, Mat, Univ. 

Parma (4),3, 65-78(1977). 

2] Titchmarsh, E.C. “The Theory of functions”, Oxford (1952). 

3]  Chandra, p. and Dikshit, G.D. “On the |B| and |E, q| summability of a Fourier series, its conjugate 

series and their derived series”, Indian  J. pure applications math.,12(11) 1350 – 1360, (1981). 

4] Hare Krishna Nigam, Kusum Sharma, “On (E,1) (C,1) Summability of Fourier series and its 

conjugate series”, Deemed university, 365 – 375, 2013 

5] H.K. Nigam , “On (C,2) (E,1) product means of Fourier series and its conjugate series”,1(2 ) , 334-

344, 2013. 

6] G.H. Hardy , Divergent series , first edition , oxford university (1949). 

7] Prasad Kanhaiya, on the (N,Pn) C1 Summability of a sequence of Fourier series coefficient, Indian 

J. pure appl. Math., 12(7) 874-881, (1981). 

8] Nigam, H.K. and Sharma, Ajay , on (N,P,q) (E,1) Summability of Fourier series, IJMMS, vol. 2009 

, (2009). 

9] G.H. HARDY and J.E. LITTLEWOOD, some new convergence criteria for fourier series, J. 

Londan Math. SOC. 7(1932), 252-256. 

10] Tiwari, Sandeep kumar and Bariwal chandrashekhar, degree of approximation of function 

belonging to the IJMA 1(1 ), 2-4 , (2010). 

11] E.C. Titchmarsh, the theory of functions,  oxford university press (1939), 402- 403.  

12] A. ZYGMUND, “Trigonometrical series,” Dover, New York, 1955. 

13] Zygmund, A. “Trigonometrical series”, vol. I and II, waesaw (1935). 

 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.7, No.5, 2017 

 

11 

 

BIOGRAPHY 

 

 

 

 

 

 

 

 

  

 

Dr. Kalpana Saxena received Ph.D. in Mathematics from University of APS 

Rewa 1999. Dr. Kalpana Saxena is presently posted as a professor at GOVT. 

M.V.M. College Bhopal. Her main interests are Product Summability of 

Fourier series and sequence.                          

   

 

Sheela Verma perusing Ph.D. in Mathematics from Barkatullah 

University under the guidance of Dr. Kalpana Saxena. I completed 

Msc. In mathematics From Sarojini naidu GOVT. Girl’s P.G. 

College Shivaji Nagar Bhopal. 

 

 

http://www.iiste.org/

