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Abstract 

This paper investigates persistence and global dynamics of a tritrophic food chain model 

consisting of prey, predator, and super-predator. We establish dissipativeness, ultimate 

boundedness of an invariant region in the state space of this model via the notion of omega-

limit sets, absorbing region and global attractor. We explore Freedman-Waltman theorem, 

and Bendixson-Dulac theorem to guarantee persistence conditions of the model. Lyapunov’s 

functionals and Lyapunov-LaSalle invariance principle ensure the existence of global 

asymptotic stability of the system. Numerical responses, phase-portrait and phase-flows were 

used to illustrate propositions and lemmas. 
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1. Introduction  

Mathematical modelling of multiple interacting species in an ecological system explores 

robust biological phenomenon such as persistence of the interacting species. This 

phenomenon occurs naturally in a real ecological setting, which implies the long-term 

survival of each component populations of the interacting species. (Takeuchi, 1996; Kuang, 

2001). Mathematically, persistence of a dynamical system means that the boundary of non-

negative octant cone of the phase space is repelling, and no limit cycles (Hofbauer, & 

Schreiber, 2004; Nindjin, & Aziz-Alaoui, 2007). In vector field analysis of such a non-linear 

dynamical system, the long-term persistence of this ecological vector field corresponds to a 

global attractor that is bounded away from extinction; all species are present and none of them 

follows extinction (Dubey, & Upadhyay, 2004). 

On the other hand, dynamical behaviors of multiple interacting species such as global stability 

analysis ensures the co-existence of the interacting species, while persistence guarantees non-

extinction of such biological systems. These phenomena are widely studied in mathematical 

modelling of multiple interacting species, and models that exhibit these rich dynamics are 

Holling’s type and Kolmogorov’s type models. In Butler and Waltman (1985) Mathematical 

theory which responded to abstraction of persistence in dynamical systems was studied.  

Freedman and Waltman (1983) investigated the theoretical approaches of persistence and 

extinction of some class of Kolmogorov’s type models. Xu, Shao and Li (2012) provides 

some sufficient conditions for the uniformly strong persistence of an asymptotically periodic 

predator-prey delay system. The conditions of coexistence and extinction in two predators-

one-prey model with non-periodic solution was investigated by (Alebraheem and Abu-Hasan, 

2012).  

Kar, and Batabyal (2010) offered some mathematical analysis of the dynamics of a two prey 

one predator system in the presence of time delay due to gestation.  
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They derived criteria which guarantee the persistence of the three species and global 

dynamics. Kesh, Sarkar, Kand, and Ray (2000) proposed and analyzed a mathematical model 

of two competing prey and one predator species, where the prey species follows Lotka-

Volterra dynamics and predator uptake functions are ratio-dependent. They derived conditions 

for the existence of different boundary equilibria, global stability, and strong persistence of 

the model.  

 

These models depict and predict a much more realistic ecological system, while incorporating 

non-linearity assumptions; ecological phenomenal parameters, growth rates, death rates, 

environmental carrying capacities, stage structures, allee effect, patch-diffusions, predation 

effect, cascade migrations, spatiotemporal-patterns,  discrete delay-in-time, and so on. 

Therefore, the best we can explore is to formulate and study analyzable models that could 

describe possible realities in an ecological system. These are made possible using 

mathematical tools such as maple software and theory of differential equations. One may see 

for details (Lynch, 2010; Brauer, & Chavez-Castillo, 2012; Nagle, Saff, & Snider, 2012; 

Banerjee, 2014; Shavin, 2015). 

 

In this paper, we consider an extended Rosenzweig-MarArthur tritrophic food web model, 

studied by (Feng, Freeze, Xu, & Rocco, 2014). We obtained a topologically equivalence 

dynamical system using non-dimensionalization of the state variables with their respective 

ecological dimensionless parameters, which preserves the orientation of the phase space 

trajectories (Joshua, Akpan, Madubueze & 2016). 

 The new dimensionless model is as follows: 
𝑑𝑥

𝑑𝜏
= 𝛼𝑥 (1 −

𝑥

𝜅
) − 𝜂

𝑥

1 + 𝑥
𝑦 −

𝑥

1 + 𝑥
𝑧                                                                       

𝑑𝑦

𝑑𝜏
= 𝜀

𝑥

1 + 𝑥
𝑦 − 𝜉𝑦 − 𝜎

𝑦

1 + 𝑦
𝑧                                                                                   

𝑑𝑧

𝑑𝜏
= 𝛽

𝑦

1 + 𝑦
𝑧 − 𝜇𝑧 + 𝛽

𝑥

1 + 𝑥
𝑧                                                                            1.1 

subject to initial conditions; 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑧(0) = 𝑧0, where 𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏) are 

the population densities of the interacting species of the model, 𝛼 is growth rate of the prey, 

𝜅 is the environmental carrying capacity of the prey, 𝜂 is the maximum predation rate of prey 

by predator, 𝜀 is the maximum biomass conversion efficiency constant of predator, 𝜉 is the 

death rate of the predator, 𝜇 is the super-predator death rate, 𝛽 is a free parameter; maximum 

super-predator biomass conversion efficiency  of both prey and predator to biomass of the 

super-predator. 

 

2.0 Boundedness and Dissipativeness of the Model 

The density functions of system (1.1) are continuously differentiable in the non-negative cone 

of the state space ℜ+
3  = {(𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) ∈ ℜ3: 𝑥(𝜏) ≥ 0, 𝑦(𝜏) ≥ 0, 𝑧(𝜏) ≥ 0 } ∀ 𝜏 ≥ 0. 

We denote the positive octant cone of the solution space as 𝐼𝑛𝑡ℜ+
3 = {(𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) ∈

ℜ3: 𝑥(𝜏) > 0, 𝑦(𝜏) > 0, 𝑧(𝜏) > 0)}, ∀ 𝜏 ≥ 0. The phase flows Φ𝑡(𝑡0; 𝑥, 𝑦, 𝑧) of system (1.1) 

are said to be ultimately bounded with respect to the state space ℜ3, if there exists a positively 

invariant compact region 𝒜 ∈ ℜ3 and a finite time 𝑇(𝑇 = 𝑇( 𝜏0; 𝑥, 𝑦, 𝑧)) such that, for any 

(𝜏0; 𝑥, 𝑦, 𝑧)∈  ℜ × ℜ3, Φ 𝜏( 𝜏0; 𝑥, 𝑦, 𝑧) ∈ 𝒜, ∀  𝜏 > 𝑇 (Aziz-Aalaoui, Okiye, 2000). By phase 

flows of system (1.1), we mean its solution trajectories, and for properties and geometry of 

flows one may see (Wiggins, 2003; Murza, 2009). If the compact region is absorbing, then the 

phase flows Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) ∈ 𝐼𝑛𝑡(𝒜) for some 𝜏 > 𝑇.  
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This means that all orbits generated by the phase flows Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) are eventually absorbed 

by the interior of 𝒜. Moreover, suppose system (1.1) is dissipative, then one can make strong 

statement about the phase portrait of the system.   

