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Abstract:

A new family of distributions known as Transmuted Kumaraswamy Exponentiated Inverse
Rayleigh distribution TKEIR is suggested and studied. Also f has a shape of well-known sub-
models like the Inverse Rayleigh distribution, Kumaraswamy Inverse Rayleigh, the
Kumaraswamy Exponentiated Inverse Rayleigh distribution Transmuted Kumaraswamy
Inverse Rayleigh distribution, the Exponentiated Inverse Rayleigh distribution and
Transmuted Inverse Rayleigh distribution. Some statistical properties of the recent
distribution comprise its moments; moment generating function, hazard functions, and order
statistic are derived. In general, maximum likelihood estimates of the model parameters are
obtained. In practice comparisons of the TKEIR and its sub-models have been made. Results
revealed that the new model is the best.

Key words: Rayleigh, sub-models, moments, maximum likelihood, Moment generating
function, Hazard rate function

1. Introduction:
As apparent from different studies there are several distribution functions like, the
Kumaraswamy probability distribution (1980) used for random processes with double
bounded in piratical hydrology. Kumaraswamy distribution is a family of continuous
probability distributions. It is double bounded distribution denoted by, kw(a, b) defined on
the zero to one interval with cumulative distribution function (cdf) assumed to be:

Foum@)=1-(1-xY)?, 0<x<1 (D
The probability density function (pdf) comparable to (1) is supposed as:

freum (@) = abx®1(1—x¥)P"1 | 0<x<1 (2)

It is worthy to note that the parameters defining the shape are a > 0,b > 0 according to KW
whose probability density function has similar basic properties of the Beta distribution
(Jones2009 and Cordeiro et al. 2010, 2012) it is synonyms to the Beta distribution on the
parameters values: that is unimodal for a > 1 and b > 1 uniantimodal fora < 1and b <1
; increasing for a > 1and b <1 decreasing fora < 1and b > 1 and constant for a =

b =1 according to investigation by Jones (2009) are advantageous since normalizing
constant is simple, formulae are obviously simple for the distribution and quantile functions
not containing any specific functions, generates simple expression for random variable, plain
L-moments equations for and for order statistics' moments of simpler equations, all benefit
from KW distribution,, according to Jones (2009), the simple equations of Beta distribution
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ease the way for generating moments and a symmetric distribution with one parameter
moment estimation and offer various ways for physical processes to generate distribution.
Empirical hydrological studies employed this distribution since it appears to be as an
exceptional substitute to the Beta distribution, (Koutsoyiannis and Xanthopoulos 1989).
However the studies of the new Kumaraswamy class of Nadarajah (2008), Selim and Badr
(2016). Cordeiro and de Castro (2009), also, generalized distributions (identified as the Kw-G
distribution) based on the Kumaraswamy distribution (represented by Kw distribution).
Nearly all formulae for the probability characteristics of the Kw—G distribution are derived by
them. the Kw distribution has established huge interest in hydrology and related areas
(Cordeiro et al. 2010, 2012; Fletcher and Ponnambalam 1996; Ganji et al. (2006),
Ponnambalam et al. 2001; Sundar & Subbiah 1989 and Seifi et al. 2000). The Kw distribution
enabled applications of some problems in hydrology and to different bounded natural
phenomena on both sides as documented by all these studies.

The features of the transmuted Inverse Weibull distribution have been examined by Khan et
al. (2014) Ashour et al. (2013), and Elbatal et al. (2013). Then studies and discussion by
Aryal (2013) focused on certain characteristics of the transmuted Lomax distribution, the
transmuted quasi Lindley distribution and the transmuted log-logistic distribution of this
family, also, Aryal and Tsokos et al. (2009, 2011) took into consideration the extreme value
of the transmuted distributions, the transmuted Gumbel distribution by means of climate data,
the transmuted Weibull distribution and the practical analysis of actual data groups. Khan et
al. (2013 a, b, c) as well introduced modifications for Weibull transmuted distribution, the
transmuted generalized inverse Weibull distribution and the transmuted generalized
exponential distribution, in addition to the parametrical models generalization via suitable
model transformation. Many different families of lifetime distributions have been intensively
studied adding a shape parameter. Recently, Ahmad et al. (2014) explained some
mathematical findings of the transmuted Kumaraswamy distribution via the quadratic rank
transmutation map according to Shaw et al. (2009). Merovici (2013 a, b, &2014) derived the
families of the transmuted Rayleigh distribution, the transmuted generalized Rayleigh
distribution and the transmuted Lindley distribution. Lately the transmuted Kumaraswamy
distribution and evaluated some mathematical outcomes has been studied by Ahmad et al.
(2015).

