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Abstract
A mathematical model is constructed to study the effect of predation on two competing species in which

one of the competing species is a prey to the predator whilst the other species is not under predation. We
assume that all species can move by diffusion and study the spatial structure of the species and obtained
conditions for the existence and stability of equilibrium solutions. The results indicate the possibility of a
stable coexistence of the three interacting species in form of stable oscillations under the reflecting
boundary conditions. Numerical simulations supported our theoretical predictions. By utilizing Liapunov-like
functions and differential inequalities we were able to establish that the system is dissipative.

1. Introduction

The dynamic relationship between pedios and their preys has long been and will continue o be one of the
dominating temesin both ecology and mathematical biology due to its universal existence and importance
(Bohner et al, 2006). In predation-mediated coexistence, predation may have a tendency to increase
species diversity in competitive communities. Kan-On and Mimura (1998) showed that in a 3-component
diffusion system whee all the species can move by diffusion, the spatial structure of the competing
species may coexistence in the presence of predators.

Similarly, Ndam et al (2012) using a combination of Holling’s type 111 and BD functional responses set
out conditions for diffusive instability in a 3-component system. In this paper, we consider a
mathematical model in which two species are engaged in a competition for resources and a third other
species is predating one of the competing species. We assume that all species can move by diffusion and
study the spatial structure of competing ge0es that may coexist in the presence of predation. The aim of
this paper is to investigate the effects of predation mediated coexistence and density dependence
diffusion and cross diffusion to produce segregation effects adthe creation of spatial niches.

2. Model equations

In order to study this situation, we propose here the following 3-component
reaction-diffusion system for two competing species N1 and N2 in which one of the
species N1 is prey to a predator N3 :

dN N N

d_tlz rlNl[l_?i_blZ ?:J+VZ(D1N1D4N3)

dN N N

dtz =1,N, [1—K—§—b2l K—:}L D,V°N, (1)
dN, NZN,

=G 5~ 0N, —aN; + V¥ (D,N; + DN, )
1
2

Where V? = % with Nl(X,O) >0,N, (X,O) >0,N, (X,O) >0 subject to the reflecting boundary

condition
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@

System (1) can be scaled as follows:

= pY (1-Y —ay X )+ OV, ®)

oz XZ

—=0 —uZ —yZ+V?(CZ+wX).
or C1ixz M7 (¢Z+yX)

X (%,0)= XY (%,0) =Yy, Z (x,0)=Z,,

ax(o,f):8X(L,T):0’95Y(0’7):08Y(L’T):o,g = — =0,
P 6x o Ox X OX

oX (0,7 oX (L, 7 oZ (0,7 oZ(L,r
RO KX)o 20 7o)
X OX OX OX

where we have taken #=D,/D,,{=D,/D,p=D,/D,y=D,/D, and «,,a, are the
interspecific competitions rates.

Let us begin by reviewing the qualitative behaviours of the diffusionless systems deriving from (3):
dX X2z

E=X(1—X—a12Y)—a)mEfl(X,Y,Z), (43.)
dy

=AY (Y e X) = 1, (X.Y.2), (4b)
dz X?Z

=0T ML= rZ =1 (X.Y.2). (40)

The steady states, are singularities of the solutions f1(X, Y,Z) = fo(X, Y,Z2) =
f3(X, Y,Z) =0, which, from (4a), (4b) and (4c), are

X*=0,Y"=0,2"=0 and

X'=zY" =1-a,7

o

a)ﬂ(a—,u—y)

where 7= |7 (5)
\o—u—r
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provided o> u+y.
The stability of the steady states is again determined by the community matrix
which, for equations (4a), (4b) and (4c) is given as:

10 0

Jiooo =0 P 0o | (6)
0 0 —u-y

The characteristic polynomial is

X ~(—p=y+1+ p) A —(u+ pp+y +yp) A+ (u+y)p=0 (7)

and the corresponding eigenvalues are A := 1, p, —pty. This steady state is unstable.
Next we find the community matrix at the endemic state (X *,Y ~Z*) which is given as:

a, 4, a3
(x*x2") =la, a, 0 (8)
a, 0 0
where

1
a; = ;(0_0512 (1—6!217z)+ 2(/“‘ + }/)(1—0(12 +(a12a21 —l);r)—O‘)

o(pu+y
8y, =70, Ay :_¥7a21 =—p(l-oym)ay, 8, =—p(l-ay7),

2
ay :;(G_ﬂ_7)(1_a12 +(a120£21—1)7f)-

The characteristic equation of the variational matrix J(X* ) is

A +at’+a,d+a, =0, ®©)
where
=—(a,+2y)
é(aalz (o =1)+2(u+7)(a, 1+ (1- a0, ) 7 )+0)+a12”’

