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Abstract 

Response surface methodology is widely used for developing, improving, and optimizing processes in various 

fields. A design is of resolution 𝑅 if no 𝑝 factors effect is confounded with any other effect containing less than 

𝑅 − 𝑝 factors. In this study, a method for constructing second order rotatable designs based on resolution R, in 

particular resolution III and IV for three and four factors respectively, argumented with star points is presented. 

Attention is given to the moment matrices and the related information surfaces based on the parameter subsystem of 

interest on the second-order Kronecker model and their corresponding rotatable Central Composite Designs 

(CCDs). Weighted Central Composite Designs (WCCDs) are derived by assigning different weights to two 

portions of the CCD namely the cube and star portion. The derived designs achieve the property of rotatability and 

high efficiency and are shown to be D-optimal. Experimental runs are reduced hence economical and the resulting 

designs are improved in terms of optimality and estimation efficiency. The results show that the cube portion is of 

great importance in D-optimal resolution III design while the two portions are of equall importance in resolution 

IV design. 

Key Words:  Resolution R, Kronecker model, Optimality Criterion, Weighted Central Composite Designs, Second 

– Order designs, Moment matrices, Information matrices  

1.0. Introduction 

In the Design of experiments for estimating statistical models, optimal designs allow parameters to be estimated 

without bias and with minimum-variance. Response Surface Designs is one of the experimental designs for 

optimization used for the study of response surface methodology (RSM). RSM is a collection of mathematical 

and statistical techniques useful for modeling and analysis of problems in which a response of interest is 

influenced by several variables and the objective is to optimize this response (Montgomery, 2005). 

 In this field, the main objective of the experimenter is usually to estimate the absolute response or the 

parameters of a model providing a functional relationship between the response and the factors. If the response 𝑌  

is represented as a suitable function  𝑓 of the levels 𝑥1𝑢 , 𝑥2𝑢, … , 𝑥𝑚𝑢 of the 𝑚 factors and,  𝜃 the set of 

parameters then a typical model may be of the form:   

𝑦𝑢 = 𝑓(𝑥1𝑢 , 𝑥2𝑢, … , 𝑥𝑚𝑢; 𝜃 + 𝑒𝑢)′                      (1) 

where 𝑢 = 1, 2, … , 𝑁 represents the 𝑁 observations with  𝑥𝑖𝑢  representing the level of the 𝑖𝑡ℎ factor (𝑖 =
1, 2, … ,𝑚)  in the 𝑢𝑡ℎ observation. This particular function is called the response surface (Pukelsheim, 1993). 

The objective of the study now becomes the estimated response surface whose statistical properties are 

determined by the moment matrix 

  𝑀(𝜉) = ∫ 𝑓( 𝑥)𝑓(𝑥)′𝑑𝜉                                                                                                        (2) 

The information that a design with moment matrix 𝑀 contains for the model response surface 𝑓(𝑥)′𝜃  is 

represented by the information surface given by 

  𝑖𝑀(𝑥) = {
1

𝑓(𝑥)′𝑀−1𝑓(𝑥)
  𝑓𝑜𝑟 𝑓(𝑥) ∈ 𝑟𝑎𝑛𝑔𝑒 𝑀

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       

In terms of information matrices  𝐶𝐾(𝑀(𝜉)) , we have 

 𝑖𝑀(𝑥) = 𝐶𝑓(𝑥)(𝑀(𝜉))                                    (3) 
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Definition 1 

 In an 𝑚−𝑤𝑎𝑦 second - degree model 𝑚 ≥ 2, we take the regression function to be 

 𝑓(𝑥) = (
1
𝑥

𝑥⨂𝑥
) : Τ√𝑚 → ℝ𝑘                    (4) 

                                   

with   Τ√𝑚 the ball of radius  √𝑚 in ℝ𝑘  and 𝑘 = 1 + 𝑚 +𝑚2. The moment matrix of a design 𝜏 ∈ 𝑇 is denoted 

by (1.2) above. The portion 𝑥⨂𝑥 which is an 𝑚2 × 1 matrix represents the mixed products for 𝑖 ≠ 𝑗 twice, as 

𝑥𝑖𝑥𝑗  and as 𝑥𝑗𝑥𝑖 . 

