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Abstract 

We compare the accuracy of numerical integral methods like Newton-Cotes method and 

Gaussian Quadrature Rule (GQR) for the model problem and tested for another problem to verify the 

results. From results we notice that error of GQR is about 10 times less than Newton-Cotes formulas. 

For this reason we prefer GQR over other methods. But GQR uses nodes and weights which is a 

tedious work. This difficulty can overcome by using the idea of  ”three-term recurrence” relation. We 

can transform the problem of finding the nodes and weights for GQR to one of finding eigenvalues 

and eigenvectors of a symmetric tridiagonal matrix.  

        Keywords: Numerical integration; Gaussian Quadrature rules; error estimate; convergence 

rate. 

                                            

1. Introduction 

 

Mathematicians and scientists are sometime confronted with definite integrals which 

are not easily evaluated analytically, even a function  xf  is known completely. To 

overcome this difficulty the numerical methods are used. In computational physics it is usual 

to evaluate integrals numerically that cannot be evaluated analytically.  Numerical integration 

is an important section of numerical analysis. Numerical integration has many applications in 

science and engineering. In recent past a wide variety of novel schemes have been developed 

to solve integrals numerically.  

Numerical integration involves replacing an integral by a sum. The term quadrature is 

used as a synonym for numerical integration in one dimension. Numerical quadrature has a 

long and distinguished history, including contributions by Newton, who devised the basis of 

what is now known as the Newton-Cotes scheme, and Gauss, who devised Gaussian 

quadrature [2]. The theory of numerical integration has a very long history. About 2000 years 
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ago, Archimedes approximated the area of circles by using inscribed and circumscribed 

polygons. An Arab mathematician Ibrahim, in the 10
th

 century, introduced a more general 

method of numerical integration to calculate the area of the parabola. With the advent of the 

calculus in the 17th century, the theory of numerical integration developed rapidly [8]. In the 

twentieth century, numerous additional schemes were devised, including extended Simpson 

rules, adaptive quadrature, Romberg integration, Clenshaw-Curtis integration and others. 

Accordingly, numerical integration has become an important device for processing 

complicated engineering designs. It is therefore important to gain a gratitude for the scope of 

numerical integration and its power to solve real engineering problems. 

In past, slight interest has been shown to the issues of very high precision quadrature, 

because few serious applications have been known for such techniques, [2] and also because 

techniques that work well for standard machine precision often do not range well to the area 

of high precision. The software packages Mathematica and Maple include arbitrary precision 

arithmetic, together with numerical integration to high precision. These facilities are 

generally quite good, although in many cases they either fail or require unreasonably long run 

times. 

Let   xf  be a function which is defined on some interval [a,b] and on the set of 

distinct points {𝑥0, 𝑥1, … , 𝑥𝑛}. Then the numerical integration for approximation can be 

defined as 

∫ 𝑓(𝑥) 𝑑𝑥 ≅ ∑ 𝑤𝑖 𝑓(𝑥𝑖)
𝑛

𝑖=0
                                                         (1)

𝑏

𝑎

 

 

where 𝑤𝑖 are the quadrature weights and 𝑥𝑖  the quadrature points. There are a number of 

numerical integration methods for evaluation of definite integrals. The most commonly used 

methods are the Newton-Cotes formulas and Gaussian quadrature rules. Among the most 

popular methods for approximating the evaluation of the definite integrals are the trapezoidal 

rule and the Simpson rules. To improve the approximation, the interval of integration is 

subdivided into smaller subintervals, or segments. Increasing the number of segments results 

in decreasing the error until the round-off errors begin to dominate and the error begins to 

increase. 

Here we shall give a brief introduction and implementation for these methods. 
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2.  Methods for Numerical Integration 

 All most every numerical analysis textbook has a chapter on numerical integration. These 

present two families of quadrature rules based on (n+1) points. First one is Newton-Cotes 

formulas which are based on equally spaced points and the others are Gauss formulas, which 

are based on optimal points. A basic question to ask about any family of quadrature formulas 

is about its convergence [13], does it converge as n   , and if so, how speedy? 

It has been known to all users that the Newton-Cotes formulas do not converge for a 

general integrand  xf . It is only possible if  xf  is analytic in a large region with the 

known interval of integration. To get improved approximation, the number of segments is 

increased. This is done by dividing the integration-interval into smaller subintervals. In a 

result error decreases until round-off errors begin to dominate and the error begins to increase 

[1]. On the other hand, Gauss quadrature formulas, converges for any continuous f   and have 

no problems with rounding errors. The Newton-Cotes (n+1) points formula exactly integrates 

polynomials of degree n where as the (n+1) points Gauss formula exactly integrates 

polynomials of degree 2n + 1. Calculating nodes and weights of Gauss quadrature take some 

extra work, but this can be done in O(
2n ) operations by solving a tridiagonal eigenvalue 

problem [4]. 

