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Abstract 
A mathematical model is constructed to study the effect of predation on two competing species in which 

one of the competing species is a prey to the predator whilst the other species is not under predation.  We 

assume that all species can move by diffusion and study the spatial structure of the species and obtained 

conditions for the existence and stability of equilibrium solutions . The results indicate the possibility of a 

stable coexistence of the three interacting species in form of stable oscillations under the reflecting 

boundary conditions.  Numerical simulations  our  .   By utilizing Liapunov-like 

fu n c t i o n s  and differential inequalities we were able to establish that the system is dissipative. 

 

1.  Introduction 

 

The dynamic relationship between  and their preys has long been and will continue to be one of the 

dominating themes in both ecology and mathematical biology due to its universal existence and importance 

(Bohner et al, 2006).  In predation-mediated coexistence, predation may have a tendency to increase 

species diversity in competitive communities.  Kan-On and Mimura (1998) showed that in a 3-component 

diffusion system where all the species can move by diffusion, the   spatial structure of the competing 

species may coexistence in the presence of predators.                                                                                                                       

Similarly, Ndam et al (2012) using a combination of Holling’s type III and BD functional responses set 

out conditions for diffusive instability in a 3-component system. In this paper, we consider a 

mathematical model in which two species are engaged in a competition for resources and a third other 

species is predating one of the competing species. We assume that all species can move by diffusion and 

study the spatial structure of competing species that may coexist in the presence of predation.  The aim of 

this paper is to investigate the effects of predation mediated coexistence and density dependence 

diffusion and cross diffusion to produce segregation effects and the creation of spatial niches. 

 

2.  Model equations 
 

In order to study this situation, we propose here the following 3-component 

reaction-diffusion system for two competing species N1 and N2 in which one of the 

species N1 is prey to a predator N3 : 
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 System (1) can be scaled as follows: 
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where we have taken 2 1 3 1 4 1 5 1/ , / , / , /D D D D D D D D        and 12 21,   are the 

interspecific competitions rates. 

 

Let us begin by reviewing the qualitative behaviours of the diffusionless systems deriving from (3): 
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The s tead y states, are singularities o f  the solutions f1 (X, Y, Z )  = f2 (X, Y, Z )  = 

f3 (X, Y, Z ) = 0, which, from (4a), (4b) and (4c), are 

0, 0, 0X Y Z      and 

12, 1X Y        
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provided .      

The stability of the steady states is again determined by the community m a t r i x  

which, for equations (4a), (4b) and (4c) is given as: 
 

 0,0,0

1 0 0

0 0 .

0 0

J 

 

 
 

  
   

         (6) 

The characteristic polynomial is 

     3 21 0                            (7) 

and the corresponding eigenvalues are λ := 1, ρ, −µ−γ.  This steady state is unstable. 

Next we find the community matrix at the endemic state (X ∗, Y ∗, Z ∗) which is given as: 
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The characteristic equation of the variational matrix 
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According to Routh-Hurwitz criterion, the interior equilibrium E = (X ∗ , Y ∗, Z ∗) is 
locally asymptotically stable if the following conditions hold:  
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1 2 1 2 30, 0, .a a a a a           (10) 

 

Following a similar procedure as  outlined in Freedman a n d  Ruan(1995),  we   

 

next show that the system is dissipative.  Let 
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then the equations (4a), (4b) and (4c) can be transformed into 
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Choose a Liapunov function as follows 
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Hence the diffusionless system is dissipative. 
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3. Model with Cross and Self-diffusion 
 

To examine the linear stability of the steady state, we recast the system (4a), (4b) and 

(4c) in the form 
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Where 
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Now, assume a spatially uniform steady state (X ∗ , Y ∗ , Z ∗) such that F (X ∗ , Y ∗, Z ∗ ) = 0, k = 1, 2, 

3 and perturb the population densities of the species as 

   , , ,X x t X X x      

   , , ,Y x t Y Y x             (18) 

   , , .Z x t Z Z x     

Substituting (18) into and linearizing, one obtains 
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is the Jacobian of the system evaluated at the equilibrium  point (X ∗ , Y ∗ , Z ∗). 
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The linear stability of (19) can be examined u s i n g  the normal modes  approach, by assuming 

solutions of the form , ,ilx ilx ilxX e Y e Z e                                                                              

where λ and l   are constants.  Hence the eigenvalues satisfy the equation 
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The characteristic equation is given as 
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   For stability the following conditions should be satisfied 

1 20, 0    and 1 2 3.           (24)  

Diffusive instability sets in if any of conditions (24) is violated. 