The second-degree Kronecker model is   

𝐸(𝑌𝑥) = 𝑓(𝑥)
′𝜃 = 𝜃0 + ∑ 𝜃𝑖

𝑚
𝑖=1 𝑥𝑖 + ∑ 𝜃𝑖𝑖

𝑚
𝑖=1 𝑥𝑖

2 + ∑ (𝜃𝑖𝑗 + 𝜃𝑗𝑖)
𝑚
𝑖,𝑗=1 𝑥𝑖𝑥𝑗                 (5) 

Where 𝑌𝑥 the observed response under the experimental conditions   𝑥 ∈ 𝑇, is taken to be a scalar random 

variable and  

 Θ = (𝜃0, 𝜃1, … , 𝜃11, 𝜃22, . . . , 𝜃𝑚𝑚)′ ∈ ℝ
𝑚2

     is an unknown parameter.                                          (6) 

The second – degree Kronecker model (5) has (1 + 𝑚 +𝑚2) parameters and is expressed as follows: 

(a)  𝑚 = 3 

𝜂(𝜃, 𝑥) = 𝜃0 + 𝜃1 𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃11𝑥1
2 + 𝜃12𝑥1𝑥2 + 𝜃13𝑥1𝑥3 + 𝜃21𝑥2𝑥1 + 𝜃22𝑥2

2 +  𝜃23𝑥2𝑥3 +
𝜃31𝑥3𝑥1 +  𝜃32𝑥3𝑥2 + 𝜃33𝑥3

2                 

(b) 𝑚 = 4 

𝜂(𝜃, 𝑡) = 𝜃0 + 𝜃1 𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃4𝑥4 + 𝜃11𝑥1
2 + 𝜃12𝑥1𝑥2 + 𝜃13𝑥1𝑥3 + 𝜃14𝑡1𝑡4 +  𝜃21𝑥2𝑥1 + 𝜃22𝑥2

2 +
 𝜃23𝑥2𝑥3 + 𝜃24𝑥2𝑥4 + 𝜃31𝑥3𝑥1 +  𝜃32𝑥3𝑥2 + 𝜃33𝑥3

2 + 𝜃34𝑥3𝑥4 + 𝜃41𝑥4𝑥1 + 𝜃42𝑥4𝑥2 + 𝜃43𝑥4𝑥3 + 𝜃44𝑥4
2 

                                       (7)  

The Kronecker representation has several advantages such as offering attractive symmetry, more compact 

notations, more convenient invariance properties, and the homogeneity of the regression terms (Draper and 

Pukelsheim, 1998 and Prescott, et al, 2002).  

In this study,  information matrices based on the parameter subsystem of interest and their corresponding 

rotatable CCDs for fitting second - degree Kronecker model as suggested by Draper and Pukelsheim (1998) and 

as cited by Koech et.al. (2014) are investigated. 

The CCD is one of the main types of response surface designs.  The CCDs comprise of three portions: a 2𝑚 

factorial (or fractional factorial) design and center points (used for fitting first order model) and 2𝑚 axial points 

at a distance 𝛼 from the origin (added when the second-order terms are further incorporated). Hence a CCD is 

extremely useful and powerful in sequential experimentations.  

Yin-Jie Huang (2007) constructed minimal-point designs for second-order response surface using a two-stage 

method to find the minimal-point composite designs formulated as:  

𝜉 =
𝑛1 + 1

𝑝
𝜉1 + (1 −

𝑛1 + 1

𝑝
) 𝜉2 

where 𝜉1 is the design of the first-order portion and one center point,  𝑛1 is the number of the support points of 

the first-order design, and 𝜉2 is the equal-weight design with the  (𝑝 − 𝑛1 − 1) distinct added support points. A 

comparison was made with CCDs, other small composite designs and minimal-point designs by relative 

efficiencies and the proposed composite designs performed well in general.  Ray-Bing et al. (2008) constructed 

small composite designs for a second-order response surface which they referred to as Conditionally Optimal 

Small Composite Designs. The designs considered were represented as   

𝜉 =  
𝑛𝑐

𝑛
𝜉𝑐   +

𝑛1
𝑛
 𝜉1   +  

𝑛2
𝑛
 𝜉2 

where 𝜉𝑐 is the one-point design at center point, 0, with 𝑛𝑐 replications; 𝜉1 is the selected first-order design and 

𝑛1 is the number of supports of this first-order design; 𝜉2 is the equal-weight design for 𝑛2 added points, and 

𝑛 =  𝑛1 + 𝑛𝑐 + 𝑛2.  Chuan-Pin and Mong-Na (2011) investigated D-optimal designs for different models 

showed that, at each qualitative level, the corresponding D-optimal design also consists of three portions as 

central composite design, i.e. the cube design, the axial design and center points, but with different weights.  