By dissipativenes, we mean that all population functions initiating in the nonnegative octant 

of the state space ℜ+
3 , are uniformly limited in time by their environmental carrying capacities 

(Freedman and Hongshun, 1988). 

 

2.1 Lemma 1: (Hpfbauer & Shreiber, 2004; Birnir, 2008).  

If system (1.1) has an absorbing region 𝔇, then the 𝜔 −limit set of 𝒜  defined as; 𝜔(𝔇) =

⋂𝑡0>0{∪𝑡≥𝑡0
Φ𝑡(𝑡0; 𝑥, 𝑦, 𝑧):̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝑥, 𝑦, 𝑧) ∈ 𝔇} is a unique global attractor. Equivalently, the 

𝜔 −limit point of the phase flow is a fixed point (𝑥∗, 𝑦∗, 𝑧∗) ∈ ℜ+
3 ∋, ∃ a sequence 𝑡𝑛 → ∞  as 

𝑛 → ∞  and 𝑙𝑖𝑚𝑡→∞Φ𝑡(𝑡0; 𝑥, 𝑦, 𝑧) → (𝑥∗, 𝑦∗, 𝑧∗)  
 

2.2 Proposition 1:  

Given the phase flows Φ𝑡(𝑡0; 𝑥, 𝑦, 𝑧) of system (1.1) with positive initial conditions. Let 𝒜 be 

a closed   and bounded subset of the state space ℜ+
3 . Then, 

(i) 𝒜 is a positively invariant subset of ℜ+
3 . 

(ii) phase flows initiating in ℜ+
3  are ultimately bounded on ℜ+

3   and eventually 

enters the attracting set in 𝒜, if 
𝜀𝜅

1+𝜅
> 𝜉 and 

2𝛽𝜅+𝛽

1+𝜅
> 𝜇. 

(iii) system (1.1) is dissipative. 

(iv) phase flows of system (1.1) have a unique global attractor in 𝒜. 
Proof: 

(i) Let (𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) be any solution of system (1.1). Define the compact   subset 𝒜 of 

ℜ+
3  as; 𝒜 = {(𝑥, 𝑦, 𝑧) ∈ ℜ+

3 : 0 ≤ 𝑥(𝜏) ≤ 𝐿1, 0 ≤ 𝑦(𝜏) ≤ 𝐿2, 0 ≤ 𝑧(𝜏) ≤ 𝐿3)} ∀ 𝜏 ≥ 0.  
Observe that with positive initial conditions, 𝑥(0) = 𝑥0 > 0, 𝑦(0) = 𝑦0 > 0, 𝑧(0) = 𝑧0 > 0 

∀ 𝜏 ≥ 0. This implies that by choosing (𝐿1, 𝐿2, 𝐿3)≡ (𝑥0, 𝑦0, 𝑧0) then (𝑥(0), 𝑦(0), 𝑧(0)) ∈ 𝒜. 

Equivalently, the phase flows at initial conditions Φ𝜏(0; 𝑥0, 𝑦0, 𝑧0) ∈ 𝒜  ∀ 𝜏0 = 0. Also, it 

suffices to show that Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) ∈ 𝒜 ∀ 𝜏 > 0 . Since Φ𝜏(0; 𝑥0, 𝑦0, 𝑧0) ∈ 𝒜, then 

Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧)  remains nonnegative ∀ 𝜏 ≥ 0, by the properties of phase flows (Wiggins, 

2003). By definition of 𝒜, there exist positive constants (𝐿1, 𝐿2, 𝐿3) such that 𝑙𝑖𝑚𝜏→+∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑥(𝜏) ≤

𝐿1, 𝑙𝑖𝑚𝜏→+∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑦(𝜏) ≤ 𝐿2,  𝑎𝑛𝑑 𝑙𝑖𝑚𝜏→+∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧(𝜏) ≤ 𝐿3. This implies that (𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) →
𝒜, 𝑎𝑠 𝜏 → +∞  and equivalently the phase flows Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) → 𝒜 as 𝜏 → +∞. Hence by 

LaSalle invariance principle (LaSalle, 1968), 𝒜 is a well-defined positive invariant subset of 

the state space ℜ+
3 , and trapped every flow of system (1.1). 

(ii) It suffices to show the conditions for ultimate boundedness of system (1.1). Using the 

theory of differential inequalities, we have that the first equation of system (1.1) satisfies the 

logistic assumption, 

𝑑𝑥

𝑑𝜏
≤ 𝛼𝑥 (1 −

𝑥

𝜅
)   𝑎𝑛𝑑 𝑥(𝜏) ≤

𝑥0𝜅

𝑥0 + (𝑥0 − 𝜅)𝑒−𝜅𝜏
 

By standard comparison theorem, we have that 𝑙𝑖𝑚𝜏→+∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑥(𝜏) ≤ 𝜅 = 𝐿1 

Also, the second equation of system (1.1) satisfies, 

𝑑𝑦

𝑑𝜏
≤ 𝜖

𝜅

1 + 𝜅
𝑦 − 𝜉𝑦, 𝑖𝑓  𝑙𝑖𝑚𝜏→+∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑥(𝜏) ≤ 𝜅 = 𝐿1 

𝑙𝑖𝑚𝜏→+∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑦(𝜏) ≤ 𝑦0𝑒(

𝜀𝜅
1+𝜅

−𝜉)𝜏 = 𝐿2 
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Assuming non-negativity of Holling’s type II functional response say,   

   0 ≤
𝑦

1+𝑦
≤ 1 𝑎𝑛𝑑  𝑙𝑖𝑚𝜏→+∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑥(𝜏) ≤ 𝜅 = 𝐿1,     

then we have that the third equation of system (1.1)  yields, 

𝑑𝑧

𝑑𝜏
≤ (

𝛽 + 2𝛽𝜅

1 + 𝜅
− 𝜇) 𝑧  𝑎𝑛𝑑  𝑙𝑖𝑚𝜏→+∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑧(𝜏) ≤ 𝑦0𝑒
(

𝛽+2𝛽𝜅
1+𝜅

−𝜇)𝜏
= 𝐿3 

Hence, the phase flows of system (1.1) remain positive and are trapped in the attracting set 

𝒜 ⊂ ℜ+
3  𝑖𝑓 

𝛽+2𝛽𝜅

1+𝜅
> 𝜇 𝑎𝑛𝑑 

𝜀𝜅

1+𝜅
> 𝜉 𝑎𝑠 𝜏 → +∞.  

(iii) Let (𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) be any solution of system (1.1) with positive initial conditions. 