Hag (2016) employed a four parameter Kumarawamy Exponentiated Inverse Rayleigh
distribution (KEIR) to study some of its proprieties such survival and hazard function. The
proposed map by Shaw et al. (2009) concerning transmutation of quadratic rank was also
employed by Muhammad Khan et .al (2016) to develop the three-parameter transmuted
Kumaraswamy distribution (TKw) identified by Concerning this method a random variable X
is said to have a transmuted distribution if its cumulative distribution function (cdf) fulfills the
following expression.

F)(1 + D)G(X) + AG2(%) (3)

fx) =gx)[1+A—-2AGx)] ,IA| <1 (4)
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G(x) represents the base line distribution cumulative distribution function of and f(x) and g(x)
are the resultant probability density functions of F(x) and G(x) respectively. However
A ranges [-1,1], see (Aryal et. al 2009). At A = 0 generalized distribution decreases to parent
distribution.  Numerous generalized distributions, Transmuted Power Function,
Kumaraswamy Exponentiated Inverse Rayleigh (KEIR) distribution, Transmuted will be
generalized.
The Exponentiated Inverse Rayleigh distribution probability density and cumulative
distribution function are given below
206 oB o0

f(x) = X—3<e_x_2) & F(x) = (e_x_2> (5
Kumaraswamy Exponentiated Inverse Rayleigh distribution's probability density and
cumulative distribution function of are specified below

2abab g \ A% g \ A (b-1)
f(x) = (e_x_z) [1 — (e_x_z) l ;x=0,abad >0 (6)

X3
The cumulative distribution function of KEIR distribution is:
b

0 au
F(x)=1-— l1 - (e_x_z) l (7)
This means an expansion for the probability density function and cumulative distribution
function based on KEIR density function. It is worth mentioning that all this work relates to
Haqg (2016). The binomial expansion of equation (6) and the probability density function
yields:,

aa(i+1)

f(x) = 2o i(—ni "7 (@%) )

x3

The final expression of probability density function is obtained by writing the term (b ? 1) as

I'(b)
ilT(b—1)

so is as follows:

aa(i+1)

f) = Zab"‘ei(—l)i () ©)

x3 i'T(b—1)
In this study, we intend to generalize four-parameter Kumaraswamy Exponentiated Inverse
Rayleigh distribution KEIR to provide new distribution with five parameters by adding fifth
parameter denoting the transmuted Kumaraswamy Exponentiated Inverse Rayleigh
distribution as TKEIR..

The rest of the study is organized as follows. The TKEIR will be defined in section 2. Section
3 devoted to the investigation of the TKEIR properties such as moments, and moment
generating function, modes, section 4 is designated to order statistics; estimation of TKEIR
parameters using maximum likelihood estimation method are proposed in section 5. Real data
analysis and comparison of TKEIR results .with other selected distributions are placed in
section 6.
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2. The TKEIR distribution
The pdf and the cdf of TKEIR distribution will be introduced through locating the KEIR
reference point functions (6) and (7) in Equations (3) and (4), to get the cdf and pdf of the

TKEIR distribution as below:
g \ ax b g | A b
F(x) = [1 _ l1 _ <e‘x—2) ] 1+ 1) —/1<1— ll—(e_x_z) ] )]
;a,bo,0,A>0x>0 (10)

and

2abad © , T (-8
== Z“”m(“)

(1+2) —22 (1 - [1 -~ (e‘x%>aar>] (11)

The shape parameters are a,b,a and 0; and A represents diverse forms of the theme distribution
of a transmuting parameter. The five combinations of the shape parameters of the pdf and cdf
of TKEIR distribution are delivered in Figure 1 and 2, respectively. The shapes in Figure 1
reveal monotonically decreasing or positively skewed pdfs of TKEIR distribution. At 1 > 0
the TKEIR distribution approaches the KEIR distribution.

aa(i+1)

X

—x5.15.05.15025)
aaaaa x.5,15.1.1.5.025)
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Figure (1): TKEIR's Potential Shapes of the Density Function.
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Figure (2): TKEIR's Potential Shapes of the Cumulative Density Function

2.1 Some sub-models of the TKEIR

The TKEIR distribution shows plentiful flexibility since various distributions can be obtained
at changing parameter (a, b, 0 &a, ) . The theme distribution comprises as distinct cases six
well-known probability distributions as exemplified below.

