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some theorems, properties and remarks. 
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1. Introduction 

         M. Lellis Thivagar and C. Richard [1,3] introduce nano topological space on a subset 𝒞 of a universe 

which is characterized with respect to lower and upper approximations of 𝒞. He studied about the weak forms of 

nano open sets. Qays Hatem Imran [4,5] introduced the idea of Ns-open sets in nano topological spaces and 

also introduced new types of weakly nano continuity. The aim of this paper is to introduce new types of weakly 

nano open functions such as; N-open functions, N*-open functions, N**-open functions, Ns-open 

functions, Ns*-open functions and Ns**-open functions. Also, we must explain the relationships between 

these types of weakly nano open functions and the concepts of nano open functions. Furthermore, we must prove 

some theorems, properties and remarks. 

 

2. Preliminaries 

         Throughout this paper, (𝒰, 𝜏ℛ(𝒞)), (𝒱, 𝜎ℛ(𝒟)) and (𝒲, 𝜌ℛ(ℰ)) (or frugally 𝒰, 𝒱 and 𝒲) always mean 

nano topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a set ℳ in 

a nano topological space (𝒰, 𝜏ℛ(𝒞)), 𝑁𝑐𝑙(ℳ), 𝑁𝑖𝑛𝑡(ℳ) and ℳ𝑐 = 𝒰 − ℳ denote the nano closure of ℳ, the 

nano interior of ℳ and the nano complement of ℳ respectively. 

  

Definition 2.1: A subset ℳ of a nano topological space (𝒰, 𝜏ℛ(𝒞)) is said to be: 

1) A nano -open set (briefly N-open set) [3] if ℳ ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(ℳ))). The family of all N-open sets 

of 𝒰 is denoted by 𝜏ℛ(𝒞). 

2) A nano semi--open set (briefly Ns-open set) [4] if there exists a N-open set 𝒮 in 𝒰 such that 𝒮 ⊆ ℳ ⊆
𝑁𝑐𝑙(𝒮) or equivalently if ℳ ⊆ 𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝑁𝑖𝑛𝑡(ℳ)))). The family of all Ns-open sets of 𝒰 is 

denoted by s𝜏ℛ(𝒞). 

 

Remark 2.2:[4] In a nano topological space (𝒰, 𝜏ℛ(𝒞)), the following statements hold and the reverse of each 

statement is not true:  

1) Every N-open set is a N-open and Ns-open. 

2) Every N-open set is a Ns-open. 

 

Example 2.3: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝3}, {𝑝2, 𝑝4}} and 𝒞 = {𝑝1, 𝑝2}. Then 𝜏ℛ(𝒞) =
{𝜙, {𝑝1}, {𝑝2, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, 𝒰} is a nano topological space. The family of all N-open sets of 𝒰 is: 𝜏ℛ(𝒞) =
{𝜙, {𝑝1}, {𝑝2, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, 𝒰}. The family of all Ns-open sets of 𝒰 is: 

s𝜏ℛ(𝒞) = 𝜏ℛ(𝒞)⋃{{𝑝1, 𝑝3}, {𝑝2, 𝑝3, 𝑝4}}. 

 

Theorem 2.4:[4] For any subset ℳ of a nano topological space (𝒰, 𝜏ℛ(𝒞)), ℳ ∈ 𝜏ℛ(𝒞) iff there exists a N-

open set 𝒫 such that 𝒫 ⊆ ℳ ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒫)). 

 

Definition 2.5: Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a function, then ℓ is said to be: 
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1) Nano open (briefly N-open) [2] iff for each ℳ N-open set in 𝒰, then ℓ(ℳ) is a N-open set in 𝒱. 

2) Nano -open (briefly N-open) [6] iff for each ℳ N-open set in 𝒰, then ℓ(ℳ) is a N-open set in 𝒱. 

 

Theorem 2.6:[2] A function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is N-open iff ℓ(𝑁𝑖𝑛𝑡(ℳ)) ⊆ 𝑁𝑖𝑛𝑡(ℓ(ℳ)), for every 

ℳ ⊆ 𝒰. 

 

Definition 2.7:[2] Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a function, then ℓ is said to be nano continuous (briefly 

N-continuous) iff for each ℳ N-open set in 𝒱, then ℓ−1(ℳ) is a N-open set in 𝒰. 

 

Theorem 2.8:[2] A function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is N-continuous iff ℓ(𝑁𝑐𝑙(ℳ)) ⊆ 𝑁𝑐𝑙(ℓ(ℳ)), for 

every ℳ ⊆ 𝒰. 

 

3. Weakly Nano Open Functions   

Definition 3.1: Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a function, then ℓ is said to be: 

1) Nano *-open (briefly N*-open) iff for each ℳ N-open set in 𝒰, then ℓ(ℳ) is a N-open set in 𝒱. 