Define an absolutely continuous function (𝜏) =
𝜂1

𝜂2
𝑥(𝜏) + 𝑦(𝜏) + 

θ1

𝜃2
𝑧(𝜏). Calculating its time 

derivative along trajectories of the phase flows of system (1.1) yields, 

 

𝑊′(𝜏) =
𝜂1

𝜂2
𝑥′(𝜏) + 𝑦′(𝜏) + 

θ1

𝜃2
𝑧′(𝜏) 

𝑊′(𝜏) + 𝜓𝑊(𝜏) ≤
𝜂1

𝜂2

(𝛼 + 𝜓) + (𝜓 − 𝜉)𝑦 + (
θ1

𝜃2
−

μθ1

𝜃2
) 𝑧 

choosing 𝜓 = min (𝜉, μ), we have that 

𝑊′(𝜏) + 𝜓𝑊(𝜏) ≤
𝜂1

𝜂2

(𝛼 + 𝜓) 

By comparison lemma (Aziz-Alaoui, Okiye, 2000), we have that ∀ 𝜏 ≥ 𝑇 ̃ ≥ 0 

𝑊(𝜏) ≤
𝜂1

𝜂2

(𝛼 + 𝜓) − (
𝜂1

𝜂2

(𝛼 + 𝜓) − 𝑊(𝑇 ̃)) 𝑒−𝜓(𝜏−𝑇 ̃)   ∀ 𝜏 ≥ 0                

𝑊(𝜏) ≤
𝜂1

𝜂2
(𝛼 + 𝜓) − (

𝜂1

𝜂2
(𝛼 + 𝜓) − 𝑊(0)) 𝑒−𝜓𝜏 , �̃� = 0                  1.2 

Thus, all solutions of system (1.1) eventually enters the trapped region 𝔇 ⊃ 𝒜 defined as, 

𝔇 = {(𝑥, 𝑦, 𝑧) ∈ ℜ+
3 : 0 ≤ 𝑊(𝜏) ≤

𝜂1

𝜂2
(𝛼 + 𝜓)} and 

𝑙𝑖𝑚𝜏→+∞
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑊(𝜏) ≤

𝜂1

𝜂2
(𝛼 + 𝜓) +

𝜖

2
,   for any 𝜖 > 0                                  1.3 

and all species are uniformly bounded for all initial conditions in the state space ℜ+
3  . Since 

(i), (ii) and (1.3) hold then there exist 𝜔 −limit sets, 𝜔(𝒜) ⊂ 𝒜 = {(𝑥, 𝑦, 𝑧) ∈ ℜ+
3 : 0 ≤

𝑥(𝜏) ≤ 𝐿1, 0 ≤ 𝑦(𝜏) ≤ 𝐿2, 0 ≤ 𝑧(𝜏) ≤ 𝐿3)} ∀ 𝜏 ≥ 0  (Upadhyay, 2011;Sahoo, 2012). Hence, 

the proof is completed. 

(iv)  Since (i), (ii), and (iii) hold, and the trapped region 𝔇 ⊃ 𝒜 is  an invariant set, we claim 

that  𝔇 is an absorbing region of phase flows of system (1.1) (Birnir, 2008), and then 𝜔(𝒜) =
𝜔(𝔇) ⊂ 𝔇 for some 𝜏 ≥ 𝑇 ̃ ≥ 0. To establish this claim, we seek the positive time 𝜏 ≥ 𝑇 ̃ ≥
0 as follows using (1.2) and (1.3); 

𝜂1

𝜂2

(𝛼 + 𝜓) − (
𝜂1

𝜂2

(𝛼 + 𝜓) − 𝑊(0)) 𝑒−𝜓𝜏 ≤
𝜂1

𝜂2

(𝛼 + 𝜓) +
𝜖

2
 

𝜏 ≥ log𝑒 (
2𝑊(0) −

2𝜂1𝜅
𝜂2𝜓

(𝛼 + 𝜓)

𝜖
)

1
𝜓

                                                             1.4 

then applying lemma I, means we have shown that the  𝜔 −limit sets of phase flows 

Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) of system (1.1) are eventually trapped in the absorbing region 𝔇 for positive 

time 𝜏,  and for positive initial conditions as seen in (1.4). Thus, there exists a unique fixed 

point; a global attractor of the phase flows Φ𝜏(𝜏0; 𝑥, 𝑦, 𝑧) of system (1.1). Hence, the proof is 

complete. 
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3.0 Existence of Positive Equilibrium point. 

We obtain the critical point of system (1.1), by solving the planar sub-system during it steady-

state; independent of time, and deduce the positivity conditions of each critical point. The 

model exhibited the following trivial, and semi-trivial equilibria: 

𝐸0(𝑥∗ = 0, 𝑦∗ = 0, 𝑧∗ = 0),  𝐸1(𝑥∗ = 𝐾, 𝑦∗ = 0, 𝑧∗ = 0),  

𝐸2 (𝑥∗ =
𝜉

𝜖 − 𝜉
, 𝑦∗ =

𝛼𝜖(𝜅𝜖 − 𝜅𝜉 − 𝜉)

𝜂𝜅(𝜖 − 𝜉)2
, 𝑧∗ = 0 ) ; 𝑖𝑓 𝜖 > 𝜉, 𝜅 >

𝜉

𝜖 − 𝜉
 

𝐸3 (�̌� =
𝜇

𝛽 − 𝜇
, �̌� = 0, �̌� =

𝛼𝛽(𝜅𝛽 − 𝜅𝜇 − 𝜇)

𝜅(𝛽 − 𝜇)2
) ; 𝑖𝑓 𝛽 > 𝜇, 𝜅 >

𝜇

𝛽 − 𝜇
 

 

3.1 Lemma 2: Existence of Positive Coexistence Equilibrium Point.  

The system (1.1) has a positive coexistence equilibrium point, say; 𝐸4(𝑋 = 𝑥∗, 𝑌 = 𝑦∗, 𝑍 =
𝑧∗) if;  

 (𝑖)  𝑦∗ =  
𝜇(1 + 𝑥∗) − 𝛽𝑥∗

(𝛽 − 𝜇)(1 + 𝑥∗) + 𝛽𝑥∗
,  𝑧∗ =

𝛽(𝜖𝑥∗ − 𝜉(1 + 𝑥∗))

𝜎((𝛽 − 𝜇)(1 + 𝑥∗) + 𝛽𝑥∗)
,  

𝑃(𝑋) = 𝑋3 + 𝑃0𝑋2 + 𝑃1𝑋 + 𝑃2 = 0, 𝑃0 < 0, 𝑃1 < 0, 𝑃2 < 0,
𝜉

𝜖 − 𝜉
<  𝑋 <

𝜇

𝛽 − 𝜇
   

𝑃0 =
2𝛼𝜎𝜅𝛽 − 𝛼𝜎𝜅𝜇 − 3𝛼𝜎𝛽 + 2𝛼𝜎𝜇

𝛼𝜎𝜇 − 2𝛼𝜎𝛽
 

(𝑖𝑖𝑖) 𝑃1 =
3𝛼𝜎𝜅𝛽 − 2𝛼𝜎𝜅𝜇 + 𝜅𝜎𝜂𝛽 − 𝜅𝜎𝜂𝜇 − 𝛼𝜎𝛽 + 𝛼𝜎𝜇 + 𝜅𝛽𝜉 − 𝛽𝜅𝜖

𝛼𝜎𝜇 − 2𝛼𝜎𝛽
 

𝑃2 =
𝛼𝛽𝜎𝜅 − 𝛼𝜎𝜅𝜇 − 𝜂𝜅𝜇𝜎 + 𝜅𝛽𝜉

𝛼𝜎𝜇 − 2𝛼𝜎𝛽
 

 

4.0 Persistence of the Model. 

The term persistence is given to dynamical systems in which strictly positive solutions do not 

approach the boundary of the non-negative cone as 𝜏 → +∞. One requires that the fixed 

points on the boundaries are repelling with respect to the orthogonal plane that contains them 

(Butler and Waltman, 1986). Additionally, if there are no limit cycles on the faces of the 

boundary, then the system persists. 

