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Abstract 

          A wavelet approach was applied to a consumer price index (CPI) series to address the 

draw backs of some periodic models. The method requires no assumption of the data 

generating process but involves the spliting of a given signal into several components with 

each component reflecting the evolution trough of the signal at a particular time. The multi-

level stationary Haar  wavelet decomposition was applied to the series which gave rise to a 

dyadic sequence of 28 , and the series was decomposed accordingly using a computer 

program written for the purpose. Multi-resolution wavelet method was then used to 

reconstruct the series and the significant details (𝑑𝑗,𝑡) that captured the season were added to 

the  trend (𝑠𝑗,𝑡)  component for the estimatation of the series {𝑌𝑡}. The resulting wavelet 

model was subjected to diagnostic checks and were found to be adequate. Comparative study 

was carried out with some hilighted CPI models built by some researchers. It was discovered 

that the wavelet models performs better.  

Keywords: Mother wavelets, Haar  wavelet decomposition, Multi-resolution, Auto-

correlation and Partial auto-correlation function. 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.10, 2016 

 

33 

1.0     Introduction/Review 

 Consumer price index (CPI) is an economic indicator that gives a comprehensive 

measure used for the estimation of price changes in a basket of goods and services 

representative of consumption expenditure in an economy. It measures changes in the price 

level of a market basket of consumer goods and services purchased by households. 

Statistically, it is an estimate constructed using the prices of a sample of representative items 

whose prices are collected periodically. The percentage change in the CPI  over a period of 

time gives the amount of inflation over that specific period.  Thus, the CPI provides a measure 

of inflation. 

In recent years, inflation has become one of the major economic focus of most 

countries of the world, especially those in Africa and Asia. Due to its impact on the nation’s 

economy, the control of inflation has become imperative for any nation. To control inflation 

in the future, there is need to relate the past and the present effect. A body of  techniques that 

can be used for such predictive purposes is time series.  

   According to Abraham (2014), Consumer price index (CPI) measures changes in the 

price level of market basket of consumer goods and services purchased by households over a 

period of time. Abraham (2014) modelled the CPI using Fourier series approach. The 

approach identified the period to be 12 with a frequency of 0.02678. The Fourier series model 

was subjected to some diagnostic checks and was found to be adequate. However, the root 

mean square error was found to be moderately high with a value of 7.2587. 

In particular, Akpanta and Okorie (2015) modeled the Nigerian CPI in the time-

domain using the Seasonal Autoregressive Integrated Moving Average model (SARIMA). In 

this case,  the seasonal component of the series  was  assumed to be stochastic and correlated 
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with non-seasonal components. Despite the correlation structure, the model was still found to 

be adequate with a root means square error of 4.2345.   

 Taking  into consideration the periodic variation found in the data, Omekara et al 

(2013), Nachane and clavel (2014) modeled inflation rate in the frequency domain using the 

Mixed Fourier series and the ARMA Model with Fourier coefficients respectively. The work 

showed that the residuals followed a white noise process, indicating a good fit of the model. 

In Nigeria, the CPI is calculated by the National Bureau of Statistics and assisted by 

the Central Bank of Nigeria. It is one of the most frequently used statistics for identifying 

periods of inflation and deflation and can be used to index the real values of wages and 

salaries. However, since most financial data like the CPI are usually defective in terms of 

irregular characteristics, the data is usually smoothened by log transformation, differencing or 

filtering before analysis is carried out.  According to Al Wadi et al (2010), one of such 

filtering approaches in the frequency domain is wavelet analysis. 

A Wavelet is a function which enables us to split the given signal into several 

frequency components, each reflecting the evolution trough time of the signal at a particular 

frequency. Wavelet as its name suggests, is a small wave. In this context, the term "small" 

essentially means that the wave grows and decays in a limited time frame.  

Masset (2008) considered wavelet as a very potent method in studying financial data 

or variable that exhibit a cyclical behaviour and/or affected by a seasonal effects. He applied 

the wavelet method in the analysis of several seasonal data and it was discovered that wavelet 

methods produced reliable results than the linear models. 

The spread in the acceptability of Wavelet analysis is seen in its adoption by Wall 

Street analysts as a veritable mathematical tools for analyszing financial data (Manahanda et 
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al, 2007). The range of the application of wavelet in the financial data is potentially used in 

denoising and seasonal filtering, identification of regimes shift and jumps. 

According to Mallet (2001), Gencay et al (2002) and Crowdly (2005), Wavelet 

analysis takes its root from Filter and Fourier analysis and is able to overcome most of the 

limitations of Fourier series analysis. This is because, they can  combine information from 

both time-domain and frequency-domain, and do not require assumptions concerning the data 

generating process. 