2) Nano **-open (briefly N**-open) iff for each ℳ N-open set in 𝒰, then ℓ(ℳ) is a N-open set in 𝒱. 

 

Definition 3.2: Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a function, then ℓ is said to be: 

1) Nano semi--open (briefly Ns-open) iff for each ℳ N-open set in 𝒰, then ℓ(ℳ) is a Ns-open set in 𝒱. 

2) Nano semi-*-open (briefly Ns*-open) iff for each ℳ Ns-open set in 𝒰, then ℓ(ℳ) is a Ns-open set in 

𝒱. 

3) Nano semi-**-open (briefly Ns**-open) iff for each ℳ Ns-open set in 𝒰, then ℓ(ℳ) is a N-open set in 

𝒱. 

 

Theorem 3.3: 

1) Every N-open function is a N-open, so it is Ns-open, but the reverse is not true in general. 

2) Every N-open function is a Ns-open, but the reverse is not true in general. 

 

Proof:  

1) Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a N-open function and ℳ be a N-open set in 𝒰. Then ℓ(ℳ) is a N-open 

set in 𝒱. Since any N-open set is N-open (Ns-open), ℓ(ℳ) is a N-open (Ns-open) set in 𝒱. Hence ℓ is a 

N-open (Ns-open) function. 

2) Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a N-open function and ℳ be a N-open set in 𝒰. Then ℓ(ℳ) is a N-

open set in 𝒱. Since any N-open set is Ns-open, ℓ(ℳ) is a Ns-open set in 𝒱. Hence ℓ is a Ns-open 

function. 

 

Example 3.4: Let 𝒰 = {1,2,3,4} with 𝒰/ℛ = {{2}, {4}, {1,3}} and 𝒞 = {1,2}. Then 

𝜏ℛ(𝒞) = {𝜙, {3}, {1,3}, {1,2,3}, 𝒰} is a nano topological space. The family of all N-open (Ns-open) sets of 𝒰 

is: 𝜏ℛ(𝒞) = s𝜏ℛ(𝒞) = 𝜏ℛ(𝒞)⋃{{2,3}, {3,4}, {1,3,4}, {2,3,4}}. Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒰, 𝜏ℛ(𝒞)) 

as ℓ(1) = 1, ℓ(2) = 4, ℓ(3) = 3 and ℓ(4) = 2. Then ℓ is a N-open, so it is Ns-open but not N-open function. 

 

Example 3.5: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝3}, {𝑝2, 𝑝4}} and 𝒞 = {𝑝1, 𝑝2}. Then 𝜏ℛ(𝒞) =
{𝜙, {𝑝1}, {𝑝2, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, 𝒰} is a nano topological space.  

Let 𝒱 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} with 𝒱/ℛ = {{𝑞2}, {𝑞4}, {𝑞1, 𝑞3}} and 𝒟 = {𝑞1, 𝑞2}. Then 

𝜎ℛ(𝒟) = {𝜙, {𝑞2}, {𝑞1, 𝑞3}, {𝑞1, 𝑞2, 𝑞3}, 𝒱} is a nano topological space.  

Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) as ℓ(𝑝1) = ℓ(𝑝2) = 𝑞2, ℓ(𝑝3) = ℓ(𝑝4) = 𝑞4. Then ℓ is a Ns-

open function but it is not N-open function. 

 

Remark 3.6: The concepts of N-open function and N*-open function are independent, as the following 

examples show: 

 

Example 3.7: In example (3.4), the function ℓ is a N*-open but it is not N-open.  

 

Example 3.8: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝4}, {𝑝2, 𝑝3}} and 𝒞 = {𝑝1, 𝑝4}. Then 𝜏ℛ(𝒞) =
{𝜙, {𝑝1, 𝑝4}, 𝒰} is a nano topological space.  
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Let 𝒱 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} with 𝒱/ℛ = {{𝑞1}, {𝑞3}, {𝑞2, 𝑞4}} and 𝒟 = {𝑞1, 𝑞2}. Then 

𝜎ℛ(𝒟) = {𝜙, {𝑞1}, {𝑞2, 𝑞4}, {𝑞1, 𝑞2, 𝑞4}, 𝒱} is a nano topological space. 

Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) as ℓ(𝑝2) = 𝑞1, ℓ(𝑝1) = 𝑞2, ℓ(𝑝3) = 𝑞3 and ℓ(𝑝4) = 𝑞4. Then ℓ 

is a N-open function but it is not N*-open. 

 

Proposition 3.9: 

1) If ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is a N-open, N-continuous function, then ℓ is a N*-open function. 

2) ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is a N*-open function iff ℓ: (𝒰,𝜏ℛ(𝒞)) ⟶ (𝒱,𝜎ℛ(𝒟)) is a N-open. 