1.
2.
3.

6.

At a =b = a = A =1 the Inverse Rayleigh distribution, IR(6, x) is obtained.

At a = A =1 the Kumaraswamy Inverse Rayleigh distribution, KIR(a, b, 8, x) is obtained.
At =1 we get the Kumaraswamy Exponentiated Inverse Rayleigh is obtained
distribution, KIER(a, b, a, 6, x) is obtained.

At a = 1 we get the Transmuted Kumaraswamy Inverse Rayleigh distribution

TKIR(a, b, a, A, x) is obtained.

At a =b = A =1 we get the Exponentiated Inverse Rayleigh distribution, EIR(q, 6, X) is
obtained

At a =b = o = 1 we get the Transmuted Inverse Rayleigh distribution, TIR(A, 6, x) is
obtained.

2.2 Survival Function

It deals with the probability of failure of an item before some time t, is defined as S(x)=1-F(x).
Survival function of TKEIR is s, (a, «, 8, b, 1) found by means of the expression of
distribution given as follows:
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sG) =1— [1 - [1 - (e_x%)aar 1+1)-2 <1 - [1 - (e_%>mr>] (12)

Series expansion the survival function is yield by the following expression:

o Tb+1 aay'
sy =1- 1_2(_1)li!r(l§—+1i1)(e Xz) 1+2)
i=1
S Thb+1)  ( _saw'
_A;(_l) iITh—-1+1) (e b > (13)

2.3 Hazard Function
The hazard rate function of the random variable X with probability density function f(x), its
survival function S(x) is assumed to be:

_fx)
H(x)
2aba@ r'(b) _6\aal+D) gy aab
~x3 Yie1(— Dll'l"(b )(e X2> (1+)1)—2/1<1—l1—<e XZ) l )]

= (14)

1-— [1 - Il - (e‘x%)“ar (1+2)—2 (1 B Il ~ <e_%)aalb)]

— (x5.1505.15025%)
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Figure (3): TKEIR' Potential Shapes of the Hazard function.
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3 Moments

3.1 The r' moments
The TKEIR distribution's '™ moment declares that p,., is set in the following form:
oo r r
~S e PN (1-7)|{aa0G + DEA + 2+ 22)
Hr iT(b— 1) i+

F(b) aa6(1+2)2)
Z( T < 2 (15)

i'lr(b—i—1)(+1)

Proof: The KTEIR's " moment of the distribution as below. It is well known that:

Uy =.f x" f(x; abaBA)dx
0

= 2aba92( 1) —— 'F(b

0 aa(i+ 1)

(1+/1)f e x_2> dx

aa(i+1)

+ Zlf e x2 dx
_ F(b+ 1) 0 aa(i+1)+aai
_ -1 i T‘—3( Xz) d
fo ;( Y TTo—1+D~ \° x
(16)
By means of the following transformation:
3
aad(i+ 1)\2
acB(i+ 1) acB(i+ 1) y
= 2 X = ’ y dx == 2a00(i+ 1) dy a7
Uy
3
o 3 <aa9(i + 1))2
_ 1y | acoG+ V2, Ty )
2abaGZ( 1) lF(b 1)[(1 /DJ < ¢ 000G+ 1) Y
=
3
r 3 (aae(i+ 1))2
anB(i +1)\2 2 y
— - - Z -y  Z 7
ZAL ( y ) € 2a00(i+ 1) dy
3
o r3 acB(i + 2)\2 ]
C Th+1)  (®fad(+2)\22 _\— y |
—1)! -y 7 7
+Z( D Te—1+D . < y ¢ 2aa0( + 2) dyJ (18)
1=
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; acB(i+ 1) 1
—ZabaGZ( D) lr‘(b 1)l(1 /1),/‘ < )ey 2aa9(i+1)dy

2/1]'00 acB(i+ 1) 5 _y 1 g
0 y € 2a00(i+ 1) y

oo r
. I'(b+1 @ 0(i+ 2)\? 1
+z(_1)l- ( ) aad(i+2) eV o————-dy
- i'rcb-1+1) J, y 2a00(i + 2)
i=

~ - G (acd(i + 1))2
= zab“ez(_l) iIT(b— 1) [_(H A e 1) vz eVdy

(aoc@(l + 1))2
2a00(i+ 1)