8, = — (2385 + 2, — 2,3, )

_ 2‘0(:; 7) ((0—#—7)(1—0512 + (0 —l)ﬂ))JrO'ﬂalgazl(“zl”_l)

i al;-ﬂ (0“12 (ot =1)+2(p+y) (o, —1+(1- a0, ) ) + 0)’
3 = 838,35

_ P (1; an)7 (00!12 (1= o) +2(p+y)(1- o, + (0,0, —1)71)—0)

According to Routh-Hurwitz criterion, the interior equilibrium E = (X *, Y ", Z") is
locally asymptotically stable if the following conditions hold:
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a >0,a,>0,aa, >a,. (20)

Following a similar procedure as outlined in Freedmanand Ruan(1995), we

next show that the system is dissipative. Let
X(t)=x(t)+X"Y(t)=y(t)+Y",Z(t)=z(t)+Z"

then the equations (4a), (4b) and (4c) can be transformed into

) (O XMW (D) Co(x()+X°) (2(t)+2")

(£)=(x(t)+ X")(=x(t) ~a¥ (1)) P (11)
Y(6)=(y(O)+Y")(-y(t)-ex(t)) (12)
, Co(x(®)+x) (2()+27) (o) 7"

9= 1+ (x(t)+ X )’ (uer)(z()+27) &

Choose a Liapunov function as follows
V =x(t)-X"In [1+%j+ y(t)-Y" In[l+$}+%{z(t)—z* In [1+¥H (14)

where —1 < g < 1is a given constant. If x(t)=y(t)=2z(t)=0, then V =0, and V is

positive definite for bounded
o

K(0)>my(O)>1-ar2(t)> o

(1-ay, + (a0, 1) 7).
We have

V (x(0),y (). 2(6) =— Uy t) e X _y), 220, (15)

oz(t)+Z

a)(x(t)+X*)(z(t)+Z*)

1+(x(t)+ X")2

V (x(1)y(1),2(1)) = x(1)| =x(t) ey (t)-

+Y (1) (=Y (t)—aux(t))+

(1+7) (16)

q(x2 (t)+x(t)X*)(z(t)+Z*)
1+(x(t)+ X*)2
Hence the diffusionless system is dissipative.

<—x*(t)—apx(t) y(t)-

—y(t)—ax () y(t).
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3. Model with Cross and Self-diffusion

To examine the linear stability of the steady state, we recast the system (4a), (4b) and
(4c) in the form

oX  9*°X 0°Z
= +§DW+F1(X,Y,Z,T),

or oc
oY 0%
—=0-—+F,(X,Y,Z,7), 17
or  ox o ) )

oz .oz X

or =S TV g TRIXT.ZT),
Where
X%z
Fl(X,Y,Z,r)= X (l—X —%Y)—wm,

F(X,Y,Z,7)=pY (1-Y —a,, X), 19
2

X<Z
F(X,Y,Z,7)=
3( T) Gl+

X2

—uZ—-yZ.

Now, assume a spatially unifoom steady state (X *,Y *,Z*) such that F(X*,Y*,Z2*) =0,k =1,2,
3 and perturb the population densities of the species as

X(xt)=X"+X"(x7),

Y (x,t)=Y"+Y'(x,7), (18)
Z(xt)=2"+Z'(x,7).
Substituting (18) into and linearizing, one obtains

2 2
x_oX +¢£+anX'+a12Y’+a132’,

or  Ox? OX?
2:
%:0g+aZlX’+azzY’+aZ3Z’, (19)

0z .07 X

E_g o +Wy+aglx’+a32Y'+ag3Z’.
where
ox oy oz
(aij)= 8F2 8F2 8F2 . (20)
ox oy oz
oF R OR
ox oy oz

is the Jacobian of the system evaluated at the equilibrium point (X *,Y *, Z%).

118


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) lLi‘!
Vol.6, No.8, 2016 IIS E

The linear stability of (19) can be examined using the normal modes approach, by assuming
solutions of the form X' =gt yr = ghrti 71— gArtilx
where A and | are constants. Hence the eigenvalues satisfy the equation

/1+(1+§0)|2_a11 —a, —ay;
—a,, A+0l-a, 0 =0 (21)
—ay 0 /1"‘(4/""//)'2_333

The characteristic equation is given as
/13+22((1+2(p+4’+¢9)|2—an—azz) (22)
+ (¢ +0)(1+p+0)+0(1+9))* +a,, (a, + 8y, ) + 88, +{(8,0 — (£ + ) (a,, +ay,)
—02g; —(1+ ) (8, + 855 DH* — 2,8, — 253, }
~2,0(& +@)I* +{a,85,0 + (8,8, — 8,8, ) (¢ +0) — 88,01’
+81380,85 + 8,580,853 — 8,885 =0

where
B =(1+2p+¢ +0)1° -3, —a, (23a)
B, =((£+90)(1+9+0)+0(1+p))1* +a, (8, + 85 ) +ayay, (23b)
+{(au0—(§ +9) (B + 8 )~ 08, = (L+ ) (8 +845) )| I” — 21,8 — By
By =—2a,0(& +)1* +{a,a,0 + (2,8, — 8,8, ) (£ + ) —8,8,,0} 1 (23c)

8,385,853 +8,8,,85; —8,,8,,8;;.

