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Abstract: This paper is the witness of the coupling of decomposition method with the
efficient Sumudu transform known as Sumudu decomposition method to build up the exact
solutions of the linear and nonlinear system of Pantograph model equations. Three
mathematical models are tested to elucidate effectiveness of the method. The obtained
numerical results re-confirm the potential of the proposed method. In nonlinear cases this
method uses He’s Polynomials for solving the non-linear terms. It is observed that suggested
scheme is highly reliable and may be extended to other highly nonlinear delay differential

models.
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1. INTRODUCTION

Many physical phenomenons are mathematically modeled by differential equations which are
ordinary and Delay Differential equations. Delay differential equations differ from ordinary
differential equation in two ways i.e. solution and initial data. Both depend in delay
differential equations at previous state of time. Pantograph equation is a kind of Delay
Differential equations. In 1851, Taylor was the first who gave name to these equations. This
type of equations have been studied due to various applications which arises in many fields of
sciences like electric systems, population dynamics, environmental science, natural science
and life science, electro-dynamics, number-theory, engineering and mathematics. Liu and Li
solved multi-pantograph delay equation by Runge-Kutta methods [2]. Evans and Raslan
solved the delay differential equation by ADM [3]. Keskin et al. got approximate solution by
via method of differential-transform [4]. Sezer & Dascioglu established Taylor method and
advanced case or retarded case of pantograph equations generalized type solved through this
technique. Yu solved Multi-pantograph equation by VIM [6]. Sezer et al. get solution of
multi-pantograph equation of approximate type by using coefficients variable [7]. Singular
Perturbed Multi-Pantograph Equations were solved by S. P. Qian and F. Z. Geng, with
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Method of Reprociding Kernel [8]. Cherruault, Adomian, Abbaoui, and Rach, controlled
Convergence of Decomposition Method [9]. Delay dynamic system was studied by EI-Safty

et al. with the spline function of 3-h step for getting approximate solution [11].

Numerous schemes have been established for explaining advanced as well as retarded
pantograph equations. First time Watugala introduced Sumudu transform in his effort of work
(Watugala, 1993). Many people then further developed it and used it to get solution of many
problems. Belgacem et al recognized its fundamentals properties in (2003, 2006). Its
Properties are very different and valuable that can help in science and engineering for solving

many complicated applications.

On view of the above approaches we are intent to solve system of Pantograph equations by
Sumudu Decomposition method, because this method yields an approximate solution in a

small number of terms and is easy to compute.
2. ANALYSIS OF THE METHOD

Let A be a space of functions as follows
A={f(t):7,,7, >0,|f () < Me",if t e (-1)’ x[0,o0)}, (1)

Now the well-defined Sumudu-transform of function is
S[f(t)] = j f (ut)etdt. )
0

To demonstrate basic idea of SDM for system of Multi-Pantograph equations

yi () = ey, (1) + h (t, vy, (©), v, (p,1)).

Yo (1) = a,y, (1) + h, (t, y, (1), v, (p,;1)),
: )

Yo (©) = Y () + h (€, v, (©), v, (p;1)),
Vi (0) = VYo 1=1,...,n, 1=12,...,

Where «;,y,,€ C and h; are functions of analytical type, 0<q; <1.

This method contains 1stly applying Sumudu transform
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S[y, )] = S[Ry (Y1 (1), Y2 (€),e-vvs Vo (€)) + Ny (y2 (1), Y (0),eeey Y, (1)) + 1, ]
S[y, )] = S[R, (Y, (1), Y5 (), Vo (€) + N5 (V1 (€), Yo (©),eeesy Yo (1) + 1, ]

4)
Sy ] = S[R (Y (®), Y2 )1 Yo () + Ny (Y2 (), Vo (), Vo (©) + 1 ]
Using initial conditions
yi (O): yiO’ I =1121"1n1 (5)

Wherever N, , R.and h. are non-linear, linear operators and analytical functions respectively.