The Newton-Cotes formulas, the most commonly used numerical integration 

methods, approximate the integration of a complicated function by replacing the function 

with many polynomials [10, ]. The integration of the original function can then be obtained 

by summing up all polynomials whose "areas" are calculated by the weighting coefficients 

and the values of the function at the nodal points [5]. 

The Gaussian quadratures give the flexibility of choosing weights and nods 

(abscissas) for the evaluation of the functions. Consequently, Gaussian quadratures yield 

twice as many places of accuracy as that of the Newton-Cotes formulas with the same 

numbers. For a known and smooth function, the Gaussian quadratures usually have significant 

advantages in efficiency. Nevertheless, data obtained from measurements in engineering 

problems are not always smooth or located right on the abscissas which are not uniformly 

spaced. Hence, the Gaussian quadratures are not apposite for such cases, as mentioned by 

Hildebrand (1956) in [6]. 
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  2.1.   Newton-Cotes Formulas 

The numerical integration methods that are derived by integrating the Newton 

interpolation formulas are termed as Newton-Cotes integration formulas. The Trapezoidal 

Rule and Simpson's Rules are members of this family. Here we will begin by deriving the 

basic trapezoidal rule and Simpson's integration formula for continues functions, on closed 

range. 

 

2.2      Trapezoidal Rule 

The trapezoidal rule is a numerical integration method derived by integrating the linear 

polynomial interpolation. It is written as  

  

                   I = ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎

𝑏−𝑎

2
[    ]bfaf   + 𝐸        (2) 

where E represents the error of trapezoidal rule. This error is high when we approximate the 

area under a curve by using single trapezoid [11]. The interval [a, b] can be divided into n 

intervals with equal width h. the points are bxxxxa n  ,...,,, 210   where  ihxxi  0 , for all  

.,....,2,1 ni    The value 
n

ab
h


 .  

Above relation for n-interval case can be written as 

                   I = ∫ 𝑓 (𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎
 [  af +2    




1

]
n

i

Ebfihaf                (3)   

   I = ∫ 𝑓 (𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎
 [  af +2         Ebfxfxfxf n   ]2.... 121     (4)      

If we replace    hafffaf  10 ,     and  ihaff i    then  above relation  can be 

expressed as  

 0[
2

f
h

I Effff ii   ]2.... 121        (5) 

The error of the trapezoidal rule is given as: 

 

                                   abE 
12

1
 ℎ2 ''f                                                 (6) 

where a  ≤  ≤ 𝑏. 

It is clear that the error of the trapezoidal rule is proportional to f    and decreases 

proportionally to  ℎ2  when we increase the number of intervals. The error is large for the 
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single segment trapezoidal rule. To reduce this error, we divide the interval into subintervals 

and then apply the trapezoidal rule over each segment.  

 

2.3  Simpson’s 
𝟏

𝟑
 Rule  

Simpson’s 
1

3
 rule is based on quadratic polynomial interpolation. In general the Simpson's 

rule is used for equally spaced data with width h. Results obtained by the trapezoidal rule 

lead us to think that we might be able to do better than the trapezoidal rule by using high 

degree polynomial [3]. 

In general we write: 

        I = 
ℎ

3
 [𝑓(𝑎) + 4       Ebfihafihaf

n

ioddi

n

ievevi

 








]2
1

..,1

2

..,2

                      (7)  

where E denote error in Simpson's rule which is obtained as: 

   ivf
h

abE
180

)(
4

                                                                    (8) 

where   a  ≤  ≤ 𝑏.  

For three points 𝑥0 = a, 𝑥1 = a + h and 𝑥2 = b , Simpson's rule can be written as 

 

                      I = ∫ 𝑓 (𝑥)𝑑𝑥 =  
ℎ

3
[

𝑏

𝑎
 f (x0) + 4 f (x1) + f (x2)] + E                   (9)  

This error would be zero if  xf  is a polynomial of degree 3 or less. Simpson's rule is 

easy to apply and it is considered reasonable for many applications. Error of Simpson's rule is 

high for n = 2 and its accuracy can be enhanced by dividing interval [a, b] into several 

subintervals. These intervals should be even for Simpson rule. 