2.0. Design Problem 

In this study, the design problem is to obtain second order optimal rotatable designs constructed through 

resolution III and IV to explore and optimize response surfaces based on the Central Composite Design. 
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Optimality will be accomplished through the application of D-optimality criterion which follows from the 

General Equivalent Theorem (Pukelsheim, 1993).   

2.1. Constructed Rotatable CCD Through Resolutions 

A 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅 design of an 𝑚-factor design in 𝑛 runs is constructed in this section.  

Let X be the 𝑛 𝑏𝑦 𝑚 design matrix, with high and low levels of a factor denoted by +1 and -1 respectively. To 

construct one-half fraction, we write down a full  2𝑚−1 factorial design, then add the 𝑚𝑡ℎ factor by identifying 

its plus and minus levels with the signs of 𝐴𝐵𝐶 … (𝑀– 1). Then  

 𝑀 =  𝐴𝐵𝐶 … (𝑀 –  1)  =>  𝐼 =  𝐴𝐵𝐶 …𝑀 where 𝐴, 𝐵, 𝐶, … ,𝑀 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚   respectively. When 

additional factors are added to the interactions, generators are created. The set of distinct words formed by all 

possible products of any subsets of the factors involving 𝑝 generators gives the defining relation which contains 

2𝑝 terms including the identity term 𝑰.  For a set of generators  𝑊 = { 𝑊1,𝑊2, … ,𝑊𝑝}, we have 𝐼𝑊 = 𝑊𝐼 = 𝑊 

and 𝑊2 = 𝐼. Another way is to partition the runs into two blocks with the highest-order interaction 𝐴𝐵𝐶 …𝑀 

confounded 

To create a resolution 𝐼𝐼𝐼 design, we assign the additional factors to the generators. For 𝑚 = 3  factors, a 

resolution  𝐼𝐼𝐼 design will be such that  𝑥3=𝑥1𝑥2 and hence the defining relation is given by I = 𝑥1𝑥2𝑥3 and this 

is a resolution 𝐼𝐼𝐼∗ design. For 𝑚 = 4  factors, a resolution  𝐼𝑉 design is such that  𝑥4 = 𝑥1𝑥2𝑥3 and hence the 

defining relation is given by I = x1x2x3x4  denoted as 2𝐼𝑉
4−1 design.  Further, for  𝑚 = 5 factors, a resolution 𝑉 

design is such that  𝑥5 = 𝑥1x2x3x4 and hence the defining relation is given by I = x1x2x3x4x5  denoted as 

2𝑉
5−1design. 

In this article, the CCD is a resolution 𝑅 design with the levels of each factor coded to the usual −1,+1, 

augmented by the following points: (±𝛼, 0, . . . , 0), (0, ±𝛼, . . . , 0) and (0, 0, . . . , ±𝛼).  

Generally, the design matrix for a CCD experiment involving 𝑚 factors is derived from a matrix 𝒅 which is a 

vertical concatenation and is of the form 

   𝑑 = [
𝑅
𝐸
]                 (8) 

containing the following three different parts corresponding to the two types of experimental runs: 

1. The matrix 𝑹 obtained from the fractional factorial (Resolution 𝑅) experiment (Tables 1, 2 and 3 

above).  

2. A matrix 𝑬 from the axial points, with 2𝑚 rows.  

We select the value of 𝛼 according to the rotatability restrictions 𝛼 = 2
𝑚−𝑝

4 = √𝐹
4

  , where 𝐹 is the 

number of experimental runs in the fractional factorial portion. . In order to show how these restrictions are made 

in choosing 𝛼, attention was paid to the expanded design matrix, 𝑋 and the information matrix, 𝑋’𝑋, for the 

general CCD. In fitting the second-degree Kronecker model (8) (Draper and Pukelsheim, 1998), the design 

matrix 𝑋 is the horizontal concatenation of a column of 1′𝑠 (intercept) and all element products of a pair of 

columns of 𝑑. 