For stability the following conditions should be satisfied

B >0,5,>0 and 3, > f;. (24)

Diffusive instability sets in if any of conditions (24) is violated.

4. Numerical Simulation

In this section, we give some numerical simulations supporting our theoretical predictions. Figure la-d
demonstrate that solutions for the 3-component system exist such that X, Y and Z exhibit damped
oscillations for the parameters: p = 8/3,a12 = 0.8,a21 =

12, 1=0.2,0 =0.9,06 =1.2,y =0.02. When Z is plotted against X, we observed a stable

spiral and when the competing species are viewed against each other, a more complex scenario is
observed. First there is a spiraling in and what looks more like a limit cycle. In Figure 2, the values for
012 and o21 were perturbed to demonstrate the effect of interspecific competition amongst the
competing species. We noticed that as the interspecific competition (a12 ) increases the X species are
driven to extinction whereas species Y increases. Similarly as (21 ) increases the Y species are driven
to extinction whereas the X species increases in the presence of predation. These indicate that the
interspecific competitions drive the dynamic behaviour of the diffusionless system. Figure 3 is the
numerical simulation of the 3-component problem with self and cross diffusion. The numerical
solutions showed that species X, Y and Z stably exist in a sustained oscillation. What we do not
know is whether cycles are drawn by the classical predator-prey mechanism or some other factors may
be involved in producing the oscillations. In figure 4 competing species experience habitat segregation
effects and the creation of spatial niches under predation. Figure
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5 shows the effects of cross-diffusion on the spatial density distribution of the interacting species. Here
species Y diffuse faster than the others. This scenario is understandable since the specie is not under predation
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Figure 1. Dynamic behaviour of predator-prey-competition model.
Parameters: p =8/3,a;20 =0.8,a1 =12, =02, =09,6 =12,y =0.02
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Figure 2. Bifurcation picture as a1 & ap1 are varied. The parameters chosen for
the model are: p =8/3,120 =1-25,021 =05-2,1=0.2,0 =1.6,6 =16,y =
0.02

1.4+
1.2
l -
. 0.8
Population
density 1 Z
=
0.6 —X
0.4
0.2
0 T > i .
0 50 100 150 200

Time
Figure 3. Sustained oscillations. Parameters: p = 8/3,a;, = 0.8,ap1 =
1.2,1=002,0=09,6 =12,y =02,¢ =-0.1,0=0.1,{ =0.1,y = 0.1
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Figure 4. Spatially segregating coexistence of the competing species: p =8/3,a12 =
08,21 =12, u=0.02, 0 =050 =12,y =02,¢6 =-01,06=0.1,{ =01,y =0.1
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Figure 5. Cross and self diffusionof the interacting species: p =8/3,a12 =0.8,a1 =
1.2,n=002,0 =050 =12,y =02,¢6 =-01,0 =
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01,{=01y=0.1

5. Conclusion

In this paper, we have studied the ecological model in which one of two species that are competing
is under predation. The conditions of existence of equilibrium points and their stability were
obtained. Theoretical analysis of the dissipativity of the system was presented. Numerical
simulations were illustrated to demonstrate that the three species’ coexistence is dependent on
values of interspecific competition factors ai> and ap; betweenY and X rather than predation.
However, the extinction of the predator is attained when the measure of efficiency of the
searching and the capture of predator is equal to efficiency of converting prey into predator
births when the predators and species in competition experienced damped oscillation under
that circumstance.

References
[1] M. Bohner, M. Fan and J. Zhang (2006). Existence of periodic solutions in predator-prey and
competition dynamic systems. Nonlinear analysis: Real world applications, 7, 1193 - 1204.
[2] Y. Kan-On and M. Mimura (1998). Singular perturbation approach to a 3-component reaction-
diffusion system arising in population dynamics. SIAM Journal of Mathematical Analysis, vol.

29, no. 6, pp. 1519-1536.
[31 J. N. Ndam, J. P. Chollom and T. G. Kassem (2012). A mathematical model of three-species
interactions in an acquatic habitat, ISRN Applied Mathematics
[4] H. I. Freedman and S. Ruan (1995). Uniform persistence in functional differential equations,
Journal of Differential Equations ; 115, 173-192

123


http://www.iiste.org/