 

Proof: 

1) Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is a N-open, N-continuous function. To prove ℓ is a N*-open function. 

Let ℳ ∈ 𝜏ℛ(𝒞), then there exists a N-open set 𝒩 such that 𝒩 ⊆ ℳ ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒩)) (by theorem (2.4)). 

Hence ℓ(𝒩) ⊆ ℓ(ℳ) ⊆ ℓ(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒩))) but ℓ(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒩))) ⊆ 𝑁𝑖𝑛𝑡(ℓ(𝑁𝑐𝑙(𝒩))) (since ℓ is a N-

open function). 

Then ℓ(𝒩) ⊆ ℓ(ℳ) ⊆ ℓ(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒩))))) ⊆ 𝑁𝑖𝑛𝑡(ℓ(𝑁𝑐𝑙(𝒩))).  

But 𝑁𝑖𝑛𝑡(ℓ(𝑁𝑐𝑙(𝒩))) ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℓ(𝒩))) (since ℓ is a N-continuous function). Therefore we get ℓ(𝒩) ⊆
ℓ(ℳ) ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℓ(𝒩))). But ℓ(𝒩) is a N-open set in 𝒱 (since ℓ is a N-open function). Hence ℓ(ℳ) ∈
𝜎ℛ(𝒟) (by theorem (2.4)). Thus is a N*-open function. 

2) The proof of a part (2) is easily. 

 

Remark 3.10: Every N*-open function is a N-open and Ns-open but the reverse is not true in general as the 

following example show: 

 

Example 3.11: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝2}, {𝑝3}, {𝑝4}} and 𝒞 = {𝑝1 , 𝑝4}.  

Then 𝜏ℛ(𝒞) = {𝜙, {𝑝1, 𝑝4}, 𝒰} is a nano topological space. 

Let 𝒱 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} with 𝒱/ℛ = {{𝑞2}, {𝑞3}, {𝑞1, 𝑞4}} and 𝒟 = {𝑞1, 𝑞3}. Then 

𝜎ℛ(𝒟) = {𝜙, {𝑞3}, {𝑞1, 𝑞4}, {𝑞1, 𝑞3, 𝑞4}, 𝒱} is a nano topological space. 

Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) as ℓ(𝑝1) = 𝑞1, ℓ(𝑝2) = 𝑞2, ℓ(𝑝3) = 𝑞3 and ℓ(𝑝4) = 𝑞4. Then ℓ 

is a N-open function and Ns-open function but not N*-open. 

 

Remark 3.12: The concepts of N-open function and Ns*-open function are independent, for examples: 

 

Example 3.13: In example (3.5), the function ℓ is a Ns*-open but it is not N-open. 

 

Example 3.14: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝3}, {𝑝2, 𝑝4}} and 𝒞 = {𝑝2, 𝑝4}. Then 𝜏ℛ(𝒞) =
{𝜙, {𝑝2, 𝑝4}, 𝒰} is a nano topological space.  

Let 𝒱 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} with 𝒱/ℛ = {{𝑞1}, {𝑞3}, {𝑞2, 𝑞4}} and 𝒟 = {𝑞1, 𝑞2}. Then 

𝜎ℛ(𝒟) = {𝜙, {𝑞1}, {𝑞2, 𝑞4}, {𝑞1, 𝑞2, 𝑞4}, 𝒱} is a nano topological space.  

Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) as ℓ(𝑝1) = 𝑞2, ℓ(𝑝2) = 𝑞1, ℓ(𝑝3) = 𝑞4 and ℓ(𝑝4) = 𝑞1. Then ℓ 

is a N-open function but it is not Ns*-open. 

 

Proposition 3.15: A function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is a Ns*-open iff ℓ: (𝒰, s𝜏ℛ(𝒞)) ⟶

(𝒱, s𝜎ℛ(𝒟)) is a N-open function. 

 

Proof: Obvious. 

 

Remark 3.16: The concepts of N*-open function and Ns*-open function are independent as the following 

examples show: 

 

Example 3.17: In example (3.11), the function ℓ is a Ns*-open but it is not N*-open. 

 

Example 3.18: Let 𝒰 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} with 𝒰/ℛ = {{𝑝1}, {𝑝3}, {𝑝2, 𝑝4}} and 𝒞 = {𝑝1, 𝑝2}. Then 𝜏ℛ(𝒞) =
{𝜙, {𝑝1}, {𝑝2, 𝑝4}, {𝑝1, 𝑝2, 𝑝4}, 𝒰} is a nano topological space. 