 

4.1 Lemma 3. (Freedman, & Waltman, 1983). 

Consider the Kolmogorov’s type dynamical system of model (1.1) as; 
𝑑𝑥

𝑑𝜏
= 𝑥𝐹(𝑥, 𝑦, 𝑧)                        

𝑑𝑦

𝑑𝜏
= 𝑦𝐺(𝑥, 𝑦, 𝑧)                        

𝑑𝑧

𝑑𝜏
= 𝑧𝐻(𝑥, 𝑦, 𝑧)                                                                              1.5 

satisfying positive initial conditions, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑧(0) = 𝑧0. 

A1. 𝑥(𝜏) is prey population function, 𝑦(𝜏) is predator population function predating 

exclusively on prey 𝑥(𝜏), and 𝑧(𝜏) is super-predator population function predating exclusively 

on both prey 𝑥(𝜏), and predator 𝑦(𝜏), which implies that, 
𝜕𝐹

𝜕𝑦
< 0,

𝜕𝐹

𝜕𝑧
≤ 0 ,

𝜕𝐺

𝜕𝑥
> 0,

𝜕𝐻

𝜕𝑥
≥ 0,

𝜕𝐻

𝜕𝑦
>

0, 𝐺(0, 𝑦, 𝑧) < 0, 𝐻(0,0, 𝑧) < 0. 

A2. The prey population function grows to carrying capacity in the absence of predation 

effect, which implies that, 𝐹(0,0,0) > 0,
𝜕𝐹

𝜕𝑥
(𝑥, 𝑦, 𝑧) < 0, ∃ 𝐾 > 0 ∋ 𝐹(𝐾, 0,0) = 0  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.8, 2016 

 

90 

 

A3. There are no equilibrium points on the  𝑦 𝑜𝑟  𝑧   coordinates and no equilibrium point on 

𝑦 − 𝑧  plane. 

A4. Each predator can survive on the prey, this implies that there exist equilibrium points, 

𝐸2(𝑥∗, 𝑦∗, 0) and 𝐸3(𝑥∗, 0, 𝑧∗) ∋ 𝐹(𝑥∗, 𝑦∗, 0) = 𝐺(𝑥∗, 𝑦∗, 0) = 0  and 𝐹(�̌�, 0, �̌�) =
𝐻(�̌�, 0, �̌�) = 0   and 𝑥∗, 𝑦∗, 𝑧∗, �̌�, �̌� > 0; 𝑥∗ < 𝐾, �̌� < 𝐾 

We proceed to state the theorem that guarantees the non-existence of limit cycles on the 

boundaries of the invariant region 𝒜 of system (1.1). One may see (Brauer, Castillo-Chavez, 

2012) 

 

4.2 Lemma 4: (Bendixson-Dulac Theorem,1934).  

Consider a smooth differential equation for a planar subsystem, 

𝑥′(𝜏) = 𝑔(𝑥, 𝑦)                           
𝑦′(𝜏) = ℎ(𝑥, 𝑦)                                                                               1.6   

If there exists a smooth Dulac function 𝐵(𝑥, 𝑦) defined on a simply connected region, say  

𝒜 ∈ ℜ+
3  such that the quantity, 

𝑑𝑖𝑣(𝐵(𝑥, 𝑦)�̅�(𝑥, 𝑦)) =
𝜕

𝜕𝑥
{𝐵(𝑥, 𝑦). 𝑔(𝑥, 𝑦)} +

𝜕

𝜕𝑦
{𝐵(𝑥, 𝑦). ℎ(𝑥, 𝑦)} 

is either strictly positive or strictly negative in 𝒜, then system (1.6) has no periodic orbits in 

𝒜, where �̅�(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)𝑖 + ℎ(𝑥, 𝑦)𝑗. 
 

4.3 Proposition 2. (Freedman-Waltman Theorem, 1983).  

If conditions of lemma 2 and 3 are satisfied, and growth functions 

 

𝐺(�̌�, 0, �̌�) > 0,   𝐻(𝑥∗, 𝑦∗, 0) >
0                                                                                                             1.7  
then system (1.1) persists. 

 

Proof: 

Consider the Kolmogorov’s growth functions of system (1.1) as; 

 

 

 

𝐹(𝑥, 𝑦, 𝑧) = 𝛼 (1 −
𝑥

𝜅
) − 𝜂

𝑦

1 + 𝑥
−

𝑧 

1 + 𝑥
  

𝐺(𝑥, 𝑦, 𝑧) = 𝜖
𝑥

1 + 𝑥
− 𝜉 − 𝜎

𝑧

1 + 𝑦
                

𝐻(𝑥, 𝑦, 𝑧) = 𝛽
𝑦

1 + 𝑦
− 𝜇 + 𝛽

𝑥

1 + 𝑥
                                                        1.8 

Observe that 
𝜕𝐹

𝜕𝑦
= −𝜂

𝑦

1+𝑥
< 0; 

𝜕𝐹

𝜕𝑧
= −

𝑧 

1+𝑥
< 0; 

𝜕𝐺

𝜕𝑥
=

𝜀

(1+𝑥)2 > 0; 
𝜕𝐻

𝜕𝑥
=

𝛽

(1+𝑥)2 > 0; 
𝜕𝐻

𝜕𝑦
=

𝛽

(1+𝑥)2 > 0 ; 𝐺(0, 𝑦, 𝑧) = −𝜉 − 𝜎
𝑧

1+𝑦
< 0, 𝐻(0,0, 𝑧) = −𝜇 < 0 So, condition A1 of lemma 3 

is satisfied.  

Also, we have that 𝐹(0,0,0) = 𝛼 > 0,
𝜕𝐹

𝜕𝑥
(𝑥, 𝑦, 𝑧) =

𝜂𝑦+𝑧

(1+𝑥)2
−

𝛼

𝜅
< 0, ∃ 𝐾 > 0 ∋ 𝐹(𝐾, 0,0) =

0 𝑓𝑜𝑟 𝐾 = 𝜅 and condition A2 of lemma 3 is satisfied.  