Because of the drawbacks of  Fourier or Spectral Analysis, Masset (2008) presented a 

set of tools which allows gathering information about the frequency components. This method 

was able to address the problem of the drawbacks of spectral analysis temporarily. 

 Yogo (2003) in his paper, pointed out that Multiresolution wavelet analysis is a 

natural way of decomposing economic time series into components of various frequencies 

which are long-run trend, business-cycle component and high frequency noise. The paper was 

applied to the real Gross National Product and inflation and was found to address the 

limitations of the Fourier models. 

           Renaud et al (2004) took a critical look at the Wavelet-Based method for time series. 

The work was based on multiple decomposition of signal using a redundant (a trous) wavelets 

transform which has the advantage of being shift-invariant. The result was a decomposition of 

the signal into range of frequency scales which explicitly showed that the method works well 

and adapts itself to studies involving financial data. It was also discovered that in a series 

whose dynamics is made of Autoregressive integrated moving average (ARIMA) model and 𝑠 

cyclical components, the wavelet analysis can be used to remove the impact of trend, noise 

and the seasonality. 
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In the same vein, Mehala and Dahiya (2013) revealed that the Wavelet transform are 

capable of revealing detailed aspects of data such as trends, breakdown points, discontinuities 

in higher derivatives and self-similarity which cannot be adduced using Fourier transform. 

Perhaps it was such findings which encouraged Mukhopadhyay et al (2013) to adopt 

Wavelet transform in the study of wind speed data. The study used continuous Wavelet 

transform (MCWT) like Morlet to check the periodicity of wind speed. It  was shown that 

wavelet transform provided more information about signal constituents of the dynamic 

speckle. 

As spelt out in the review; except the wavelet approach, several time series techniques 

have been applied in modelling the CPI series. Non of this techniques actually reflected the 

evolution trough time of the signal at a particular frequency. This work therefore seeks to 

address the CPI series in another dimension using the wavelet platform.  

2.0     Methodology 

 2.1     Wavelets  

A Wavelet is a function which enables us to split a given signal into several 

components, each reflecting the evolution trough time of the signal at a particular time.The 

essence of wavelet analysis consists of projecting the time series of interest [𝑌𝑡] =

0,1,2, … , (N − 1) onto a discrete wavelet filter often called the mother wavelet. The mother 

wavelet is represented as: 

                                 [ℎ𝑙] = (ℎ0, ℎ1, … , ℎ𝐿−1, 0, … ,0) 

The discrete wavelet filter satisfies the properties:  

          1.     ∑ ℎ𝑙 = 0𝐿−1
𝑙=0                                           (1) 
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          2.     ∑ ℎ𝑙
2 = 0𝐿−1

𝑙=0                                         (2) 

          3.    ∑ ℎ𝑙ℎ𝑙+2n = 0  ∀  non − zero integers𝐿−1
𝑙=0  𝑛               (3)                                                                 

where L is a suitably chosen positive integer and 𝐿 < 𝑁 and padded with zeros at the end so 

that it has the same dimension N as [𝑌𝑡]. 

By virtue of (1), [ℎ𝑙] is a high-pass filter. Associated with [ℎ𝑙] is a scaling filter (or father 

wavelet) which is a low-pass filter, recoverable from [ℎ𝑙] via the relationship 

                         𝑔𝑙 = (−1)𝑙+1ℎ𝐿−1−𝑙      ;     𝑙 = 0,1, … , 𝐿 − 1          (4) 

Following  Daubechies (1992),  Db1  wavelet fliter which is equivalent to Haar wavelets filter 

can be represented as: 

                           𝜓(𝑦) = 1,    if   𝑦 𝜖 [0 , 0.5] 

                           𝜓(𝑦) = −1,    if   𝑦 𝜖 [0.5 , 1] 

                            𝜓(𝑦) = 1,    if  𝑦 ∉ [0 , 0.5] 

                            ψ(𝑦) = 1,    if  𝑦 𝜖 [0 , 1] 

                            𝜓(𝑦) = 0,    if  𝑦 ∉ [0 , 1] 

The Haar wavelet is the first and the simplest. Haar wavelet is discontinuous and 

resembles a step function. For prediction purposes, we use  the stationary discrete wavelet 

transform introduced by Masset (2008). The coefficients can be obtained via a pyramid 

algorithm and the wavelet coefficients at each level 𝑗 comprise 𝑁 elements. 