Thus using matrix 𝑑 the design matrix 𝑋 takes the form:                   

𝑋 = [1  𝑑  𝑑(1)2 𝑑(1) × 𝑑(2)…  𝑑(1) × 𝑑(𝑚)     𝑑(2) × 𝑑(1)  …  𝑑(𝑚 − 1) × 𝑑(𝑚) …  𝑑(𝑚) × 𝑑(𝑚 −
1)   𝑑(𝑚)2]                                (9)     

2.2. Optimality Criteria and General Equivalence Theorem (Pukelsheim, 1993) 

Most often, all the available criteria in literature may be classified into four types; information-based criteria, 

distance-based criteria, compound criteria and other types criteria; according to their definitions. In this study, 

we focus on information-based criteria which are related to the information matrix 𝑋𝑇𝑋 for the design. This 

matrix is important because it is proportional to the inverse of the variance-covariance matrix for the least-

squares estimates of the linear parameters of the model of interest (El-Monsef, M. M. E. A., Rady, E. A., and 

Seyam, M. M. (2009). The ultimate purpose of any optimality criterion is to measure the largeness of a non-
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negative definite  𝑠 × 𝑠  information matrix 𝐶.  The D-optimality criterion is in the family of matrix means 

discussed in detail by Pukelsheim (1993) and is defined as: 

∅𝑝(𝐶) = {(det 𝐶)
1

𝑠                           𝑓𝑜𝑟 𝑝 = 0           (10)  

The CCD  𝜂(𝜉) is 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 for 𝜃 if and only if   

 𝑡𝑟𝑎𝑐𝑒  𝐶𝑖  𝐶
𝑝−1  {

= 𝑡𝑟𝑎𝑐𝑒𝐶𝑝  𝑓𝑜𝑟  𝑖 = 1, 2  

 < 𝑡𝑟𝑎𝑐𝑒𝐶𝑝         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑝 = 0                       (11) 

2.3. Subsystem of Interest of the Mean Parameters 

In this article, we study 𝑠 out of the total 𝑘 components, where 𝑠 ≤ 𝑘 and the linear parameter subsystem is of 

the form  𝐾′𝜃 of the parameter vector 𝜃 ∈ ℛ𝑘 for some 𝑘 × 𝑠 matrix 𝐾 ∈ ℛ𝑘×(𝑚+1) assumed to have full column 

rank. 𝐾 is called the coefficient matrix of the maximum parameter subsystem 𝐾′𝜃. We consider the Euclidean 

unit vectors in ℝ𝑚 denoted by  𝑒1, 𝑒2, … , 𝑒𝑚 and the sets  

 𝑒𝑖𝑖 = 𝑒𝑖⨂𝑒𝑖   , 𝑒𝑖𝑗 = 𝑒𝑖⨂𝑒𝑗  ,   𝑓𝑜𝑟 𝑖 < 𝑗 < 𝑘,   𝑖, 𝑗, 𝑘 = {1,2, … ,𝑚}. 

We let the 𝑘 × 𝑠 coefficient matrix  𝐾 be such that: 

 

𝐾 = (
1 0 0
0 0 0
0 𝐾1 𝐾2

) ∈ ℝ(𝑚
2+𝑚+1)× 𝑠  for 𝑚 ≥ 3              (12)               

Where 

𝐾1 = ∑ 𝑒𝑖𝑖𝑒𝑖
′𝑚

𝑖=1   ,         an  (𝑚2 ×𝑚) matrix                                           

 and 

𝐾2 =

{
 
 
 

 
 
 1

2
(∑ (𝑒𝑖𝑗 + 𝑒𝑗𝑖)𝐸𝑟

′𝑚
𝑖,𝑗=1
𝑖<𝑗

)                            𝑓𝑜𝑟  𝑚 = 3

1

4
(∑ (𝑒𝑖𝑗 + 𝑒𝑗𝑖 + 𝑒𝑘𝑙 + 𝑒𝑙𝑘)𝐸𝑟

′𝑚
𝑖,𝑗=1
𝑖<𝑗
𝑘<𝑙

)       𝑓𝑜𝑟  𝑚 = 4

                                                           𝑟 = 1,… , (𝑠 − (𝑚 + 1)) 

   𝐾2 is an 𝑚2 × (𝑠 − (𝑚 + 1)) matrix. 

where 𝑟 is the number of times each column corresponding to the interaction factors is repeated in the design 

matrix 𝑋 of the respective CCD. 