In general we write: 

 

I = 
ℎ

3
 [𝑓(𝑎) + 4 ∑ 𝑓(𝑎 + 𝑖ℎ) + 2 ∑ 𝑓(𝑎 + 𝑖ℎ) + 𝑓(𝑏) + 𝐸 𝑛−2

𝑖=2,𝑒𝑣𝑒𝑛 𝑖 
𝑛−1
𝑖=1,𝑜𝑑𝑑 𝑖          (10) 

Setting   ihaffi   in above relation we get   

             𝐼 =
ℎ

3
[ 0f +   ]...2)...(4 242131 nnn fffffff   + 𝐸                          (11) 

 

In Simpson's rule N, the number of intervals, must be even. As the error is related to 

h, it varies accordingly, because the number of points N∝.
1

ℎ
. 
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For many integrals without singularities, above mentioned Simpson's formula is perfectly 

adequate, and there is no need to go to higher orders. However, if high accuracy is required 

then higher-order formulas, like Gaussian quadrature rules can be used. 

 

2.4   Gaussian Quadrature Rule 

The numerical integral methods described earlier have a simple choice of points to 

evaluate a function  xf  in a known interval [a,b]. These methods are based on equally space 

points. When we have freedom of choice regarding evaluation points, then more accuracy can 

be achieved. 

Gaussian quadrature is a powerful tool for approximating integrals. The quadrature rules 

are all based on special values of weights and abscissas. Abscissas are commonly called 

evaluation points or "Gauss points", which are normally pre-computed and available in most 

standard mathematics tables. Algorithms and computer codes are also available to compute 

them. 

Let the function 𝑓(𝑥) be defined on the closed interval [a, b] and that it is continuous and 

differentiable on this interval [12]. Further, let w be a weight function which is well defined 

and positive as well as continuous and integrable on [a, b]. We desire to construct quadrature 

formulae for the approximate evaluation of the integral 

∫ 𝑤(𝑥)𝑓(𝑥)𝑑𝑥 
𝑏

𝑎

                                                                          (12) 

The computation of the weights and the abscissas in a Gauss quadrature rule requires 

little work when the system of orthogonal polynomials is already known. On the other if it is 

not known, at the very least it is necessary to construct the polynomial from the system with 

roots as the abscissas. Here we apply straightforward approach to avoid the construction of 

polynomial, which is easier. 

The two-point Gauss quadrature rule for a function 𝑓(𝑥) can be evaluated between 

fixed limits 𝑎 and 𝑏 as follow: 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 =  𝑐 1 𝑓(𝑥 1 )  +  𝑐 2 𝑓(𝑥 2 )

𝑏

𝑎

                                               (13) 

There are four unknowns, 121 ,, xcc  and 2x  which can determined by integrating a general 

third order polynomial,  𝑓(𝑥)  =  3

3

2

210 xaxaxaa   which has 4 coefficients. 
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2.4.1   Higher point Gaussian Quadrature Formulas 

To get more accurate results, the number of Gaussian Quadratures are in creased. For this 

three points or higher point Gaussian Quadrature rule can be used. Three points Gaussian 

Quadrature rule is written as: 

                             𝐼 =     ∫ 𝑓(𝑥)𝑑𝑥 =  𝑐 1 𝑓(𝑥 1 )  +  𝑐 2 𝑓(𝑥 2 )
𝑏

𝑎
+ 𝑐 3 𝑓(𝑥 3 )                (14) 

 

When n points are used, we call the method an "n-point" Gaussian method, which can be 

used to approximate a function f(x) between fixed limits as: 

𝐼 =  ∫ 𝑓(𝑥)𝑑𝑥 ≅  𝑐 1 𝑓(𝑥 1 ) +  𝑐 2 𝑓(𝑥 2 ) +  … . . + 𝑐 n 𝑓  nx                       (15)
𝑏

𝑎

 

 

Gaussian Integration is simply based on the use of a polynomials to approximate the 

integrand f(t) over the interval [-1, 1] as the  sum  
 nj

jj xfw
0

. The abscissas jx  are the roots 

of the Legendre polynomial  xPn  on [−1,1],with degree n [?]. Whereas weights jw  are 

  )()(1

2

1 jnjn

j
xPxPn

w





          (16) 

Clearly the abscissas and weights are independent of )(xf . 

  The accuracy and optimality of results depend on the choice of polynomial. The 

coefficients of this polynomial are unknown variables which can be determined by using any 

suitable method. The simplest form of Gaussian quadrature uses a uniform weighting over the 

interval. The particular points at which we have to evaluate  xf  are the roots of a particular 

class of polynomials, the Legendre polynomials, over the interval. Gaussian quadrature 

formulae are evaluating using abscissa and weight. The choice of n is not always clear, and 

experimentations are useful to see the influence of choosing a different number of points. 

