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Abstract 
In this paper, ring R satisfying in the condition xy = (yx)2a(yx)2 for all x; y 2 R n U with 

some a in R and is called Unit-free strongly commuting Regular Rings. We observe 

the structure of a Unit-free strongly commuting regular ring. In this paper shown that 

R is a Unit-free strongly commuting regular ring, then R is an abelian ring. we also 

proved that R is a Unit-free strongly commuting regular ring, then J(R) _ N (R) and 

shown that R is a local ring with J(R)2 = 0 and also, we proved some main properties 

of the Unit-free strongly commuting regular rings and we give a necessary and su 

cient condition that a ring is Unit-free strongly commuting regular. 

Keywords: regular rings; Strongly commuting regular rings; Unit free commuting 

regular rings; reduced rings: 

 

1 Introduction  
 

Let R be a ring. In 1936, Von Neumann de ned that an element x 2 R is regular if x = 

xyx, for some y 2 R, the ring R is regular if each element of R is regular. some 

properties of regular rings have been studied by Goodearl [4] and sher and snider [6]. 

A ring R is called -regular if for each x 2 R exists a positive integer n, depending on x, 

and y 2 R such that xn = xnyxn, and is called strongly - regular if for each x 2 R exists 

a positive integer n, and y 2 R such that xn = xn+1y. 

 

The strongly - regular has roles in ring theory as we see in [1], [8]. In 2004 Safari 

Sabet and Yamini [2] de ned that a ring is called commuting regular if for each x; y 2 

R there exists a 2 R such that xy = yxayx, see [2]. Then some results on commuting 

regular rings have been studied in [3, 5, 7, 8]. R is called Unit-free commuting regular 

ring if for any x; y 2 R n U there exis. 

 

a 2 R such that xy = yxayx. N = N (R) the set of all nilpotent elements in R. J = J(R), 

Jacobson radical of R and Id(R), is the set of all idempotent elements in R. 

 

we extend Unit-free commuting regular rings and introduce the concept of Unit-free 

strongly commuting Regular Rings as following: 
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2 Basic Properties of Unit-free strongly commuting Regular Rings  
 
 
 

De nition 1. R is called a Unit-free strongly commuting Regular Ring if for each x; y 

2 R n U there exists a 2 R such that xy = (yx)2a(yx)2. 

 

Proposition 1. Let R be a Unit-free strongly commuting regular ring, then R is an 

abelian ring. 

 

 

Proof. Let e be an arbitary nontrivial idempotent in R and x 2 R. 

 

case(1) If x 2 R n U , then there exist a; b 2 R such that ex = (xe)2a(xe)2, xe = 

(ex)2b(ex)2 from these we have exe = (xe)2a(xe)2 , exe = (ex)2b(ex)2 which 

implies that ex = xe for every x 2 R n U . 

 

case(2) If x 2 U the it not hard to see that (ex   exe)2 = 0, so that ex   exe 2= U . 

 

 

consider the elements e and ex   exe. 

 

As R is Unit-free strongly commuting Regular Ring, there exists a 2 R such that 

 

e 

(ex exe) = ((ex 

exe) e)2 a 

((ex exe) e)2 = 0: 

Thus we conclude that 

ex 

exe = 0 and so ex = exe. similarly (xe   exe)2 = 0 and so 

there 

exists an element b 2 R such that   

(xe exe) e = (e (xe 

exe))2 b (e 

(xe exe))2 = 0: 

 

Thus xe = exe and hence ex = xe, as required. 

 

Lemma 1. Let x be an element in the Jacobson radical J(R). If for y 2 R, yx = y that 

y = 0 

 

Proof. There exists t 2 R such 

that x + t   tx = x + t xt = 0 

therefore, 0 = y(x + t   xt) = yx + yt yxt = y + yt yt = y. 

 

Proposition 2. Let R be a Unit-free strongly commuting regular ring, then J(R) _ N 

(R). 
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Proof. Let x 2 J(R) be an arbitary element. 

 

since R is Unit-free commuting regular, it is for some a 2 R, xy = (yx)2 a (yx)2. if x = y 

then x2 = x4ax4, but in view of Lemma (1), x2 = 0. 

 

Therefore J(R) _ N (R) 

 

Lemma 2. Let R be a local ring with J(R)2 = 0. Then R is Unit-free strongly 

commuting regular ring. 

 

 

Proof. Let R be a local ring and x; y 2= U . 

 

Then xR _ J(R) and yR _ J(R), implies x; y 2 J(R). 

 

As J(R)2 = 0, we get xy = 0 = yx. and so xy = (yx)2c(yx)2 = 0 for every c 2 R, which 

implies that R is Unit-free strongly commuting regular ring.  

 

Proposition 3. Let R be a Unit-free strongly commuting regular ring, then N = N (R), is 

a nilpotent ideal. In fact RN = NR = N 2 = 0 

 

Proof. Let x 2 N then, there exists a 2 R such that x2 = x4ax4. clearly, x4ax2; x2ax4 are 

idempotent elements because (x4ax2)2 = x4ax2x4ax2 = x4ax2, (x2ax4)2 = x2ax4x2ax4 = 

x2ax4 therefore, it is in the center of R. This shows that 

 

x2   =  x4ax4 = x6ax2
 

 

= x10ax2ax2  

 

= x14(ax2)3a  

 

= _ _ _  

 

but x is a nilpotent element, so x2 = 0. 

 

Now suppose that y 2 R n U is an arbitary element. 

Unit-free strongly commuting regularity of R implies 

that; 

 

xy  =  (yx)2a(yx)2
 

 

= (yx)yxa(yx)2  
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= yx2aybxay(yx)2 = 0  

 

For some a and b in R, this proves that xy = 0. Therefore NR = 0 and particular N 2 = 

0. similarly, we can show that RN = 0. To complete the proof it su ces to note that for 

every x; y 2 N , (x + y)2 = x2 + xy + yx + y2 = 0.  

 

Proposition 4. Let R be a Unit-free strongly commuting regular ring, if R is semiprime, 

that R is reduced. 

 

Proof. It is obvious by proposition (3) that NRN = 0,therefore N = f0g since R is 

semiprime, so R is Reduced.  

 

Corollary 1. Let R be a Unit-free commuting regular ring, if R is semiprime then 

it is semiprimitive. 

 

Proof. by propositions (4),(2) 

 

Corollary 2. Let R be a Unit-free commuting regular ring, if R is reduced 

then it is semiprimitive. 

 

Proof. by propositions (4), corollary (1) 

 

Lemma 3. suppose that R a domain Unit-free strongly commuting regular, then R is a 

diusion ring. 

 

Proof. since R is a Unit-free strongly commuting regular, therefore for each 0 = ̸ x 2 R. 

there exist a 2 R such that x2 = x4ax4. 

 

But e = x2ax4 is an idempotent element, this implise that x2 = x2e and R being a 

domain we get x = xe. 

 

For every y 2 R, xy = xey. so y = ey. 

That is e = 1R. but x2ax4 = e implies that every x has an inverse. thus, R is a division 

ring. 
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