There are no equilibrium points on the 𝑦 𝑜𝑟 𝑧  coordinate axes and no equilibrium on 𝑦 − 𝑧 

plane, because there are no interspecific competition amongst the predator population 

functions.  Condition A3 of lemma 3 is satisfied.  
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We obtain the semi-trivial equilibrium points by solving the equations; 𝐹(𝑥∗, 𝑦∗, 0) =
𝐺(𝑥∗, 𝑦∗, 0) = 0  and 𝐹(�̌�, 0, �̌�) = 𝐻(�̌�, 0, �̌�) = 0 say, 

𝐸2 (𝑥∗ =
𝜉

𝜖 − 𝜉
, 𝑦∗ =

𝛼𝜖(𝜅𝜖 − 𝜅𝜉 − 𝜉)

𝜂𝜅(𝜖 − 𝜉)2
, 𝑧∗ = 0 ) ; 𝑖𝑓 𝜖 > 𝜉, 𝜅 >

𝜉

𝜖 − 𝜉
 

𝐸3 (�̌� =
𝜇

𝛽 − 𝜇
, �̌� = 0, �̌� =

𝛼𝛽(𝜅𝛽 − 𝜅𝜇 − 𝜇)

𝜅(𝛽 − 𝜇)2
) ; 𝑖𝑓 𝛽 > 𝜇, 𝜅 >

𝜇

𝛽 − 𝜇
 

Thus, condition A4 of lemma 3 is satisfied. Analogously, lemma 3 is verified. 

Next, we establish conditions satisfying lemma 4.  Consider the 𝑥 − 𝑦 planar sub-system of  

system (1.1), 

 
𝑑𝑥

𝑑𝜏
= 𝛼𝑥 (1 −

𝑥

𝜅
) − 𝜂

𝑥

1 + 𝑥
𝑦 = 𝑔(𝑥, 𝑦)                                                          

𝑑𝑦

𝑑𝜏
= 𝜖

𝑥

1 + 𝑥
𝑦 − 𝜉𝑦 =             ℎ(𝑥, 𝑦)                                                        1.9 

Let 𝐵(𝑥, 𝑦) =
1

𝑥𝑦
    be a Dulac function. Clearly, 𝐵(𝑥, 𝑦) > 0  is a smooth analytic function in 

the interior of positive quadrant 𝑥 − 𝑦 plane orthogonal to the 𝑧 − direction. Then, the 

quantity  
𝜕

𝜕𝑥
{𝐵(𝑥, 𝑦). 𝑔(𝑥, 𝑦)} +

𝜕

𝜕𝑦
{𝐵(𝑥, 𝑦). ℎ(𝑥, 𝑦)} =  

𝜂𝑦

(1 + 𝑥)2
−

𝛼

𝑦𝜅
≠ 0 

and is strictly positive if  
𝜂𝑦

(1+𝑥)2 >
𝛼

𝑦𝜅
 or strictly negative if  

𝜂𝑦

(1+𝑥)2 <
𝛼

𝑦𝜅
 . Thus, there are no 

periodic orbits in the positive quadrant of 𝑥 − 𝑦 plane. Analogously, using the 𝑥 − 𝑧 planar 

sub-system of system (1.1). Let 𝐵(𝑥, 𝑧) =
1

𝑥𝑧
    be a Dulac function. Clearly, 𝐵(𝑥, 𝑧) > 0 is a 

smooth analytic function in the interior of positive quadrant 𝑥 − 𝑧 plane, orthogonal to the 

𝑦 − direction. Then, the quantity 
𝜕

𝜕𝑥
{𝐵(𝑥, 𝑦). 𝑔(𝑥, 𝑦)} +

𝜕

𝜕𝑦
{𝐵(𝑥, 𝑦). ℎ(𝑥, 𝑦)} =

1

(1 + 𝑥)2
−

𝛼

𝑧𝜅
≠ 0  

and is strictly positive if  
1

(1+𝑥)2 >
𝛼

𝑧𝜅
 or strictly negative if 

1

(1+𝑥)2 <
𝛼

𝑧𝜅
 . Thus, there are no 

periodic orbits in the positive quadrant of 𝑥 − 𝑧 plane. 

Furthermore, conditions (1.7) are needed to ensure that the two semi-trivial equilibria in the 

interior of the coordinate planes are unstable with respect to their orthogonal directions. These 

conditions are satisfied if there exist at least one positive eigenvalue associated with each 

equilibrium point. The local stability analysis of system (1.1) at the semi-trivial equilibria 

guarantee the persistence conditions as follows; 

If 

𝜅(𝜀𝜇 − 𝜉𝛽)(𝛽 − 𝜇)2 − 𝛼𝛽2𝜎(𝜅𝛽 − 𝜅𝜇 − 𝜇)

𝜅(𝛽 − 𝜇)2
> 0, 𝑡ℎ𝑒𝑛  𝐺(�̌�, 0, �̌�) > 0              

(𝛽𝜉 − 𝜇𝜀)[𝜂𝜅(𝜉 − 𝜀)2 − 𝛼𝜀(𝜅𝜉 − 𝜅𝜀 + 𝜉)] − 𝛼𝛽𝜀2(𝜅𝜉 − 𝜅𝜀 + 𝜉)

𝜀[𝜂𝜅(𝜉 − 𝜀)2 − 𝛼𝜀(𝜅𝜉 − 𝜅𝜀 + 𝜉)]
> 0  

 𝑡ℎ𝑒𝑛 𝐻(𝑥∗, 𝑦∗, 0) > 0. Hence, the proof is complete. 

 

4.3 Corollary 1: Nontrivial equilibrium points of system (1.1) are locally asymptotically 

stable. 

 

5.0 Global stability of the model. 

In this section we prove global asymptotic stability of the system (1.1) using strictly positive 

Lyapunov’s functions 𝑉(𝑥, 𝑦, 𝑧) ∈ 𝒜. The essence of  �̇�(𝑥, 𝑦, 𝑧)  is to show how the system 
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trajectories are evolving w.r.t the contours of 𝑉(𝑥, 𝑦, 𝑧). If �̇�(𝑥, 𝑦, 𝑧) < 0  then the trajectories 

of the system are moving closer to the equilibrium point. If �̇�(𝑥, 𝑦, 𝑧) > 0 then the trajectories 

of the system are moving away from the equilibrium point. If a strong Lyapunov’s function 

exists for system (1.1), then that equilibrium point is globally asymptotically stable. If a 

strong Lyapunov’s function is positive definite, but its time-derivative is negative semi-

definite: that is, �̇�(𝑥∗, 𝑦∗, 𝑧∗) = 0; �̇�(𝑥, 𝑦, 𝑧) ≤ 0, ∀ (𝑥, 𝑦, 𝑧) ≠ (𝑥∗, 𝑦∗, 𝑧∗), then additional 

requirement to prove global stability of the equilibrium point is the Lyapunov-LaSalle 

invariance principle. 