N Z(—l)i I'b+1) (acxe(l + 2))2 y_ ydy]

f y2 eVdy

i'T(b—1+1) 2aa6( + 2)

(acxe(i + 1))% ( r)

_zaban( 1) 'F(b I (1+/D—2a0(9(i+1) r(i-;

(acb(i + 1))% r
2aa0(i+ 1) r (1 B E)

4 . Tb+1) (aad(i+ 2))g r
+ ;(_1) ITb—1+1) 2aad(i+ 2) F(l _E)‘

iIT(b—1 i+1

i=1

o = i(_l [T+ Dr(1 )‘ 2) [a(aae(i D)+ 2420

o T0)(acd(i+ 2))g
‘Z(‘” iIrb—i+ 13 +2) (19)
3.2 TKEIR's Mean distribution (first moment) is set to be:
T+ 1)r ) (@i + 1))2(1 + 4 + 22)
M= Z( iT(b— Gi+1)
; F(b)(aoce(i + 1))%
_Z(_l) iIrT—i+13G+2) (20)
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- T(b + DV7 [\Jaa®(i + D1 + 1+ 22)
E<x>—z< ANTVCIY G+D

B Z(—l)i I'(b)a/ aab(i+ 2)

IT(b—i+ DG +2)

l_

(21)

3.3. Moment Generating Function
TKEIR's moment generating function of the is specified in the subsequent form;
M, (t)

JTh+1r (1 - %) a(aad(i + 1))5(1 +1+22)
ZZ—<— i'T(b — 1) (i+1)

= . T(b)(acd(i + 2))g
‘2“) iT(b—i+ 1) +2) (22)

Proof: the moment generating function computation employs the following relation:

M, (t) = E(etx)f e f(x;a,b,a,0,1)dx
0

2

f‘” (tx
=| (A+tx+ +-)(f(x;a,b,a,0,1)dx
0

2!

ootr
= —x" b,a,0,1)dx = —E(x"
fo -x"(f(x;a,b,a,6,2)dx = Z (x")

B T ll"(b+1)l"(1——) a(aa9(1+1))2(1+/1+2/1)
_ZT_Z_) iIr(b — 1) (i+1)

~ i(_l)i I'(b) (aad(i + 2))g

TS K (23)

4 Order statistics

The life testing and reliability analysis reveal the importance of order statistics The order
values of a random sample from TKEIR distribution are symbolized as X;, X,, X3, ... ... Xy,
and X1y, X(2), X3, - - Xy respectively. The following function gives order statistics'

probability density function means of:

fin®) = o=y S COF QI L = FGIT™ 24

Derivation of the density of the order statistics that follows the TKEIR distribution is as
follows:

a0 = et () e ()]

(s=D!'(n—s)x3
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The smallest density of the order statistic, is

Znabae( )““[1_< )

X3
(1+2)—24 1—[1—( )aal

0 b

e x2

0 b

x2

0 ao

_9 _8
e x?

e x?

fin(x) =
b

0

X e x*

(1+/’l)—21<1—[1—(

(1+,1)—,1<1—l1—<
1+ —/1<1—l1—(

)

-
SN e

e x2

found as:
b—1

-1
0
e x2

(26)

|

:1 - [1 - (e‘f—z)aar] |

aen=a(i-[- ()]

The largest density of the order statistic, is computes as:

_
e x?

2nabaf
%3

_8
e x?

fan() = ( fak—(

0 b

-]

5. Maximum Likelihood Estimation

X e x?

con-ui=(#) )
sen-s(pH )| o

_6
e x?

This section considers the estimation procedure of the ML to the unidentified parameters of

TKEIR distribution.

o)

> D

=1

2abab
<3

T'(b)
i'T(b—1)

2

)

(e

f(x) =

aa(i+1)

0 aa

X e x2

e

... X, and the related Log

(1+/1)—2/1(1—l1—<

The sample values of n observations of are written as X4, X,, X3, ...
likelihood function of probability density function is set to be:
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aad
InL = nlIn[2] + nIn[a] + nIn[b] + nln[a] + nIn[6] — 321nxi - ) —
i=1 = %
n _&ﬂ n _ﬁ b
+(b— 1)Zln[1 —(e <2 )] +Zln[(1+x) —2A<1 _ [1 _ (e 2 )] )l
i=1 i=1
(29)
N _aba
dlnL Oa Ba(b—1)e X
da a Z g + z —aba
i=1 i=1 Xiz [1 —e x? ]

_aba _aba b-1
n 2AbBae X [1 —e X?]

