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Abstract 

This work deals with the problem of three mutually competing species within a stable 

ecosystem. The model is represented by a system of non-linear ordinary differential 

equations. As much as six non-extinction equilibrium states have been obtained depending on 

the value of various interaction or efficiency parameters.  A set of numerical schemes for the 

discrete solution of the resulting system  have been developed using the technique of non-

local approximation and renormalisation of  the denominator function which are the bedrock 

of non-standard finite difference method. The new scheme confirms that the analytic 

equilibrium points of the system compares favourably with a Runge kutta scheme of order 

four. 
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1. Introduction 

The model of a system of three competing populations in a single ecological environment can 

be represented by the following system of ordinary difference equations, Beltrami (1986). 

 

       (1)  

  

is the population density of the  population, are the efficiency parameters.    

represent the effect on the group of a specie due to its interactions with another group of 

specie. In the case or prey predator model may represent the rate at which the 

predator catches her prey and the growth rate of the predator resulting from her catches. The 

above model was proposed by Lotka-Voltera as explained by Beltrami (1986). In this model 
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two crucial points are always considered as the key factors. They are: reproduction and 

extinction. All the assumptions of Beltrami (1986) are adopted. Such assumptions include 

fairly stable ecosystem, a conducive atmosphere for competition, continuous or discrete 

reproduction intervals and disregard to age or sex of any member. 

The biological foundation of this problem is to obtain the equilibrium state of the eco-system. 

This represents the values for which the population densities of the three species remain 

constant for all time. In this case, there can be no further change in the numerical value of the 

population of any of the three species with respect to time. 

In this work, we shall consider only the continuous time reproduction model. We shall 

investigate the analytic equilibrium point and use numerical experiment to investigate the 

existence of other non -extinction equilibrium points. The motivations for this work are the 

Malthusian theory and the earlier works of Mickens (1994). 

 

2. Preliminaries 

In this section, we will give some basic definitions and a theorem that will be useful for our 

derivations. 

Let, 

  

     = (   . . .,         (2) 

 = (  . . .,  

   =  ( , ,  

be the vector notation of n first order system of differential equation. 

Definition 1: Any function , defined on an interval   and processing at least n derivatives 

that are continuous on , which when substitutes into an nth order ordinary differential 

equation reduces the equation  to an identity is said to be a solution of the equation on the 

interval  , Zill and Cullen (2005). i.e 

       (3) 

Definition 2: The interval    of the definition of solution of an IVP is that interval   in which 

the {solution} y(x) is defined, y(x) is differentiable and contains the initial point Ϲ , Zill 

and Cullen (2005). 
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Theorem:   Picard’s Theorem on the Uniqueness of Solution 

If f (x, y) satisfies the following conditions: 

       (i)  f (x , y) is a real-valued function defined and continues for x ∈ (x0, b), y ∈ Rn
. 

       (ii) f (x, y ) satisfy Lipschitz conditions in the domain U of its definition where 

              U = x0 ≤ t ≤ xN} x {y0 ≤ y ≤ yN} 

Then for every y0, the initial value problem (2) has a unique solution y (x), t ∈ (x0, b). 

Definition 3:The zeros of the function f in the equation (1.2) is a critical point. A point y ∈ R 

is called a fixed point or equilibrium point of the dynamical system defined by (1.2) if f(y) = 

0. If c is any critical point of fi.e f(c) = 0 then y(x) = c is a constant solution of the differential 

equation, Zill and Cullen (2005). 

Definition 4: Equilibrium point 

Any constant solution of the system (2) is called an equilibrium point of the system: thus any 

orbit along which the derivative y is identically zero is a “fixed point” and is referred to as an 

equilibrium point, Beltrami (1986). 

3. Equilibrium Points of the System 

We will assume that our system of equation (1) satisfies the Picard’s theorem and hence that 

there exist such region for which unique solution exist.  Thus: 

The trivial equilibrium points of system (1) when   = 0, i = 1, 2, 3 is (0,0,0) 

The partial extinction equilibrium points are ((1,0,0), (0,1,0), (0,0,1)). 

The analytic non-extinction equilibrium points can be obtained by solving the system: 

   +  + = 1 

 =  +  +  = 1    (4) 

  +  +  = 1 

With the following augmented matrix 

 

CaseI: when  ≠ 0,  ≠ 0,  ≠0 

The solution to the augmented above is 

= ( - )(1- )+(1- )(1-  
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           ( - ( - )+(1-  

 = ( ) – ( )  

 = 1-  -  ;  

Case II: If = 0, ,  

The resulting equation is as given:  

 

 

 

  

 

The solution is  

 ,    ,  

Case III 

Similarly when  = 0,  0,  0 

We obtain  = (  , 0, ) 

Case IV 

Similarly when  = 0,  0,  0 

We obtain ( , , 0) 

Case V 

Similarly when  = 0,  0,  0. We obtain ( , ) 

From the analysis point of view the behaviour of the system clearly depends on the value of 

 and the relationship between the two.We will test for these equilibrium points 

numerically for various types of mutually related species. We will also examine the system 

for the following situations e.g 

1.   = 0,  = 0: when species are harmless from one type to another, competition is 

negligible. 

 = 1,  = 1:  can prey on ,  can prey on   and    can prey on  e.g eagle, snake,     

man. Eagle can prey on snake, snake is harmful to man, man can prey on eagle etc. 
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 = 1,  = 0, or  = 0,  = 1: These are models which can be used for pest control 

competitive ability is one sided between any two specie. 