 

4. Numerical Simulation 
 
In this section, we give some numerical simulations supporting our theoretical predictions.  Figure 1a-d 

demonstrate that solutions for the 3-component system exist such that X , Y   and  Z  exhibit  damped  

oscillations  for the parameters:   ρ = 8/3, a12   = 0.8, a21   = 

1.2, µ = 0.2, ω = 0.9, σ = 1.2, γ = 0.02. When Z is plotted against X , we observed a stable 

spiral and when the competing species are viewed against each other, a more complex scenario is 

observed.  First there is a spiraling in and what looks more like a limit cycle.  In Figure 2, the values for 

α12 and α21 were perturbed to demonstrate the effect of interspecific competition amongst the 

competing species.  We noticed that as the interspecific competition (α12 ) increases  the X  species are 

driven  to extinction whereas  species Y  increases. Similarly as (α21 ) increases  the Y  species are driven  

to extinction whereas the X  species increases  in the presence  of predation.  These indicate that the 

interspecific competitions drive the dynamic behaviour of the diffusionless system. Figure 3 is the 

numerical simulation of the 3-component problem with self and cross diffusion.  The numerical 

solutions showed that species X , Y  and  Z  stably exist in a sustained oscillation.  What we do not 

know is whether cycles are drawn by the classical predator-prey mechanism or some other factors may 

be involved in producing the oscillations. In figure 4 competing species experience habitat segregation 

effects and the creation of spatial niches under predation.  Figure 
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5 shows the effects of cross-diffusion on the spatial density distribution of the interacting species. Here 

species Y diffuse faster than the others. This scenario is understandable since the specie is not under predation 

 

          

   

 

Figure 1. Dynamic behaviour o f  predator-prey-competition model.  

Parameters:  ρ = 8/3, a12  = 0.8, a21  = 1.2, µ = 0.2, ω = 0.9, σ = 1.2, γ = 0.02 
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Figure  2. Bifurcation  picture as α12   & α21   are varied.   The  parameters chosen for 

the model are:  ρ = 8/3, α12  = 1 − 2.5, α21  = 0.5 − 2, µ = 0.2, ω =1.6, σ = 1.6, γ = 

0.02 

            

 

 

 
     Time 

Figure  3. Sustained  oscillations.  Parameters:  ρ = 8/3, a12  = 0.8, a21  = 

1.2, µ = 0.02, ω = 0.9, σ = 1.2, γ = 0.2, ϕ = −0.1, θ = 0.1, ζ = 0.1, ψ = 0.1 
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Figure 4. Spatially segregating coexistence of the competing species: ρ =8/3, a12  = 
0.8, a21  = 1.2, µ = 0.02, ω = 0.5, σ = 1.2, γ = 0.2, ϕ = −0.1, θ =0.1, ζ = 0.1, ψ = 0.1 

 

 

 

 

 

 

Figure   5. Cross and self diffusion o f  the  interacting   species:    ρ   = 8/3, a12  = 0.8, a21  = 

1.2, µ = 0.02, ω = 0.5, σ = 1.2, γ = 0.2, ϕ = −0.1, θ = 
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0.1, ζ = 0.1, ψ = 0.1 
 
 

5. Conclusion 

In this paper, we  have studied the ecological model in which one of two species that are competing 

is under predation.  The conditions of existence of equilibrium points  and their stability were 

obtained.  Theoretical analysis of the dissipativity of the system was presented. Numerical  

simulations were illustrated to demonstrate that the three species’ coexistence is dependent on 

values of interspecific competition factors α12  and α21  between Y  and X rather than predation.  

However, the extinction of the predator is attained when the measure of efficiency of the 

searching and the capture of predator is equal to efficiency of converting prey into predator 

births when the predators and species in competition experienced damped oscillation under 

that circumstance. 
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