We compute the Legendre polynomial function values using n-long iteration of the 

recurrence 1)(,0)( 10  xPxP  and for k ≥ 2, 

)()()12()()1( 11 xkPxxPkxPk kkk        (17) 

The derivative is computed as 

  
 

 1
)()(

)(
2

1




 

x

xPxxPn
xP nn

n      (18)  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                              www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.10, 2016 

 

64 

 

If the integral is not posed over the interval [-1, 1] then we can apply a simple change of 

variable, linear scaling, to rewrite any integral over [a, b] as an integral over [-1, 1]. 

 

2.5   Error Estimation 

In numerical integration, we use a finite summation to approximate the value of an 

integral: 

𝐼(𝑓) =  ∫ 𝑓 (𝑥)𝑑𝑥 ≅  ∑ 𝑤𝑖𝑓 (𝑥𝑖) +  𝐸                             (19)

𝑛

𝑖=0

𝑏

𝑎

 

There are two type of errors in numerical integration [14]. These are truncation error 

and round off error. Without effective evaluation of error    fAfI  , a quadrature rule is 

of no importance. Round off error comes from the fact that we can only compute the 

summation to finite precision, due to the limited accuracy of a computer's representation of 

floating point numbers. The round off error, in general, is insignificant compared with 

truncation error. Conversely if the number of abscissas in the summation of relation (17) 

above, is immense then rounding error might need to be taken into account.  This criterion is 

also same when the tolerance is too small [7]. As we focus on high precision integration thus 

ignore the round off error.  

 

2.6   Error in Gaussian Quadrature 

The error in the Gaussian quadrature rule [1] is 

                𝐸 n = 𝐼    
      

    3

2412

]!2[12

!

nn

fnab
fGf n

nn

n








                                                        (20) 
 

                                     

where  a <  n  < b   and   fI  and  fGn  denote values of function calculated analytically 

and by using the Gaussian quadrature formula.  Obviously it is computationally expensive or 

even difficult to evaluate  xf  at many points. Consequently it is important to consider how 

the error nE  depends on n. Clearly one would like to get small nE  when n becomes large. 

There are two firmly linked ways to describe the reliance of nE  and n: (1) The order of 

accuracy and (2) the degree of the quadrature rule. The order of accuracy shows how fast        

| nE | decays to zero when n becomes large. Whereas the degree of the quadrature rule shows 
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for which polynomials the quadrature rule nG  is exact. A quadrature formula of degree d 

integrates exactly to all polynomials up to degree d.  

 

2.7     Orthogonal Polynomials and Gaussian Quadrature 

 

Orthogonal  polynomials are classes of polynomials  xpn  defined over a range [a, b] that 

obey an orthogonality relation 

∫ 𝑤
𝑏

𝑎

(𝑥)𝑝 m
(𝑥)𝑝 n

(𝑥)𝑑𝑥 = 𝛿 mn  𝑐 n                                                     (21) 

where )(xw  is a weighting function and mn  is the  Kronecker delta.  Orthogonal 

polynomials are very useful in finding the solution of mathematical and physical problems. 

Such polynomials can be constructed by Gram-Schmidt orthonalization of the monomials  

,...,,,1 2xx   . Our goal is to find nodes and weights. This is a tedious work . This difficulty is 

overcome by using the idea of "three-term recurrence". We will develop this theory a little in 

this section. 

Theorem 1. The abscissas of the N -point Gaussian quadrature formula are precisely the 

roots of the orthogonal polynomial [3] for the same interval and weighting function. 

Let np  be a nontrivial polynomial of degree n such that 

∫ 𝑤
𝑎

𝑎

(𝑥) kx  𝑝 n
(𝑥)𝑑𝑥 =  0,    𝑓𝑜𝑟   𝑘 =  0, 1, 2, … . . 𝑛 – 1.                     (22) 

If we pick the nodes to be the zeros of np  , then there exist weights  iw  which make the 

computed integral exact for all polynomials of degree 2n-1 or less. Furthermore, all these 

nodes will lie in the open interval (a, b). 

For more understanding we present another theorem. 

Theorem 2.   Construction of  Gaussian quadrature 

For N = 2n-1, there exists [3] a set of Gaussian points 
 n

ix   and weights 
 n

iw   such that 

 

∫
    




n

i

kn

i

n

i

k xwdxx
1

                                                               (23)
1

−1

 

         hold for  all   k = 0,1,2,…,N 
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    3.0.     Comparison of Newton-Cotes rules with Gaussian quadrature rule 

In this section we compare the accuracy of Newton-Cotes method and Gaussian 

quadrature for the model problem. 