+) (30)
i=1 _aba b
x? |1+ A— 21 1—[1—e X]
onl  , <Uba N -
W—B—Zgﬁ- In|l1—e *i
i=1 i=1
_aba b _aba
n  2A[1—e Xiz] ln\l—e Xiz]
+) (31)
i=1 _aba b
x2|1+A—2A 1—[1—e X]
N N _aba
olnL 0a fa(b—1)e X
=it “aba
i=1 ! i=1 X-2|:1—e xf]
1
_aba _aba b-1
n 2\abfe X \1 —e Xiz]
+) (32)
i=1 _aba
X2 |1+ A —2) 1—[1—e X]
N N _aba
olnL. ax aa(b—1)e %
20 zé_zx_frz _abu
i=1 1 i=1 X-2|:1—e Xlz]
1
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_aba _aba b-1
n  2labae *i |1—e % ]
+ Z (33)
i=1 _aba b
x?|1+1-22 1—[1—e x?]
_aba
2|1 - [1 —e % ]
alnL 34)
a}\ i=1 aea
1+1-21|1- [1 —e

Obtaining the maximum likelihood estimators (&, b, 8, &, 1) for the parameters (a, b, 6, a, 1)
will be met by solving the non-linear system equations from (30) to (34) employing numerical
analysis of Newton—Raphson method to solve this system.

6. Application

Empirical results of 63 observations originally reported by Bader and Priest (2009) by means
of the proposed distribution on real data set of strength measured in GPA for single carbon
fibers and impregnated 1000-carbon fiber tows presented in table (1) to give maximum

likelihood estimated in the table (2):

Table (1): GPA measured strength for single carbon fibers

1.901 2.396 2.525 2.659 2.937 3.145 3.294 3.501 3.886
2.132 2.397 2.532 2.675 2.937 3.220 3.332 3.537 3.971
2.203 2.445 2.575 2.738 2.977 3.223 3.346 3.554 4.024
2.228 2.454 2.614 2.740 2.996 3.235 3.377 3.562 4.027
2.257 2474 2.616 2.856 3.030 3.243 3.408 3.628 4.225
2.350 2.518 2.618 2.917 3.125 3.264 3.435 3.852 4.395
2.361 2.522 2.624 2.928 3.139 3.272 3.493 3.871 5.020

The fitted values of the TKEIR model have been compared with 3 models. The of the other

fitted pdf of the models are:
Table (2): Real data set ML Estimates

MLE estimates
Model
a b () a i
TKEIR 5.653 8.119 1.257 3771 0.721
EIR 11.3438 0.73505
IR 8.3383
TIR 5.814 -0.46
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Table (3) ML Estimates and Information Criteria

-2 AlC AICC BIC HQIC
TKEIR 113.248 123.248 124.3 133.964 127.462
EIR 180.677 188.576 188.877 194.963 189.363
IR 182.677 190.677 190.742 194.819 192.519
TIR 193.059 203.059 204.112 213.775 207.274

Models comparisons entailed the consideration of various criteria such as maximized
likelihood -2, Akaike Information Criterion (AIC), Consistent Akaike Information Criterion
(CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC),
and Kolmogorov Smirnov test (KS). Minimum values rule of AIC, BIC, CAIC and HQIC is
taken into consideration for selecting the best model to fit. These statistics are given by

AIC = =22 4+ 2K,BIC = =22 + KLog(n), ,CAIC = =27 + 2Kn/(n o —1) Where n is

sample size, ¢ is log-likelihood and k is number of parameters. Results show that our model
satisfied the minimum rule, hence it is the best one.

7. Conclusion

The study aimed to derive five parameter Transmuted Kumaraswamy Exponentiated Inverse
Rayleigh TKEIR distributions as a new distribution serves as a modification of TKEIR
distribution. The new distribution benefited from the addition of a new parameter leading to
increased distribution flexibility. Curves of density and hazard rate have been plotted for
selected parameters' values of, in addition to the derivation of moment generating function,
entropy, the ordered statistics largest and smallest densities of and the maximum likelihood
equations. The usefulness of the model is demonstrated in an applied sample data set by using
maximum likelihood method. The derived model proved to be the best compared to other
fitted models. The proposed model is hoped attract wider application.
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