The algorithm yields the 𝑁 − dimensional vector of wavelet coefficients 

            𝑤𝑡 = (𝑤𝑡
(1)

, 𝑤𝑡
(2)

, … , 𝑤𝑡
(𝑗)

, 𝑣𝑡
𝑗
)
𝑇

                                  (5)   ;                                  
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where the 𝑁 2𝑗⁄  vector {𝑤𝑡
(𝑗)

} can be interpreted as the vector of wavelet coefficients 

associated with the dynamics of the series {𝑌𝑡} on a scale of length 𝜆𝑗 = 2𝑗−1, (with 

increasing scales corresponding to lower frequencies) and {𝑣𝑡
(𝑗)

} represents the averages on 

the scale of length 2𝑗. 

2.2     White Noise Process 

          A process {𝜀𝑡} is said to be a white noise process with mean 0 and variance 𝜎𝜀
2  written 

{𝜀𝑡}~𝑊𝑁(0, 𝜎𝜀
2 ),  if it is a sequence of uncorrelated random variables from a fixed 

distribution. 

 

2.3     Multi-resolution  

Multi-resolution represents a convenient way of decomposing a given series {𝑌𝑡} into 

changes attributable at different scales.  

Let the filter coefficients be expressed in reverse order as: 

                            𝑞1 = (ℎ𝑁 , ℎ𝑁−1, … , ℎ1, ℎ0)
T 

            Let 𝑞𝑗 denote the zero-padded scale 𝑗 wavelet filter coefficients obtained by 𝑗 

convolutions of 𝑞1 with itself and let 𝜑𝑗 represent the  N
2j⁄ ×  N  matrix of “circularly 

shifted” coefficients of 𝑞1 (by a factor of 2𝑗).  

We can now write the 𝑁 × 𝑁 matrix 𝜑 as  

                                        

[
 
 
 
 
 
 
𝜑1

𝜑2
⋯
⋮
⋯
𝜑𝑗

𝜗𝑗 ]
 
 
 
 
 
 

 = 𝜑   
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where, 

𝜗𝑗 is  𝑁 × 𝑁 vector with each term equal to 1 √𝑁⁄  . 

The multi-resolution scale defines the 𝑗 th level wavelet detail  𝑑𝑗,𝑡 as:    

                𝑑𝑗,𝑡 = 𝜑𝑗
𝑇𝑤𝑡

(𝑗)
,    𝑗 = 1,2, … , 𝐽                        (6)  

where 𝑤𝑡
(𝑗)

 are the wavelet coefficients at the 𝑗th scale defined in (5).   

The wavelet smooth is defined as: 

               𝑠𝑗,𝑡 = 𝜗𝑗
𝑇𝑣𝑡

(𝑗)
                                               (7) 

Hence, the multi-resolution Wavelet  can now be expressed by the relationship: 

                      Y𝑡 = ∑ 𝑑𝑗,𝑡
J
j=1 + 𝑠𝑗,𝑡 + εt                               (8) 

where  εt is a white noise process. 

That is, each observation in the series is additively decomposed into the 𝐽 wavelet details and 

the wavelet smooth.              

 

2.4     Diagnostic Check of the Model 

The diagnostic check is based on the behaviour of the residuals obtained from fitting 

the model. For model adequacy, the residuals are expected to be uncorrelated at the various 

lags. These non correlated random varables can be confirmed if  the Autocorrelation Function 

(ACF) plot and Partial Autocorrelation Function  ( PACF) plot does not show any spike above 

or below the 95% confidence interval.   
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3.0     Data Analysis 

The data was obtained from the Central  bank of Nigerian official web site      

(www.cbn.gov.ng). The analysis was done using Minitab and Matlab softwares. 

3.1      The Wavelet Model 

                The raw data plot (figure 1) shows clearly that the series {𝑌𝑡} is non-stationary and 

contains trend. The behaviour of the Autocorrelation and Partial Autocorrelation functions 

(figures 2 and 3) suggest an 𝐴𝑅𝐼𝑀𝐴(1, 0, 0) model for {𝑌𝑡}. Also, the Autocorrelation 

function (figure 2) exhibit significant spikes at lag 12, 24, 36,… . This shows that the series is 

seasonal and since the series is a monthly data; the season 𝑠 = 12. Hence, the series {𝑌𝑡} 

contains trend, noise and seasonality. According to Renaud et al (2004), for a  series {𝑌𝑡} 

whose  dynamics is made of 𝐴𝑅𝐼𝑀𝐴(1, 0, 0) and 𝑠 = 12 cyclical components, the wavelet 

analysis can be used to remove these irregularities.  