Thus  

𝐾′(𝜃) =

{
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 

𝜃0                              
           𝜃𝑖𝑖               𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑚

 
1

2
 {(𝜃𝑖𝑗 + 𝜃𝑗𝑖)}      𝑓𝑜𝑟 𝑖 = 1,… ,𝑚

                               𝑖 < 𝑗 ≤ 𝑚 }
 
 

 
 

for 𝑚 = 3 factors

{
  
 

  
 

𝜃0                                    
                  𝜃𝑖𝑖                             𝑓𝑜𝑟  1 ≤ 𝑖 ≤ 𝑚

 
1

4
 {(𝜃𝑖𝑗 + 𝜃𝑗𝑖 + 𝜃𝑘𝑙 + 𝜃𝑙𝑘)}         𝑓𝑜𝑟 𝑖, 𝑗, 𝑘, 𝑙 = 1,… ,𝑚

                                                  𝑖 ≠ 𝑗 ≠  𝑘 ≠ 𝑙
                                𝑖 < 𝑗,

                             }
  
 

  
 

for 𝑚 = 4 factors

       (13) 

The information matrix for 𝐾′𝜃 with 𝑘 × 𝑠 coefficient matrix 𝐾 of column rank 𝑠, is defined to be 𝐶𝑘(𝑀) when 

the mapping 𝐶𝑘: 𝑁𝑁𝐷(𝑘) → 𝑠𝑦𝑚(𝑠)  is given by all 𝐴 ∈  𝑁𝑁𝐷(𝑘)  with minimum taken relative to the loewner 

ordering over all left inverses 𝐿 of 𝐾 where 𝑀 is the moment matrix (2) Pukelsheim (1993). The amount of 

information which the design 𝜉 contains on the parameter subsystem 𝐾′𝜃 is captured by the information matrix 

(3) now defined as, 𝐶𝑘(𝜉) = min{𝐿𝑀(𝜉)𝐿′} ; 𝐿 ∈ ℝ𝑆×(𝑚2+𝑚+1)    and this is the precision matrix of the best 

linear unbiased estimator for 𝐾′𝜃  under design τ, Pukelsheim (1993), Koske et. al.(2011) and Cherutich (2012).    

The information matrices for 𝐾′𝜃  are linear transformations of moment matrices and takes the following form: 

𝐶𝑘(𝑀(𝜉))  =  𝐿𝑀(𝜉)𝐿′                              (14) 

where 𝐿 is left inverse of 𝐾 defined as  𝐿 = (𝐾′𝐾)−1𝐾′      
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3.0. Optimum Rotatable Weighted Central Composite Design  

A CCD is a mixture of three building blocks: cubes, stars and center points. In this thesis the CCD is separated 

into a factorial (cube) block and an axial (star) point block. A convex combination  

𝜉𝑊𝐶𝐶𝐷(𝑤) = ∑ 𝑤𝑖𝜉𝑖
𝑝
𝑖=1   with 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑝)′ ∈ Τ𝑝 is called a WCCD with weight vector with  ∑ 𝑤𝑖

𝑝
𝑖=1 =

1 .  

From the linearity of the information matrix mapping 𝐶𝐾, we obtain for every  𝑤 ∈ Τ𝑝 , 

 𝐶𝐾 (𝑀(𝜉(𝑤))) = ∑ 𝑤𝑖𝐶𝐾(𝑀(𝜉𝑖))
𝑝
𝑖=1             𝑖 = 1,2                                    (15) 

The rotatable WCCD (  𝛼4 = 2𝑚−𝑝) is expressed as follows: 

 𝜉𝑊𝐶𝐶𝐷 = 𝑤1𝜉𝐹 + 𝑤2𝜉𝑠                   (16)  

Where   

a) 𝑤𝑖  , 𝑖 = 1,2  satisfies the  conditions  ∑ 𝑤𝑖
2
𝑖=1 = 1  and 𝑤1, 𝑤2 ≥ 0  

  

b)  𝜉𝐹 is the design with support points 𝑛𝐹 determined by combining the first order design obtained from 

half- fraction factorial design (either Resolution III, IV)  and 𝜉𝑠 is the design with 2𝑚 distinct supports 

(2𝑚 is the star portion ) and hence total design points will be   𝑛 = 𝑛𝐹 + 2𝑚. 

3.1. Moment Matrix 𝑴(𝝃)  for m-Factors 

Generally, for 𝑚 −factors, with the cube portion constructed through resolution R, the second – order kronecker 

model moment matrix of a rotatable CCD may be expressed as follows: 

Let   𝑑 be a vertical concatenation of the form  𝑑 = [
𝑅
𝐸
]  given in equation (11), then for 𝑚 −factors and 𝑁 

experimental runs, the design matrix 𝑋 takes the form given in equation (9), 

By definition, the moment matrix for a second-order kronecker model is given by: 

𝑀(𝜉) =
𝑋𝑇𝑋

𝑁
  

=
1

𝑁
[1  𝑑  𝑑(1)2 𝑑(1) × 𝑑(2)…  𝑑(1) × 𝑑(𝑚)     𝑑(2) × 𝑑(1) …  𝑑(𝑚 − 1) × 𝑑(𝑚) …  𝑑(𝑚) × 𝑑(𝑚 −