Example 1.  Evaluate the integral 

                 
1

0

)( dxxSinI             (24) 

by using the Trapezoidal rule , Simpson rule and Gaussian quadrature formula. 

Exact value (analytical solution) is calculated by simple integration rules which is       

4.5970e-001. 

We will present a table about the comparisons of errors due to the Trapezoidal rule, 

Simpson's rule and Gaussian quadrature rule by C + + programming. 

 

                                             Table 1.1: Comparison of Errors 

N- values Trapezoidal rule Simpson rule Gaussian quadrature rule 

2  9.61E-03   -1.65E-03 6.42E-03 

4 2.40E-03 -1.01E-04 1.56E-05 

6 1.06E-03 -1.98E-06 5.23E-10 

8 5.99E-04 -6.25E-07 4.89E-15 

10 3.83E-04  -2.56E-07 2.22E-16 

20 9.58E-05 -1.60E-08 4.44E-16 

30 4.26E-05 -3.15E-09 6.66E-16 

      40 2.39E-05 -3.15E-09 1.33E-15 

50 1.53E-05 -4.09E-10 1.58E-11 

100 3.83E-06 -2.55E-11 1.33E-15 
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     Graphical representation of error comparison.  

 

Graph-1 

 

 

 

From the table and graph as, we see that the error of 4 points Gaussian quadrature rule 

is almost equal to 50 points of the Trapezoidal rule. Similarly absolute error due to using 6 

points Gaussian quadrature rule is almost equal to 50 points Simpson's rule. From these 

results it is clear that error of Gaussian quadrature rule is about 10 times less than Newton-

Cotes formulas. Further when n > 10 the error due to Gaussian quadrature becomes 

negligibly small. 

We test our results for irrational integral which can be found in [15]. 

 

 

Example 2.  Evaluate the integral dxxI  

1

0

21    by using the Trapezoidal rule , Simpson 

rule and Gaussian quadrature formula. 

Exact value, or analytical solution, is calculated by simple integration rules which is              

4


= 0.78539816  
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Table 1.2: Comparison of Errors 

N- values Trapezoidal rule Simpson rule Gaussian quadrature rule 

2 
1.02E-01 4.14E-02 1.07E-02 

4 
3.64E-02 1.45E-02 1.66E-03 

6 
1.99E-02 7.87E-03 5.40E-04 

8 
1.29E-02 5.10E-03 2.40E-04 

10 
9.21E-03 3.65E-03 1.27E-04 

20 
3.28E-03 1.28E-03 1.70E-05 

30 
1.79E-03 7.00E-04 5.00E-06 

      40 
3.94E-03 4.54E-04 2.00E-06 

50 
2.82E-03 3.25E-04 1.00E-06 

100 
9.99E-04 1.15E-04 0.00E+00 

 

Graphical representation of error comparison.  

 

Graph-2 

 

From the table and graph as, it is clear that error due to Gaussian quadrature rule is 

very small as compared to Newton-Cotes formulas. Further when n > 20 the error due to 

Gaussian quadrature becomes negligibly small. 

The main benefit of Gaussian quadrature is that of its very high-order accuracy with 

very few number of intervals, especially when we are using points less than 10. This accuracy 
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is further enhanced by increasing number of points. Due to these reasons we prefer Gaussian 

quadrature rule over other methods. 

The computational cost of abscissa and weight by using Gaussian quadrature scheme 

increases quadratically with n, since each Legendre polynomial evaluation requires n steps. In 

general, Gaussian quadrature achieves quadratic convergence for well- behaved integrand 

functions. It means by doubling n achieves roughly twice as many correct digits in the 

quadrature result, after a few initial levels.  

While the value of n required to achieve a given precision level usually increases 

linearly with the precision level [15], eventually the total run-time cost of computing the 

abscissas and weights increases even faster than 2n . 

According to David H. Bailey and J.M. Borwein in [15], there is no known scheme 

for generating Gaussian abscissa-weight pairs that evade this quadratic dependence on n, 

however the computed High-precision abscissas and weights can be stored and used latter. 

 In future we shall use the connection between Gaussian quadrature rule and 

eigenvalues problem. By using three- term recurrence relation [9], and we shall construct 

tridiagonal symmetric matrix to compute nodes and weights for Gaussian quadrature rule. 
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