Let 𝒱 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} with 𝒱/ℛ = {{𝑞1}, {𝑞3}, {𝑞2, 𝑞4}} and 𝒟 = {𝑞1, 𝑞2}. Then 

𝜎ℛ(𝒟) = {𝜙, {𝑞1}, {𝑞2, 𝑞4}, {𝑞1, 𝑞2, 𝑞4}, 𝒱} is a nano topological space.  
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Define a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) as ℓ(𝑝1) = 𝑞1, ℓ(𝑝2) = 𝑞2, ℓ(𝑝3) = 𝑞2 and ℓ(𝑝4) = 𝑞4. Then ℓ 

is a N*-open function but it is not Ns*-open. 

 

Theorem 3.19: If a function ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) is N*-open and N-continuous, then it is Ns*-open. 

 

Proof: Let ℓ: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) be a N*-open and N-continuous function. Let ℳ be a Ns-open set in 

𝒰. Then there exists a N-open set say 𝒮 such that 𝒮 ⊆ ℳ ⊆ 𝑁𝑐𝑙(𝒮). Therefore ℓ(𝒮) ⊆ ℓ(ℳ) ⊆ ℓ(𝑁𝑐𝑙(𝒮)) ⊆
𝑁𝑐𝑙(ℓ(𝒮)) (since ℓ is a N-continuous), but ℓ(𝒮) ∈ 𝜏ℛ(𝒞) (since ℓ is a N*-open function). Hence ℓ(𝒮) ⊆
ℓ(ℳ) ⊆ 𝑁𝑐𝑙(ℓ(𝒮)). Thus, ℓ(ℳ) ∈ s𝜏ℛ(𝒞). Therefore, ℓ is a Ns*-open function. 

 

Remark 3.20: The following diagram explains the relationship between weakly nano open functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 3.21: Let ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒱, 𝜎ℛ(𝒟)) and ℓ2: (𝒱, 𝜎ℛ(𝒟)) ⟶ (𝒲, 𝜌ℛ(ℰ)) be two functions, then: 

1) If ℓ1 is N-open function and ℓ2 is N-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N-open 

function. 

2) If ℓ1 is N-open function and ℓ2 is N*-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N-

open function. 

3) If ℓ1 and ℓ2 are N*-open functions, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N*-open function. 

4) If ℓ1 and ℓ2 are Ns*-open functions, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a Ns*-open function. 

5) If ℓ1 and ℓ2 are N**-open functions, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N**-open function. 

6) If ℓ1 and ℓ2 are Ns**-open functions, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a Ns**-open function. 

7) If ℓ1 is N**-open function and ℓ2 is N*-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N*-

open function. 

8) If ℓ1 is N-open function and ℓ2 is N**-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N-

open function. 

+ 

+ 

Diagram (3.1) 
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9) If ℓ1 is N**-open function and ℓ2 is N-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N*-

open function. 

10) If ℓ1 is N**-open function and ℓ2 is N-open function, then ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N**-

open function. 

 

Proof:  

1) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a N-

open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) 

is a N-open function.  

2) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a 

N*-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a N-open function. 

3) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N*-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a 

N*-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a N*-open function.  

4) Let ℳ be a Ns-open set in 𝒰. Since ℓ1 is a Ns*-open function, ℓ1(ℳ) is a Ns-open set in 𝒱. Since ℓ2 is 

a Ns*-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a Ns-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a Ns*-open function. 

5)  Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N**-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since any N-

open set is N-open, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a N**-open function, ℓ2 ∘ ℓ1(ℳ) =

ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N**-open function. 

6) Let ℳ be a Ns-open set in 𝒰. Since ℓ1 is a Ns**-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since any N-

open set is Ns-open, ℓ1(ℳ) is a Ns-open set in 𝒱. Since ℓ2 is a Ns**-open function, ℓ2 ∘ ℓ1(ℳ) =

ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a Ns**-open function. 

7) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N**-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since any N-

open set is N-open, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a N*-open function, ℓ2 ∘ ℓ1(ℳ) =

ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶ (𝒲, 𝜌ℛ(ℰ)) is a N*-open function. 

8) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a 

N**-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a N-open function. 

9) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N**-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a 

N-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a N*-open function. 

10) Let ℳ be a N-open set in 𝒰. Since ℓ1 is a N**-open function, ℓ1(ℳ) is a N-open set in 𝒱. Since ℓ2 is a 

N-open function, ℓ2 ∘ ℓ1(ℳ) = ℓ2(ℓ1(ℳ)) is a N-open set in 𝒲. Thus, ℓ2 ∘ ℓ1: (𝒰, 𝜏ℛ(𝒞)) ⟶

(𝒲, 𝜌ℛ(ℰ)) is a N**-open function. 

 

4. Conclusion  

         We must utilize the ideas of N-open and Ns-open sets to characterize some new types of weakly nano 

open functions such as; N-open, N*-open, N**-open, Ns-open, Ns*-open and Ns**-open functions. The 

N-open and Ns-open sets can be used to derive some nano compactness, and nano connectedness. 
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