          The Matlab script in Appendix A  was used to decompose the series {𝑌𝑡}  into trend, 

seasonal and the error component. The series {𝑌𝑡} contains 256 data points which give rise to 

a dyadic sequence {2𝐽 ;   i. e.  28}. This means that we can decompose the data set until level 

8. Nevertheless, it was found that level 3 and upward had similar results. Therefore the series 

was decomposed until level 3 as suggested by Daubechies (1992). The multi-level stationary 

Haar  wavelet decomposition was applied to the data set. The multiresolution wavelet analysis 

was then used to reconstruct the series and the significant details (𝑑𝑗,𝑡) that captured the 

seasonal period ( see figure 4 and 5 ) were added to the smooth or trend (𝑠𝑗,𝑡) so as to estimate 

{𝑌𝑡}.  

             At scale 𝑗, the wavelet detail 𝑑𝑗 captures frequencies 1
2𝑗+1⁄ ≤ 𝑓 ≤ 1

2𝑗⁄  and the 

wavelet smooth 𝑠𝑗 captures frequencies 𝑓 < 1
2𝑗⁄ . The level three multi-resolution captures 
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the components of the time series which have a frequency 𝑓 < 1
23⁄ . This means that the 

smooth 𝑠3 takes into account changes in 𝑌𝑡 that are associated with a period length of at least 

8 units of time. Therefore, s3 keeps the 𝐴𝑅𝐼𝑀𝐴(1, 0, 0) dynamics of 𝑌𝑡 while removing it 

seasonal behaviour and noise. The coefficient at detail one from the periodogram in figure 6 

depicts a high frequency noise, while the coefficients at detail three and two captured seasonal 

variation of period length 4-16 as seen in fiqure 4 and 5. The coefficients of detail three and 

two were added to the coefficients  of the smooth series so as to obtain the estimate of  {𝑌𝑡}. 

This result  given in Appendix B is a decomposition of the signal  into a range of frequency 

scales. The series needed no additional decomposition at this stage because the residual after 

reconstruction  was found to be  random as shown by the ACF in figure 7. 

        Hence from (8), the model that reconstructs the series is 

                               �̂�𝑡 = ∑ ∑ 𝑑𝑗,𝑡 + 𝑆𝑗,𝑡
203
𝑡=0

3
𝑗=1                          (9) 

3.2     Diagonistic Checks 

           The diagnostic check based on the residuals do not raise any alarm on the validity and 

adequacy of the fitted model since the residual ACF plot ( figure 7) does not show any 

significant spike above or below the 95 percent confidence interval. This means that the 

residuals are consistent with the white noise process; confirming the adequacy of the wavelet 

model.  Also, the root means square error (RMSE) obtained in fitting the wavelet model is 

calculated to be 0.15262. This shows that the strength of the discrepancies between real 

values and those estimated by the model is rather very small; indicating a good fit of the 

model. 

           In addition, the actual values of the series  {𝑌𝑡} and the values estimated by the wavelet 

model (9) are strongly positively correlated (see 𝑌𝑡 and Fits in appendix B). This is also 
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confirmed by visual inspection of the actual and estimate plot (figure 8) in which the two 

superimposed plots strongly agree and move in the same direction. This further confirms the 

adequacy of the model. 

4.0     Discussion and Conclusion 

            As noted in the review, several approaches have been made in the modelling of the 

CPI and some good results have been achieved. However, even though some of the fitted 

models were found to be adequare; they still suffer some draw backs in taking care of the 

trend (smooth) and  splitting of the given signal into components that can reflect the evolution 

trough time of the signal at a particular time. Besides, the obtained root mean square errors ( 

7.2587 and 4.2345 ) in Abraham (2014), and Akpanta and Okorie (2015)  seem to be 

moderately high and should not be considered as the best fit for the CPI series. Contrary to 

these approaches, the Wavelet approach has decomposed the series into smooth (trend) (𝑆𝑗,𝑡) 

and details (𝑑𝑗,𝑡) by using Haar stationary Wavelet technique. The reconstruction of the (𝑆𝑗,𝑡) 

at Multi-resolution three gave the smooth 𝑆3 (figure 9). The residual analysis discussed in 

section 3.2  has shown clearly that the wavelet model is adequate and by comparing its root 

means square error (0.15262) with others; the wavelet model fits the CPI series better than the 

Fourier and SARIMA aproaches noted in the review.   
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                                figure 1: Raw data plot of  {𝑌𝑡} 
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                     figure 2 : Autocorelation plot of second difference of  {𝑌𝑡} 
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               figure 3 : Partial Autocorelation plot of second difference of  {𝑌𝑡} 
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                                           figure 4: Periodogram plot for  𝐷3      
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                        figure 5: Periodogram plot for  𝐷2       
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                            figure 6: Periodogram plot for  𝐷1      
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                    figure 7: Residual autocorrelation function plot of the wavelet analysis 