By the Differentiating property & initial conditions, to become

S[Yl(t)]=§[vl<0)]+uS[Rl(yl(t),yz(t) ...... Yo )+ N (v, (1), Y, (0),., v, (©)+ 1, ]

s[v,)]= %[YZ (0)]+ US[R, (¥, (1), Y, (1), Yo () + N, (v, (0), Y, ),y ¥, (1) + 1, ]

©)
S[Y, ©]= S, @]+ USIR, (1,0, Y2 O Yy )+ Ny (1,0, Y5 @ Yo ) +h, ]
The solution can be decomposed such as
(t)zgy” ©,  i=12..n, )

By applying Sumudu Inverse transform, everywhere the termsy; (t) calculate recursively.

The non-linear term can be decomposed as
Ni (Y1, Yoo ¥a) =D Hy,  i=12,..n, (8)
j=0

H; are He’s Polynomials. It can be computed by formula

1d’ = .
H, = Th — [N Zc;p Yiloor 1,=12...n, 9)
J

3. NUMERICAL DEMONSTRATION

3.1 Consider the system of Pantograph Equation
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y, () =e" —e""+ Y1)+ %O =2 (1)
' t (10)
Yo (t) = e +e''? - Yo (E) - yl(t) -Y, ®),
along with conditions
y:(00=1 y,(0) =1 (11)
By means of 1% step of method,
' 2 t
[ ©] =5 e 4 1.) 10 -7.0
. (12)
[y 0]=s[e'+e" v, -0~ 1,00
Using differentiation property with initial condition, Eq.12 becomes
S, ) =1+usle —e"? ]+ u{yl(%) BAOR (t)}
(13)
t t/2 t
S O]l -7 Jrus| v, - 0 1,00
Moreover,
1 2 t
S[Yl(t)] - 4_m_1_—u+ US|:y1(E) + yl(t) - Y (t)}
2 14)
1 2 t
S, O] =2+ o+ uc{— ACRSACESZ <t)}
-u o, u
2
Applying Inverse transform of the method and solution can be decomposed as
y,(t)=>ply, @), =12, 15)
j=0

It becomes
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o0 . ~ . o0 . t o0 . o0 )
doply,t)=4-e"-2e"2+pS 1{uS[Z p’ylj(§)+2 ply, ®->] p‘yz,-(t)ﬂ

j=0 j=0 j=0 j=0

J J ] ] (16)
o0 ) . o0 ) t o0 A o0 )
Zmek~%@+%“+®{wLZNWM?—ZWWN%ZNWMﬂ}
j=0 j i=0 j=0

j=0
Consequently,

P yo(t) =4—e™t — 2™
P°; Ypo(t) =—2+€' +2e"2,

zero Coefficient solution
4 -

1.0

Fig.1: Zeroth coefficient solution

p';u,(t)=16+10t —e " —e' +2e™'* —8e"? —ge"'*
phiu,, (t) =12 e —e' —2e"? —8e'*,
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1st Coefficigant solution
1h
10 05 : 05 10
X
¢
st
i
oL
Fig.2: 1st coefficient solution
By calculating other components and p — 1, solution is
y,(t)=¢e', y,(t)=e™". (17)
solution,
Fig.3: Exact solution
3.2 Consider system of Pantograph equation
v, () =t cos(%j +2y, (%) Y,
v, (t) :1—tsin(t)—2y32(%) (18)

Ys () = ~tcos(t)— v, (1) + v, (1),
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along with conditions
y:(0)=-1 y,(0)=0, y,;(0)=0, (19)

Taking the Sumudu transform of Eq. 18,

wn

3 0] =5 -teog 20,500

s v )]- S[l—tsin(t)— 2y32(%)} (20)

s:y;(t)} = S[-teos(t)- v, (t) + y, ()

Using differentiation property with initial condition, Eq.20 becomes

u2
u(1—4) .
s[v,(®)]=-1-u —~— |+ uS[Zyz (E) +Y; (t)}

S[Y,(t)]=ul1-2 u’ . +uS{—2y32(l)} (21)
i (1+ uz) 2
SN )= {z(; g;)]]+u3[ 10+ 7,0]