 

5.1 Lemma 4: (Lyapunov-LaSalle, 1968).  

If the time-derivative of a strongly positive Lyapunov’s function is negative semi-definite, 

then every solution of system (1.1) approaches the largest invariant subset of the set of points 

in the state space, ℜ+
3  for which  �̇�(𝑥, 𝑦, 𝑧) = 0 as  𝜏 → +∞. 

 

5.2 Lemma 4: (Sylvester’s criterion).  

An arbitrary 3 × 3 symmetric 𝑀 − matrix is positive definite iff all the upper-left leading 

principal minors of 𝐴  are positive.  

 

5.3 Proposition 3.  

The Prey equilibrium point  𝐸1(𝑥∗ = 𝐾, 𝑦∗ = 0, 𝑧∗ = 0) is globally asymptotically stable if  
𝜀𝜅

1+𝜅
< 𝜉 and  

𝛽+2𝛽𝜅

1+𝜅
< 𝜇 in 𝒜 

Proof: 

Consider a positive definite Lyapunov’s function 𝑉(𝑥, 𝑦, 𝑧) =
1

2
(𝑥 − 𝜅)2 +

1

2
𝑦2 +

1

2
𝑧2. 

𝑉(𝑥, 𝑦, 𝑧) is zero at equilibrium point and is positive for all other positive values of 𝑥, 𝑦, 𝑧.  
Thus, 

 𝐸1(𝑥∗ = 𝐾, 𝑦∗ = 0, 𝑧∗ = 0) is the global minimum of 𝑉(𝑥, 𝑦, 𝑧). The time derivative of 

𝑉(𝑥, 𝑦, 𝑧) along the trajectories of system (1.1) yields; 

�̇�(𝑥, 𝑦, 𝑧) = (𝑥 − 𝜅)
𝑑𝑥

𝑑𝜏
+ 𝑦

𝑑𝑦

𝑑𝜏
+ 𝑧

𝑑𝑧

𝑑𝜏
 

�̇�(𝑥, 𝑦, 𝑧) ≤ −𝛼𝑥(𝑥 − 𝜅)2 + (
𝜀𝜅

1 + 𝜅
− 𝜉 ) 𝑦2 + (

𝛽 + 2𝛽𝜅

1 + 𝜅
− 𝜇) 𝑧2                     2.0 

From (2.0) �̇�(𝑥, 𝑦, 𝑧) ≤ 0  if 
𝜀𝜅

1+𝜅
< 𝜉 and  

𝛽+2𝛽𝜅

1+𝜅
< 𝜇.  It is easy to see that �̇�(𝑥, 𝑦, 𝑧) = 0  

when (𝑥, 𝑦, 𝑧) = (𝑥∗ = 𝜅, 𝑦∗ = 0, 𝑧∗ = 0). Hence by lemma 5.1,  𝐸1(𝑥∗ = 𝐾, 𝑦∗ = 0, 𝑧∗ = 0) 

is globally asymptotically stable, satisfying the attractivity 

condition, 𝑙𝑖𝑚𝜏→+∞(𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)) = (𝜅, 0,0) . Hence, the proof is complete. 

 

5.3 Proposition 4:  

The prey-predator equilibrium point 𝐸2 (𝑥∗ =
𝜉

𝜀−𝜉
, 𝑦∗ =

𝛼𝜀(𝜅𝜀−𝜅𝜉−𝜉)

𝜂𝜅(𝜀−𝜉)2 , 𝑧∗ = 0 ) is globally 

asymptotically stable in 𝒜 if  
𝛼

𝜅
+

𝜂

2
−

2𝜂𝑦∗+𝜀

2(1+𝑥∗)
> 0,

𝜀−𝜂(1+𝑥∗)

2(1+𝑥∗)
> 0. 

Proof: 

Consider the Lyapunov’s function 

𝑉(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥∗ − 𝑥∗𝐼𝑛
𝑥

𝑥∗
) + (𝑦 − 𝑦∗ − 𝑦∗𝐼𝑛

𝑦

𝑦∗
) 

defined in 𝒜. Taking the time derivative of the Lyapunov’s function along the trajectories of 

system (1.1) and a little algebraic manipulation yields; 
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�̇�(𝑥, 𝑦, 𝑧) = (
𝑥 − 𝑥∗

𝑥
)

𝑑𝑥

𝑑𝜏
+ (

𝑦 − 𝑦∗

𝑦
)

𝑑𝑦

𝑑𝜏
                                                                  

�̇�(𝑥, 𝑦, 𝑧) = (
𝜂𝑦∗

1 + 𝑥∗
−

𝛼

𝜅
) (𝑥 − 𝑥∗)2 + (

𝜀 − 𝜂(1 + 𝑥∗)

(1 + 𝑥∗)(1 + 𝑥)
) (𝑥 − 𝑥∗)(𝑦 − 𝑦∗) 

�̇�(𝑥, 𝑦, 𝑧) ≤ (
𝜂𝑦∗

1 + 𝑥∗
−

𝛼

𝜅
) (𝑥 − 𝑥∗)2 + (

𝜀 − 𝜂(1 + 𝑥∗)

(1 + 𝑥∗)
) (𝑥 − 𝑥∗)(𝑦 − 𝑦∗)      

�̇�(𝑥, 𝑦, 𝑧) ≤ − [(
𝛼

𝜅
+

𝜂(1 + 𝑥∗)

2(1 + 𝑥∗)
−

2𝜂𝑦∗ + 𝜀

2(1 + 𝑥∗)
) (𝑥 − 𝑥∗)2 + (

𝜀 − 𝜂(1 + 𝑥∗)

2(1 + 𝑥∗)
) (𝑦 − 𝑦∗)2] 

Now �̇�(𝑥, 𝑦, 𝑧) ≤ 0 if  
𝛼

𝜅
+

𝜂

2
−

2𝜂𝑦∗+𝜀

2(1+𝑥∗)
> 0,

𝜀−𝜂(1+𝑥∗)

2(1+𝑥∗)
> 0  and �̇�(𝑥, 𝑦, 𝑧) = 0 only when 

𝑥 = 𝑥∗, 𝑦 = 𝑦∗.Then, the largest invariant subset of the set 𝐸 =  {(𝑥, 𝑦, 𝑧): 𝑥 = 𝑥∗, 𝑦 =

𝑦∗, 𝑧 ≥ 0} is the singleton  𝐸2 (𝑥∗ =
𝜉

𝜖−𝜉
, 𝑦∗ =

𝛼𝜖(𝜅𝜖−𝜅𝜉−𝜉)

𝜂𝜅(𝜖−𝜉)2 , 𝑧∗ = 0 ). Hence, by using lemma 

4 the proof is complete. 