 

 

 

                 figure 8: Actual and wavelet estimate plot of the CPI series 
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                        figure 9: Time Plot for Trend or Smooth  𝑆3 
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                          Appendix A 

     Wavelet Analysis Program Using Matlab 

s=consumer price index(CPI) 

(swa,swd)=swt(s,1,'db1'); 

[swa,swd]=swt(s,1,'db1'); 

whos 

Subplot(1 2,1),plot(swa);title('Approximation cfs') 

subplot(1,2,2),plot(swd);title('Detail cfs') 

A0=iswt(swa,swd,'db1); 

err=norm(S-A0) 

nulcfs=zeros(size(swa)); 

A1=iswt(swa,nulcfs,'db1'); 

D1=iswt(nulcfs,swd,'db1'); 

subplot(1,2,1),plot(A1);title('Approximation A1') 

subplot(1,2,2),plot(D1);title('Detail D1') 

[swa,swd]=swt(s,3,'db1); 

[swa,swd]= swt(s,3,'db1'); 

clear A0 A1 D1 err nulcfs 

whos 

 

Multilevel decomposition and reconstruction. 

kp=0; 

for i=1:3 

subplot(3,2,kp+1), plot(swa(i,:)); 

title(['Approx. cfs level ',num2str(i)]) 

subplot(3,2,kp+2),plot(swd(i,:)); 

title(['Detail cfs level ',num2str(i)]) 

kp=kp+2; 

end 

mzero= zeros(size(swd)); 

A= mzero; 

A(3,:)=iswt(swa,mzero,'db1'); 

D= mzero; 
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for i = 1:3 

swcfs = mzero; 

swcfs(i,:) = swd(i,:); 

D(i,:) = iswt(mzero,swcfs,'db1'); 

end 

A(2,:)=A(3,:) + D(3,:); 

A(1,:)=A(2,:) + D(2,:); 

kp = 0; 

for i = 1:3 

subplot(3,2,kp+1), plot(A(i,:)); 

title(['Approx. level ',num2str(i)]) 

subplot(3,2,kp+2),plot(D(i,:)); 

title(['Detail level ',num2str(i)]) 

kp = kp + 2; 

end 

[thr,sorh] = ddencmp('den','wv',s); 

dswd = wthresh(swd,sorh,thr); 

clean = iswt(swa,dswd,'db1'); 

subplot(2,1,1),plot(s);  

title('original signal') 

subplot(2,1,2), plot(clean); 

title('De-noised signal') 

err=norm(s-clean). 

 

Appendix B 

Estimates of Consumer Price Index using Wavelet analysis 

 

Yt S3 D3 D2 Fit D1 

27.46 
22.058 1.8197 3.5919 27.470 -0.010000 

26.96 
17.964 3.8386 5.1550 26.958 0.002500 

26.45 
20.461 4.5433 1.5681 26.572 -0.122500 

26.43 
22.581 3.9723 -0.1238 26.430 0.000000 

26.41 
24.338 2.1392 -0.0750 26.403 0.007500 

26.36 
25.730 0.8041 -0.1369 26.398 -0.037500 

26.46 
26.749 -0.0311 -0.1856 26.533 -0.072500 

26.85 
27.392 -0.3456 -0.1338 26.912 -0.062500 

27.49 
27.653 -0.1333 -0.1150 27.405 0.085000 

27.79 
27.947 0.1034 -0.0875 27.962 -0.172500 

28.78 
28.263 0.2928 0.1813 28.738 0.042500 

29.6 
28.567 0.3542 0.4413 29.363 0.237500 

29.47 
28.835 0.2606 0.2494 29.345 0.125000 

28.84 
29.074 0.0780 -0.1544 28.997 -0.157500 

28.84 
29.307 -0.0839 -0.2681 28.955 -0.115000 

29.3 
29.539 -0.1598 -0.1294 29.250 0.050000 

29.56 
29.756 -0.1275 0.0088 29.637 -0.077500 

30.13 
29.943 -0.0013 0.0781 30.020 0.110000 
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30.26 
30.083 0.1423 0.0594 30.285 -0.025000 