Applying Inverse transform of the method and solution can be decomposed as
yit)=>p'y; (1), =123, 22)
j=0

Eqg. 21 gives

i Py, () = 3—4cos(%j— 2tsin(%} + s-{us{zi Py, (%) + i P'Ys; (t)ﬂ

i p'y,; (t) =t—sin(t)+tcos(t)+ S| uS —Zi pjysjz(é)ﬂ (23)

j=0

> P15y () =1-tsin(t)-cos(t)}+ S us| =D p'y,, 0+ p"yz,-a)ﬂ,
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Consequently,

t . (t
O-y (t)=3—4cos| — |- 2tsin| —
ot =3-seo ) s

P°; Y, (t) = tcos(t)+t —sin(t)
p°; Yy (t) =1—tsin(t)—cos(t),

zeroth order solution,

10 -

Fig.4: Zeroth coefficient solution

t? t ('t
Ly (t)=-8+t+—+8cos| — |—tcos(t)+ 2tsin| —
P Yau (D) o (zj (t) (2)
1 . (t t
Py, () = -2t +85|n(§j -2t COS(EJ

2
p'; ya, (t) =303t + tz_l +tsin(t)+2cos(t)+ 83in(%j - 8tsin(%j -32 cos[%j,

By calculating other components and p — 1, it gives exact solution

y, (t) = —cos(t)
Y, (t) = tcos(t) (24)
Y, (t) =sin(t).
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Solution of y t

Fig.5: Exact solution of y (t)

3.3 Consider system of Pantograph equations

yl' (t) =Y (t _1)
Y, (©) =y, (t=1)+ y,(t—0.2) (25)
s (1) =, (1)

along with conditions
(0 =1 y,(0)=1 y,;(0)=1. (26)

By applying the 1% step of Method

wn

:yl' (t)} = S[y,(t-1)]
s:yz' (t)} = S[y,(t-1)+ y, (t-0.2)] (27)

s:ys'(t)} = sly, ()]

Using differentiation property with initial condition, Eq. 27 becomes

sy, (t)} — 1+ uS[y, (t ~1)]

S| Y, (0| =1+ us[y, (- + v, (t-02)] (28)

S|, (] -1+ usly. )
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Applying Inverse transform of the method and solution can be decomposed as
yi(t)= ,i; ply, ), =123 (29)
EQ.28 becomes
JZ: ply,; (1) =1+ us{é ply;(t —1)}

D oply, @) =1+uS| > ply, -1+ p"yz,-(t—O-Z)} (30)
j=0 L i=0 =0

Z pjyaj(t) =1+uS Z pijj(t):|’
j=0 | j=0

By comparing the co-efficient of p , we have

po; Y10 (t) =1
po; Yoo(t) =1
P’ Yaolt) =1
zero Coefficient solution
yt
2.0 j
st
05 —
10 05 05 T
Fig.6: Zeroth solution
1. _
P yll(t) =t
pl; yZl(t) =2t
pl; yBl(t) =1,
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1st Coefficient solution

yt
2k

Fig.7:1% coefficient solution

2

t
pz:ylz(t)za—t,

3t?
%Y, (t) = 7—1-‘“1
pz; ysz(t) :tzr

2nd Coefficient solution
yt

05 -

Fig.8: 2" coefficient solution

By calculating other components and p — 1, then we have
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Yi (t) = et/z
y,(t) =e* (31)
1 1 5
t)=—+—-¢€",
Y (t) )
solution

yt

4+

Fig.9: Exact solution
4. CONCLUSION

The applications of the Sumudu decomposition method (SDM) has been extended
successfully for solving the linear and nonlinear system of multi-pantograph differential
equations. The leading benefit of the SDM is the quick convergence of the solutions.
Numerical and graphical representation of the determined results verifies the fully capable to
cope with the nonlinearity of the physical problems. It is concluded that the SDM is powerful
method to tackle such proposed mathematical models.
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