4.  i.e , e.g colony of speciesin co-operation e.g bacterial colony 

5.  :  This implies that the three species are strongly competing . 

4. Construction of Numerical Schemes 

For the construction of the new numerical schemes we will use the rules 2 and 3 of the non-

standard modeling rules as proposed by Mickens (1994). 

Rule 2 of Non-Standard Modeling (Mickens 1994) 

Denominator function for the discrete derivatives must be expressed in terms of more 

complicated function of the step-sizes than those conventionally used. This rule allows the 

introduction of complex analytic function of h in the denominator. For instance, consider 

          (5) 

This is in form of a logistic equation. 

If we consider the discrete model of the first order differential equation  

          (6) 

in the form given by 

 OR       (7)

  

 If instead of the conventional “h” the denominator functions  is given by, 

= e
h 

- 1           (8)

  

Then substituting equation (8) in equation (7) gives 

)        (9)

  

It must be stated here that the selection of an appropriate denominator is an ‘art’, Mickens 

(1994). Close examinations of differential equation, for which the exact schemes are known, 

shows that the denominator function generally are functions that are related to particular 

solutions or properties of general solution to the differential equation. This therefore places 

great importance on the necessity of the modeler to obtain as much analytic knowledge as 

possible about the solutions to the differential equation. 
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Rule 3 of Non-Standard Modeling (Mickens 1994) 

The non-linear terms must in general be modeled (approximated) non-locally on the 

computational grid or lattice in many different ways, for instance, the non-linear terms and 

 can be modeled as follows, 

 y
2

n ≈ ynyn+1         (10)

  

≈          (11)

  

≈ y
2

nyn+1         (12)

  

≈ y
2

n         (13)

  

In general any linear combination of the expressions listed in(10) to (13) with the sum of the 

co-efficient equal to 1 approximates  or  the error being of order  for sufficiently 

smooth y (see Anguelov and Lubuma 2003). In this way the function f in equation (6) may be 

approximated by an expression which contains certain number of free parameters. The 

particular form selected from equations (7) to (10) depends on the full discrete model. 

 

5. Derivation of the Non-Standard Numerical Scheme 

Consider     = X (1 - X -  

i.e = X –  –  –        (14) 

Applying rule 2 by selecting a suitable denominator function  

 = + , , )         (15)

  

Applying non-local approximation to the non-linear terms 

=  +  ) 
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  +  - a   - b  -  -  

=  -   -     (16)

  

     (17)

  

     (18)

  

       (19)

  

Similarly we can obtain 

       (20)

  

=         (21) 

The Non-standard numerical scheme is given by  

      (22)

  

      (23) 

 (24)  

,           

   

6. Derivation of the Exact Numerical scheme 

From the analytic solution of Case I above, we can obtain the exact scheme 
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        (25) 

        

when  

7. Derivation of Runge kutta scheme of order 4 

      (26) 

   (27) 

 

    (28) 

 

  (29) 

 

  (30) 

    (31) 

   (32) 

 

    (33) 

 

  (34) 

 

   (35) 

    (36) 

   (37) 
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     (38) 

 

  (39) 

 

   (40) 

 A suite of programs have been developed to test the algorithms of the schemes developed and 

the results obtained were analyzed and compared with the analytic properties of the original 

model. 

8. Summary of Results 

The results of the numerical experiment on the schemes derived are presented in the following 

3D graphs. 

 

Figure1:  Orbit of the schemes for   the equilibrium state is (1,1,1) 

NOTE:  “NSX” = Non-standard Scheme of X, “RUNX”= Runge Kutta Scheme of X  

 

 

Figure 2:  Orbit of the schemes  

the equilibrium state is (0.38, 0.19,0.43) i.e (  , ,  ) such that   
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Figure 3:  Orbit of the schemes for  or   

the equilibrium state is (  ,0.5, 0.5) 

 

 

Figure 4:  Orbit of the schemes for  

the equilibrium point is  (0.625, 0.625, 0.625) which is (k, k, k) where k = . 

 

 

Figure 5:  Orbit of the schemes for  i.e  

the equilibrium point is  (0, 0, 1) for  which is (k, k, k) where k =  

The  equilibrium points are (1,0,0), (0,1,0) & (0,0,1) depending on the initial values. 
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Figure 6:  Orbit of the schemes for  i.e  

The equilibrium point is (0.14286, 0 .14286, 0.14286)  which is (k, k, k) 

where k =  

The  equilibrium points are (1,0,0), (0,1,0) & (0,0,1) depending on the initial values. 

 

 

Figure 7:  Orbit of the schemes for  i.e  

the equilibrium point is  (0, 1 ,0) for   

Generally for 0 ≠  the result confirm the following set of equilibrium points 

i. (1,0,0), (0,1,0), (0,0,1),(0,0,0) 

ii. (k, k, k)  where k =  

iii. , ,  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.8, 2016 

 

27 

 

 

 

Figure 8:  Orbit of the schemes for  

 for any non-zero initial value 

 

Conclusion and Discussion 

From the results of the numerical experiment, we have obtained six types of equilibrium 

points for this model. We also used this to confirm the analytic equilibrium points. The use of 

non-standard method helped to reduce the amount time use in the construction of the schemes 

and the efficiency of the computer software in terms of work area storage and run time.  The 

schemes produced orbits that preserve the dynamics of the original system. 
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