30.49 
30.185 0.2922 0.0006 30.477 0.012500 

30.67 
30.253 0.4184 0.0231 30.695 -0.025000 

30.95 
30.287 0.4497 0.1956 30.933 0.017500 

31.16 
30.263 0.3953 0.3537 31.012 0.147500 

30.78 
30.181 0.2244 0.1994 30.605 0.175000 

29.7 
30.065 -0.0234 -0.1262 29.915 -0.215000 

29.48 
29.961 -0.2278 -0.2531 29.480 0.000000 

29.26 
29.901 -0.3902 -0.1881 29.323 -0.062500 

29.29 
29.915 -0.4777 -0.0694 29.368 -0.077500 

29.63 
30.002 -0.4980 -0.0219 29.483 0.147500 

29.38 
30.168 -0.5277 -0.1081 29.532 -0.152500 

29.74 
30.432 -0.5088 -0.1931 29.730 0.010000 

30.06 
30.788 -0.4095 -0.2487 30.130 -0.070000 

30.66 
31.214 -0.2548 -0.2094 30.750 -0.090000 

31.62 

32.99 

31.676 

32.151 

-0.0175 

0.2198 

0.0637 

0.2369 

31.723 

32.608 

-0.102500 

0.382500 

32.83 
32.603 0.3561 0.1013 33.060 -0.230000 

33.59 
33.041 0.3923 0.0838 33.518 0.072500 

34.06 
33.484 0.2631 0.2456 33.993 0.067500 

34.26 
33.928 0.0105 0.1537 34.092 0.167500 

33.79 
34.365 -0.2508 -0.1719 33.942 -0.152500 

33.93 
34.826 -0.4875 -0.2862 34.053 -0.122500 

34.56 
35.329 -0.5466 -0.2025 34.580 -0.020000 

35.27 
35.880 -0.4148 -0.3075 35.157 0.112500 

35.53 
36.483 -0.2097 -0.2456 36.028 -0.497500 

37.78 
37.108 0.0853 0.2988 37.493 0.287500 

38.88 
37.696 0.3084 0.4531 38.458 0.422500 

38.29 
38.241 0.4098 -0.0181 38.633 -0.342500 

39.07 
38.775 0.4961 -0.1956 39.075 -0.005000 

39.87 
39.267 0.4406 0.1375 39.845 0.025000 

40.57 
39.709 0.2834 0.4825 40.475 0.095000 

40.89 
40.093 0.1041 0.3106 40.508 0.382500 

39.68 
40.421 -0.1375 -0.3388 39.945 -0.265000 

39.53 
40.770 -0.3116 -0.5313 39.928 -0.397500 

40.97 
41.174 -0.3270 -0.0769 40.770 0.200000 

41.61 
41.602 -0.2748 0.1456 41.473 0.137500 

41.7 
42.001 -0.1537 0.0556 41.902 -0.202500 

42.6 
42.402 0.0539 -0.0212 42.435 0.165000 

42.84 
42.789 0.2208 -0.1969 42.813 0.027500 

42.97 
43.178 0.3783 -0.0738 43.482 -0.512500 

45.15 
43.561 0.4641 0.4850 44.510 0.640000 
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44.77 
43.843 0.3953 0.5869 44.825 -0.055000 