 

5.4 Proposition 5:  

The prey-super predator equilibrium point 𝐸3 (�̌� =
𝜇

𝛽−𝜇
, �̌� = 0, �̌� =

𝛼𝛽(𝜅𝛽−𝜅𝜇−𝜇)

𝜅(𝛽−𝜇)2
) is globally 

asymptotically stable in 𝒜 if   
1

2
+

𝛼

𝜅
−

2�̌�+𝛽

(1+�̌�)
> 0,

𝛽−(1+�̌�)

2(1+�̌�)
> 0. 

Proof: 

Consider the Lyapunov’s function 

𝑉(𝑥, 𝑦, 𝑧) = (𝑥 − �̌� − �̌�𝐼𝑛
𝑥

�̌�
) + (𝑧 − �̌� − �̌�𝐼𝑛

𝑧

�̌�
) 

defined in 𝒜. Taking the time derivative of the Lyapunov’s function along the trajectories of 

system (1.1)  and a little algebraic manipulation  yields; 

�̇�(𝑥, 𝑦, 𝑧) = (
𝑥 − �̌�

𝑥
)

𝑑𝑥

𝑑𝜏
+ (

𝑧 − �̌�

𝑧
)

𝑑𝑧

𝑑𝜏
 

�̇�(𝑥, 𝑦, 𝑧) = (
�̌�

(1 + �̌�)(1 + 𝑥)
−

𝛼

𝜅
) (𝑥 − �̌�)2 + (

𝛽 − (1 + �̌�)

(1 + �̌�)(1 + 𝑥)
) (𝑥 − �̌�)(𝑧 − �̌�) 

�̇�(𝑥, 𝑦, 𝑧) ≤ (
�̌�

(1 + �̌�)
−

𝛼

𝜅
) (𝑥 − �̌�)2 + (

𝛽 − (1 + �̌�)

(1 + �̌�)
) (𝑥 − 𝑥∗)(𝑧 − �̌�) 

�̇�(𝑥, 𝑦, 𝑧) ≤ − [(
1

2
+

𝛼

𝜅
−

2�̌� + 𝛽

(1 + �̌�)
) (𝑥 − �̌�)2 + (

𝛽 − (1 + �̌�)

2(1 + �̌�)
) (𝑧 − �̌�)2] 

Now �̇�(𝑥, 𝑦, 𝑧) ≤ 0 if  
1

2
+

𝛼

𝜅
−

2�̌�+𝛽

(1+�̌�)
> 0,

𝛽−(1+�̌�)

2(1+𝑥)
> 0 and �̇�(𝑥, 𝑦, 𝑧) = 0 only when 

𝑥 = �̌�, 𝑧 = �̌�. Then, the largest invariant subset of the set 𝐸 =  {(𝑥, 𝑦, 𝑧): 𝑥 = 𝑥∗, 𝑦 ≥ 0, 𝑧 =

�̌�} is the point  𝐸3 (�̌� =
𝜇

𝛽−𝜇
, �̌� = 0, �̌� =

𝛼𝛽(𝜅𝛽−𝜅𝜇−𝜇)

𝜅(𝛽−𝜇)2 ). Hence, by using lemma 4 the prove is 

complete. 

 

 

5.50 Proposition 6:  

Suppose lemma 2 holds, then the coexisting equilibrium point of system (1.1) is globally 

asymptotically stable if (
𝛼

𝜅
−

𝜂𝑦∗+𝑧∗

(1+𝑥∗)
) +

𝜂(1+𝑥∗)−𝜀

2(1+𝑥∗)
+

(1+𝑥∗)−𝛽

2(1+𝑥∗)
> 0,

𝜂(1+𝑥∗)−𝜀

2(1+𝑥∗)
−

𝜎𝑦∗

(1+𝑦∗)
+

𝜎(1+𝑦∗)−𝛽

2(1+𝑦∗)
> 0,

(1+𝑥∗)−𝛽

2(1+𝑥∗)
+

𝜎(1+𝑦∗)−𝛽

2(1+𝑦∗)
> 0. 

Proof: 

Consider the Lyapunov’s function 
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𝑉(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥∗ − 𝑥∗𝐼𝑛
𝑥

𝑥∗
) + (𝑦 − 𝑦∗ − 𝑦∗𝐼𝑛

𝑦

𝑦∗
) + (𝑧 − 𝑧∗ − 𝑧∗𝐼𝑛

𝑧

𝑧∗
) 

defined in 𝒜. Taking the time derivative of the Lyapunov’s function along the trajectories of 

system (1.1)  and a little algebraic manipulation  yields; 

�̇�(𝑥, 𝑦, 𝑧) = (
𝑥 − 𝑥∗

𝑥
)

𝑑𝑥

𝑑𝜏
+ (

𝑦 − 𝑦∗

𝑦
)

𝑑𝑦

𝑑𝜏
+ (

𝑧 − 𝑧∗

𝑧
)

