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Bayesian estimation of the scale parameter and survival function of weighted weibull         

          distribution under different loss functions using r software 
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Abstract: In this paper, we propose to obtain the Bayesian estimators of the scale parameter of a 

three parameter weighted weibull distribution, based on non-informative and informative priors 

using Entropy loss function and Quadratic loss function. The risk functions of these estimators 

have been studied. A real life example has been used to compare the performance of the 

estimates under different loss functions. 
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1 Introduction  

The Weibull distribution is a well known common distribution and has been a powerful 

probability distribution in reliability analysis, while weighted distributions are used to adjust the 

probabilities of the events as observed and recorded. The Weibull distribution can also be used as 

an alternative to Gamma and Log–normal distribution in reliability engineering and life testing. 

Gupta and Kundu (2009) proposed a weighted exponential distribution by using the method of 

Azzalini (1985). The proposed model can be used as an alternative to Gamma and Weibull 

distribution. Saman et al. (2010) proposed the weighted Weibull model based on an idea of 

Azzalini (1985). They studied basic properties of the distribution including moments, generating 

function, hazard rate function and estimation of parameters. Hamdy M. Salem (2013) worked on 

Inference on Stress-Strength Reliability for Weighted Weibull Distribution. S.Dey et al. (2014) 

discussed the properties and methods of estimation for the weighted weibull distribution.  

Farahani and Khorram (2014) considered the Bayesian statistical inference for the weighted 

exponential distribution.  

A new three-parameter distribution, called the new weighted weibull distribution (NWW) 

has been introduced recently by Suleman Nasiru (2015). The new weighted weibull distribution 

has the probability density function (pdf) 

     

0,,,0,)1()( ))((1   
 xexxf xx

    )1.1(  

  and the cumulative distribution function cdf of the distribution is  

       ))((1)(
 xxexF          )2.1(  

With one scale parameter  and two shape parameters  and .  

The corresponding survival function is given by  

     
))(()(1)(

 xxexFxS         )3.1(  
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and the hazard function is  

      
1)1()(    xxh         )4.1(  

2. Prior and Loss Functions 

The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the 

Bayesian viewpoint, there is no clear cut way from which one can conclude that one prior is 

better than the other. Nevertheless, very often priors are chosen according to one’s subjective 

knowledge and beliefs. However, if one has adequate information about the parameter(s), it is 

better to choose informative prior(s); otherwise, it is preferable to use non-informative prior(s). 

In this paper we consider both types of priors: the Jeffrey
,
 s prior and the natural conjugate prior.  

       The Jeffrey’s prior proposed by Jeffrey, H.(1964), is given as: 

                       0,
1

)(1  


g

 

       )1.2(  

The conjugate prior in this case will be the gamma prior, and the probability density function is 

taken as 

               0,,,)( 1
2 


    bae

a

b
g ab

a

      )2.2(  

With the above priors, we use two different loss functions for the model (1.1). 

a. Quadratic Loss Function (QLF) 

The use of a quadratic loss function is common, for example when using least squares 

techniques. It is often more mathematically tractable than other loss functions because of the 

properties of variances, as well as being symmetric: an error above the target causes the same 

loss as the same magnitude of error below the target. If the target is t, then a quadratic loss 

function  

          )()( xtCx    

For some constant C, the value of the constant makes no difference to a decision, and can 

be ignored by setting it equal to 1. 