44.61 
44.064 0.2248 -0.0213 44.267 0.342500 

43.08 
44.259 0.0139 -0.4525 43.820 -0.740000 

44.51 
44.523 -0.1756 -0.2369 44.110 0.400000 

44.34 
44.844 -0.4050 0.1863 44.625 -0.285000 

45.31 
45.232 -0.5628 0.2313 44.900 0.410000 

44.64 
45.698 -0.7648 -0.2481 44.685 -0.045000 

44.15 
46.273 -0.9016 -0.6063 44.765 -0.615000 

46.12 
47.017 -0.7575 -0.5219 45.737 0.382500 

46.56 
47.877 -0.5769 -0.2450 47.055 -0.495000 

48.98 
48.845 -0.1923 0.2244 48.877 0.102500 

50.99 
49.827 0.1745 0.3231 50.325 0.665000 

50.34 50.756 0.3541 0.0100 51.120 -0.780000 

              52.81 51.651 0.5875 0.0637 52.303 0.507500 

53.25 
52.476 0.6669 0.1800 53.323 -0.072500 

53.98 
53.207 0.7278 0.0906 54.025 -0.045000 

54.89 
53.822 0.7222 0.2606 54.805 0.085000 

55.46 
54.332 0.4955 0.5575 55.385 0.075000 

55.73 
54.737 0.2277 0.2806 55.245 0.485000 

54.06 
55.086 -0.1308 -0.4406 54.515 -0.455000 

54.21 
55.472 -0.3816 -0.5275 54.563 -0.352500 

55.77 
55.893 -0.4584 -0.0269 55.407 0.362500 

55.88 
56.348 -0.4727 0.1144 55.990 -0.110000 

56.43 
56.856 -0.3556 -0.0925 56.407 0.022500 

56.89 
57.425 -0.2633 -0.2019 56.960 -0.070000 

57.63 
58.074 -0.1986 -0.0975 57.777 -0.147500 

58.96 
58.806 -0.1281 0.0600 58.738 0.222500 

59.4 
59.601 -0.1344 0.0706 59.538 -0.137500 

60.39 
60.498 -0.2106 -0.0119 60.275 0.115000 

60.92 
61.493 -0.3833 -0.0950 61.015 -0.095000 

61.83 
62.576 -0.5842 -0.1319 61.860 -0.030000 

62.86 
63.693 -0.7212 -0.0988 62.873 -0.012500 

63.94 
64.795 -0.5405 -0.2819 63.972 -0.032500 

65.15 
65.841 0.0375 -0.7531 65.125 0.025000 

66.26 
66.805 0.8384 -0.4306 67.213 -0.952500 

71.18 
67.690 1.6705 1.0294 70.390 0.790000 

72.94 
68.380 2.0039 1.7913 72.175 0.765000 

71.64 
68.858 1.6380 1.0413 71.538 0.102500 

69.93 
69.175 0.7655 0.0319 69.972 -0.042500 

68.39 
69.396 -0.3278 -0.5481 68.520 -0.130000 

67.37 
69.607 -1.1097 -0.8550 67.642 -0.272500 

67.44 
69.895 -1.3320 -0.8675 67.695 -0.255000 
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68.53 
70.282 -1.1055 -0.4438 68.733 -0.202500 

70.43 
70.722 -0.6355 0.2531 70.340 0.090000 

71.97 
71.226 -0.1756 0.5475 71.597 0.372500 

72.02 
71.762 0.1947 0.0156 71.972 0.047500 

71.88 
72.305 0.5284 -0.5612 72.272 -0.392500 

73.31 
72.841 0.8061 -0.1050 73.543 -0.232500 

75.67 
73.313 0.9917 0.8875 75.193 0.477500 

76.12 
73.645 0.9273 0.9600 75.533 0.587500 

74.22 
73.830 0.5480 0.1850 74.563 -0.342500 

      73.69 
73.961 0.0230 -0.3012 73.682 0.007500 

73.13 
74.091 -0.4975 -0.4006 73.192 -0.062500 

72.82 
74.292 -0.8131 -0.4413 73.037 -0.217500 

73.38 
74.581 -0.8517 -0.3044 73.425 -0.045000 

74.12 
74.913 -0.6847 -0.0706 74.158 -0.037500 

75.01 
75.285 -0.4134 0.0038 74.875 0.135000 

75.36 
75.713 -0.0750 -0.0775 75.560 -0.200000 

76.51 
76.210 0.2781 -0.1781 76.310 0.200000 

76.86 
76.715 0.4964 0.0613 77.272 -0.412500 

78.86 
77.218 0.5856 0.6544 78.457 0.402500 

79.25 
77.666 0.4302 0.6437 78.740 0.510000 

77.6 
78.068 0.0667 -0.1469 77.987 -0.387500 

77.5 
78.530 -0.3214 -0.5763 77.633 -0.132500 

77.93 
79.097 -0.7048 -0.2875 78.105 -0.175000 

79.06 
79.786 -0.9512 -0.0044 78.830 0.230000 

79.27 
80.580 -1.0667 -0.1412 79.372 -0.102500 

79.89 
81.485 -0.9930 -0.4469 80.045 -0.155000 

81.13 
82.484 -0.6828 -0.5963 81.205 -0.075000 

82.67 
83.581 -0.2036 -0.3300 83.047 -0.377500 

85.72 
84.742 0.4184 0.2625 85.422 0.297500 

87.58 
85.855 0.8919 0.6231 87.370 0.210000 

88.6 
86.870 1.0713 0.6487 88.590 0.010000 

89.58 
87.770 0.9652 0.4650 89.200 0.380000 

89.04 
88.568 0.5645 0.0300 89.163 -0.122500 

88.99 
89.312 0.1228 -0.2644 89.170 -0.180000 

89.66 
90.043 -0.2464 -0.1812 89.615 0.045000 

90.15 
90.777 -0.5450 -0.0344 90.198 -0.047500 

90.83 
91.531 -0.6838 -0.0544 90.792 0.037500 

91.36 
92.338 -0.7070 -0.2681 91.362 -0.002500 

91.9 
93.221 -0.5838 -0.4494 92.188 -0.287500 

93.59 
94.212 -0.3034 -0.3087 93.600 -0.010000 
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95.32 
95.290 0.0061 0.0837 95.380 -0.060000 