𝑑𝑧

𝑑𝜏
 

�̇�(𝑥, 𝑦, 𝑧) = − {{(
𝛼

𝜅
−

𝜂𝑦∗ + 𝑧∗

(1 + 𝑥∗)(1 + 𝑥)
) (𝑥 − 𝑥∗)2 +

𝜂(1 + 𝑥∗) − 𝜀

(1 + 𝑥∗)(1 + 𝑥)
(𝑥 − 𝑥∗)(𝑦 − 𝑦∗)}} 

− {{
(1 + 𝑥∗) − 𝛽

(1 + 𝑥∗)(1 + 𝑥)
(𝑥 − 𝑥∗)(𝑧 − 𝑧∗) −

𝜎𝑦∗

(1 + 𝑦∗)(1 + 𝑦)
(𝑦 − 𝑦∗)2 +

𝜎(1 + 𝑦∗) − 𝛽

(1 + 𝑦∗)(1 + 𝑦)
(𝑦

− 𝑦∗)(𝑧 − 𝑧∗)}} 

≤ − {{(
𝛼

𝜅
−

𝜂𝑦∗ + 𝑧∗

(1 + 𝑥∗)
) (𝑥 − 𝑥∗)2 +

𝜂(1 + 𝑥∗) − 𝜀

(1 + 𝑥∗)
(𝑥 − 𝑥∗)(𝑦 − 𝑦∗)}} − 

{
(1 + 𝑥∗) − 𝛽

(1 + 𝑥∗)
(𝑥 − 𝑥∗)(𝑧 − 𝑧∗) −

𝜎𝑦∗

(1 + 𝑦∗)
(𝑦 − 𝑦∗)2 +

𝜎(1 + 𝑦∗) − 𝛽

(1 + 𝑦∗)
(𝑦 − 𝑦∗)(𝑧 − 𝑧∗)} 

≤ − {((
𝛼

𝜅
−

𝜂𝑦∗ + 𝑧∗

(1 + 𝑥∗)
) +

𝜂(1 + 𝑥∗) − 𝜀

2(1 + 𝑥∗)
+

(1 + 𝑥∗) − 𝛽

2(1 + 𝑥∗)
) (𝑥 − 𝑥∗)2} 

− {(
𝜂(1 + 𝑥∗) − 𝜀

2(1 + 𝑥∗)
−

𝜎𝑦∗

(1 + 𝑦∗)
+

𝜎(1 + 𝑦∗) − 𝛽

2(1 + 𝑦∗)
) (𝑦 − 𝑦∗)2

+ (
(1 + 𝑥∗) − 𝛽

2(1 + 𝑥∗)
+

𝜎(1 + 𝑦∗) − 𝛽

2(1 + 𝑦∗)
) (𝑧 − 𝑧∗)2} 

The bilinear quadratic form of �̇�(𝑥, 𝑦, 𝑧) yields, �̇�(𝑥, 𝑦, 𝑧) ≤ −𝑋𝑇𝑀𝑋 

where = (
𝑥 − 𝑥∗

𝑦 − 𝑦∗

𝑧 − 𝑧∗

) ,  𝑀 = (
𝑀11 0 0

0 𝑀22 0
0 0 𝑀22

) and 

𝑀11 = (
𝛼

𝜅
−

𝜂𝑦∗ + 𝑧∗

(1 + 𝑥∗)
) +

𝜂(1 + 𝑥∗) − 𝜀

2(1 + 𝑥∗)
+

(1 + 𝑥∗) − 𝛽

2(1 + 𝑥∗)
 

𝑀22 =
𝜂(1 + 𝑥∗) − 𝜀

2(1 + 𝑥∗)
−

𝜎𝑦∗

(1 + 𝑦∗)
+

𝜎(1 + 𝑦∗) − 𝛽

2(1 + 𝑦∗)
 

𝑀33 =
(1 + 𝑥∗) − 𝛽

2(1 + 𝑥∗)
+

𝜎(1 + 𝑦∗) − 𝛽

2(1 + 𝑦∗)
 

Using lemma 4 & 5, the 3 × 3 symmetric 𝑀-matrix   is positive definite if  𝑀11 >
0, 𝑀11𝑀22 > 0, 𝑀11𝑀22𝑀33 > 0.  �̇�(𝑥, 𝑦, 𝑧) is negative semi-definite. Thus, 𝑉(𝑥, 𝑦, 𝑧) is a 

strictly positive Lyapunov’s function and ensures the global asymptotic stability of coexisting 

equilibrium point of system (1.1) in the interior of 𝒜. Hence, the proof is complete. 

 

6.0 Numerical Responses. 

 

6.1 Numerical Response of Prey Equilibrium point:  

Consider the ecological parameters;𝛼 = 0.3421, 𝜅 = 2.9231, 𝜂 = 3.4462, 𝜀 = 0.98, 𝜉 =
0.76, 𝜎 = 0.8125, 𝜇 = 0.2222. System (1.1) has a prey equilibrium point in the absence of 

predator, and super-predator at 𝐸1(𝑥∗ = 2.9231, 𝑦∗ = 0, 𝑧∗ = 0) subject to the initial 

conditions; 𝑥(0) = 3.0769, 𝑦(0) = 1.2500, 𝑧(0) = 0.9231.   
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It is easy to check that the ecological parameters satisfy the conditions of proposition 3. Fig. 

1.1 illustrates the global asymptotic stability of prey equilibrium point, while others follow 

extinction. The population of the prey then converges to the environmental carrying capacity 

as 𝜏 → +∞. 

 
 

6.2 Numerical Response of Prey-predator Equilibrium point:  

Consider the ecological parameters; 𝛼 = 2.60, 𝜅 = 2.9231, 𝜂 = 2.40, 𝜀 = 0.96, 𝜉 =
0.60, 𝜎 = 1.0, 𝜇 = 1.60, 𝛽 = 0.15. System (1.1) has prey-predator equilibrium point in the 

absence super-predator at 𝐸2(𝑥∗ = 1.6667, 𝑦∗ = 1.2417, 𝑧∗ = 0. )   with eigenvalues  

−1.4232, −0.320 ± 0.3127𝑖 subject to the initial conditions; 𝑥(0) = 0.3077, 𝑦(0) =
1.8462, 𝑧(0) = 1.5385. It is easy to check that the ecological parameters satisfy the 

conditions of proposition 4. Fig. 1.2 illustrates global asymptotic stability of prey-predator 

equilibrium point, while super-predator goes to extinction. The population of the prey-

predator species spiral towards its equilibrium point as, 𝜏 → +∞. 
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6.3 Numerical Response of Prey-super-predator Equilibrium point:  

Consider the ecological parameters; 𝛼 = 0.9091, 𝜅 = 4.75, 𝜂 = 0.4545, 𝜀 = 0.1136, 𝜉 =
0.9091, 𝜎 = 0.5333, 𝜇 = 0.2727, 𝛽 = 0.4110.  System (1.1) has a prey-super predator 

equilibrium point in the absence of predator at 𝐸3(𝑥∗ = 1.9724, 𝑦∗ = 0, 𝑧∗ = 1.7381) with 

eigenvalues −1.67672, −0.01237 ± 0.2205𝑖 subject to the initial conditions; 𝑥(0) =
1.25, 𝑦(0) = 2.6667, 𝑧(0) = 3.75.  It is easy to check that the ecological parameters satisfy 

the conditions of proposition 5. Fig. 1.3 illustrates global asymptotic stability of prey-

superpredator equilibrium point, while super-predator goes to extinction. The population of 

the prey and super-predator species spiral towards its equilibrium point as, 𝜏 → +∞. 
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6.4 Numerical Responses of Coexisting Equilibrium point:  

It is easy to check that the ecological parameters;  𝛼 = 0.7688, 𝜅 = 2.0064, 𝜂 = 0.1673, 𝜀 =
0.1248, 𝜉 = 0.041, 𝜎 = 1.0755, 𝜇 = 0.3804, 𝛽 = 0.3655 satisfy conditions of propositions 

1, 2 and 6. These parameters ensure coexistence, and persistence for a globally asymptotically 

stable equilibrium point point 𝐸4(2.0390,2.1138 × 10−10, 0.6315) of system (1.1) with 

negative eigenvalues (−0.78981, −0.1377, −0.0251) subject to initial conditions 𝑥(0) =
1.06783, 𝑦(0) = 1.373, 𝑧(0) = 0.6383. Fig. (1.4-1.6) illustrate the solution profiles of the 

interacting species, ensuring their long-term survival and globally asymptotically stable 

oscillations.  
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7.0 Conclusion 

In this paper, we have established ultimate boundedness, dissipativeness and existence of 

positive equilibrium points of the model. The long-term survival of all interacting species of 

the system is obtained. We constructed suitable Lyapunov’s functionals and used LaSalle 

extension of Lyapunov’s direct method to ensure the existence of global asymptotic behaviors 

of the system.  The claims in propositions and lemmas are illustrated using numerical 

response, phase-portrait, and phase-flow diagrams. 
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