The quadratic loss function can also be defined as 
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




l                       

b. Entropy Loss Function  

In many practical situations, it appears to be more realistic to express the loss in terms of the 

ratio ̂ . In this case, Calabria and Pulcini (1994) point out that a useful asymmetric loss 

function is the entropy loss function: 

                   ]1)log([)(   pL pp

                                                                                                           

where  







  and p>0, whose minimum occurs at  


. Also, the loss function )(L has been 

used in Dey et al (1987) and Dey and Liu (1992), in the original form having p =1. Thus, )(L

can be written as 

 

                   .0;]1)log([)(  ccL   

 

3. Maximum likelihood Estimation of the scale Parameter α 

 

Let us consider a random sample ),...,,( 21 nxxxx   of size n from the weighted weibull 

family. Then the log-likelihood function for the given sample observation is 
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As shape parameters  and are assumed to be known, the ML estimator of scale parameter   

is obtained by solving the  
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4. Bayesian Estimation of scale parameter  and S under the Assumption of Jeffrey’s Prior 

4.1 Bayes estimator of α 

Combining the prior distribution in (2.1) and the likelihood function, the posterior density 

of  is derived as follows: 


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Therefore from (4.1) we have 
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which is the density kernel of gamma distribution having parameters andn1  
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4.1.1 Estimation under Quadratic loss function 

By using quadratic loss function 
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Now solving 0
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, we obtain the Baye’s estimator as 
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4.1.2 Estimation under Entropy Loss Function 

By using entropy loss function  1log)(   cL for some constant c the risk function 
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4.2 Bayes estimator of S(x) 
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By using posterior distribution function (4.2), we can found the survival function such that  
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Where 1 has been defined above 

 

5. Bayesian Estimation of  and S under the Assumption of Gamma Prior 

5.1 Bayes estimator of α 

Combining the prior distribution in (2.2) and the likelihood function, the posterior density 

of  is derived as follows: 
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5.2 Bayes estimator of S(x) 

By using posterior distribution function (5.2), we can found the survival function such that  
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Where 2 has been defined above 

Numerical Example: In this section, we analyze the data set from Bjerkedal (1960) represents 

the survival times, in days of guinea pigs injected with different doses of tubercle bacilli. The 

data set consists of 72 observations and are listed below: 12, 15, 22, 24 ,24, 32, 32,33, 34, 38, 38, 

43,44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60,61, 62, 63, 65, 65, 67, 68,70, 70, 

72, 73, 75, 76,76, 81, 83, 84, 85, 87, 91, 95,96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 

146, 175, 175, 211, 233, 258,258, 263, 297, 341, 341, 376. 
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Table 1: Bayes Estimates of 𝜶 under Jeffreys Prior 

 

 

 

 

 

Table 2: Bayes Estimates of 𝜶 under gamma prior 

 

 

 

 

 

Below are given the tables computing risks of the  estimates. 

Table 3: Bayes Risk of λ under Jeffrey’s Prior 

 

 

 

 

 

Table 4: Bayes Risk of λ under gamma prior 

 

 

 

 

    MLE QLF ELF 

0.5 1.0 0.053431 0.051947 0.052689 

1.0 1.5 0.004007 0.003896 0.003952 

1.5 2.0 0.000216 0.000209 0.000213 

    a b MLE QLF ELF 

0.5 1.0 0.2 1.2 0.053431 0.052049 0.052791 

1.0 1.5 0.2 1.2 0.004007 0.003907 0.003962 

1.5 2.0 0.2 1.2 0.000216 0.000210 0.000213 

    QLF 
ELF 

C=0.5 C=1.0 

0.5 1.0 0.014084 
3.606524 7.213047 

 

1.0 1.5 0.014084 4.901673 9.803346 

1.5 2.0 0.014084 6.362591 12.725182 

    a b QLF 
ELF 

C=0.5 C=1.0 

0.5 1.0 0.2 1.2 0.014045 3.606959 7.213918 

1.0 1.5 0.2 1.2 0.014045 4.901696 9.803393 

1.5 2.0 0.2 1.2 0.014045 6.362583 12.725166 
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Conclusion: 

It is observed from table 1 to 4 the comparison of Bayes posterior risk under entropy loss 

function and quadratic loss function using Jeffrey’s prior and gamma prior has been made 

through which we can conclude that Quadratic loss function is more preferable loss function and 

among the priors gamma prior provides least posterior risk within each loss function. Hence we 

conclude that gamma prior is best for weighted weibull distribution. 
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