97.29 
96.422 0.2331 0.4175 97.073 0.217500 

98.39 
97.543 0.2697 0.4250 98.238 0.152500 

98.88 
98.642 0.1575 0.0756 98.875 0.005000 

99.35 
99.711 0.0105 -0.3262 99.395 -0.045000 

100 
100.794 -0.0467 -0.3719 100.375 -0.375000 

102.15 
101.897 0.0127 -0.0519 101.857 0.292500 

103.13 
102.992 0.0684 0.3025 103.363 -0.232500 

105.04 104.082 0.0225 0.4231 104.527 0.512500 

104.9 
105.140 -0.1147 0.1144 105.140 -0.240000 

105.72 
106.203 -0.2472 -0.4506 105.505 0.215000 

105.68 
107.284 -0.2367 -0.5869 106.460 -0.780000 

108.76 
108.413 -0.0155 -0.1125 108.285 0.475000 

109.94 
109.519 0.2438 0.3644 110.128 -0.187500 

111.87 
110.601 0.3895 0.5244 111.515 0.355000 

112.38 
111.621 0.3592 0.3569 112.338 0.042500 

112.72 
112.596 0.1561 -0.1050 112.647 0.072500 

112.77 
113.563 -0.0378 -0.4056 113.120 -0.350000 

114.22 
114.525 -0.0572 -0.2675 114.200 0.020000 

115.59 
115.479 -0.0014 0.0475 115.525 0.065000 

116.7 
116.410 0.0734 0.3394 116.823 -0.122500 

118.3 
117.340 0.0995 0.3006 117.740 0.560000 

117.66 
118.239 -0.0655 -0.0856 118.087 -0.427500 

118.73 
119.177 -0.1967 -0.2275 118.753 -0.022500 

119.89 
120.195 -0.2747 -0.2250 119.695 0.195000 

120.27 
121.267 -0.3122 -0.2800 120.675 -0.405000 

122.27 
122.416 -0.2750 0.0619 122.203 0.067500 

124 
123.603 -0.3334 0.4481 123.718 0.282500 

124.6 
124.812 -0.3561 0.0069 124.463 0.137500 

124.65 
126.065 -0.3456 -0.7519 124.968 -0.317500 

125.97 
127.391 -0.1830 -0.5131 126.695 -0.725000 

130.19 
128.753 0.1395 0.3325 129.225 0.965000 

130.55 
130.057 0.3586 0.5644 130.980 -0.430000 

132.63 
131.329 0.5370 0.2862 132.153 0.477500 

132.8 
132.524 0.4839 0.0000 133.008 -0.207500 

133.8 
133.683 0.2750 -0.0225 133.935 -0.135000 

135.34 
134.815 0.1258 0.0938 135.035 0.305000 

135.66 
135.900 -0.0353 -0.0575 135.808 -0.147500 

136.57 
136.944 -0.0725 -0.1838 136.688 -0.117500 

137.95 
137.950 -0.0280 -0.0125 137.910 0.040000 

139.17 
138.958 0.0053 0.1112 139.075 0.095000 

140.01 
139.949 0.0564 0.0575 140.063 -0.052500 
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141.06 
140.940 0.0855 -0.0075 141.017 0.042500 

141.94 
141.907 0.0925 -0.0144 141.985 -0.045000 

143 
142.856 0.1092 0.0250 142.990 0.010000 

144.02 
143.794 0.1250 0.0456 143.965 0.055000 

144.82 
144.713 0.1239 0.0256 144.862 -0.042500 

145.79 145.619 0.0869 0.0562 145.762 0.027500 

146.65 
146.520 0.0094 0.1031 146.633 0.017500 

147.44 
147.419 -0.0853 0.0013 147.335 0.105000 

147.81 
148.324 -0.1706 -0.1631 147.990 -0.180000 

148.9 
149.254 -0.1883 -0.1631 148.902 -0.002500 

150 
150.208 -0.1519 -0.0562 150.000 

151.122 

0.000000 

151.1 
151.188 -0.0983 0.0331 -0.022500 

152.29 
152.190 -0.0383 0.0831 152.235 0.055000 

153.26 
150.696 2.4817 0.0319 153.210 0.050000 

154.03 
146.691 7.4994 -0.0531 154.138 -0.107500 

155.23 
140.164 15.0741 -0.0681 155.170 0.060000 

156.19 
131.090 25.2141 -0.0513 156.253 -0.062500 

157.4 
119.444 27.9198 10.0388 157.403 -0.002500 

158.62 
105.206 23.1216 30.2450 158.573 0.047500 

159.65 128.355 10.7358 20.3894 159.480 0.170000 
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