1)   𝑑(𝑚)2]𝑇 [1  𝑑  𝑑(1)2 𝑑(1) × 𝑑(2)…  𝑑(1) × 𝑑(𝑚)     𝑑(2) × 𝑑(1) …  𝑑(𝑚 − 1) × 𝑑(𝑚) …  𝑑(𝑚) ×

𝑑(𝑚 − 1)   𝑑(𝑚)2] 

=   

{
 
 
 

 
 
 1

𝑁
(

𝑁 ∅′ (𝐹 + 2𝛼2)(𝑣𝑒𝑐 𝐼𝑚)
′

∅ (𝐹 + 2𝛼2)𝐼𝑚 𝐹(𝐸𝑖𝑗𝑘  )
′

(𝐹 + 2𝛼2)𝑣𝑒𝑐 𝐼𝑚 𝐹𝐸𝑖𝑗𝑘 𝐻𝑚

) ∈ ℝ(1+𝑚+𝑚
2)×(1+𝑚+𝑚2) 𝑓𝑜𝑟 𝑚 ≥ 3 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐼𝐼𝐼

1

𝑁
(

𝑁 ∅1
′ (𝐹 + 2𝛼2)(𝑣𝑒𝑐 𝐼𝑚)

′

∅1 (𝐹 + 2𝛼2)𝐼𝑚 ∅2
′

(𝐹 + 2𝛼2)𝑣𝑒𝑐 𝐼𝑚 ∅2 𝐻𝑚

) ∈ ℝ(1+𝑚+𝑚
2)×(1+𝑚+𝑚2)𝑓𝑜𝑟 𝑚 ≥ 4 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅 ≥ 𝐼𝑉

 

 (17) 

where 

  𝑁 is the total number of experimental runs 

𝛼 = 2
𝑚−𝑝

4    and this satisfies the condition for second-order rotatable designs,  𝑚 is number of factors, 

 𝐼𝑚 ∈ ℝ𝑚×𝑚 denotes the identity matrix and 𝑣𝑒𝑐 𝐼𝑚 = 𝐼𝑚⊗ 𝐼𝑚 

𝐹   is the number of runs in the cube portion. 

𝐸𝑖𝑗𝑘 = ∑ (𝑒𝑖⊗ 𝑒𝑗)
𝑚
𝑖≠𝑗≠𝑘=1 𝑒𝑘

𝑇 ,   𝑒𝑖′𝑠 are the Euclidean unit vectors in ℝ𝑚 denoted by  𝑒1, 𝑒2, … , 𝑒𝑚 

𝐻𝑚  denotes an 𝑚2 ×𝑚2 matrix whose entries are given by (𝐹 + 2𝛼4)𝑉1 +   𝐹𝑉2 
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𝑉1 = ∑ 𝐸𝑖𝑖
𝑚
𝑖=1        with         𝐸𝑖𝑖 = (𝑒𝑖𝑒𝑖

𝑇) ⊗ (𝑒𝑖𝑒𝑖
𝑇) 

𝑉2 =

{
 
 

 
 ∑ (𝐸𝑖𝑗 + 𝐸𝑖𝑗′ + 𝐸𝑗𝑖)

𝑚

𝑖≠𝑗=1

                                       𝑓𝑜𝑟 𝑚 ≥ 3 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐼𝐼𝐼

∑ (𝐸𝑖𝑗 + 𝐸𝑖𝑗′ + 𝐸𝑗𝑖)

𝑚

𝑖≠𝑗=1

+ ∑ 𝐸𝑖𝑗𝑘𝑙

𝑚

𝑖≠𝑗≠𝑘≠𝑙=1

   𝑓𝑜𝑟 𝑚 ≥ 4 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅 ≥ 𝐼𝑉

 

 

  with     𝐸𝑖𝑗 = (𝑒𝑖𝑒𝑖
𝑇) ⊗ (𝑒𝑗𝑒𝑗

𝑇)  ,      

 𝐸𝑖𝑗′ = (𝑒𝑖𝑒𝑗
𝑇) ⊗ (𝑒𝑖𝑒𝑗

𝑇)                      𝐸𝑗𝑖 = (𝑒𝑖𝑒𝑗
𝑇) ⊗ (𝑒𝑗𝑒𝑖

𝑇)           

 𝐸𝑖𝑗𝑘 = (𝑒𝑖𝑒𝑗
𝑇) ⊗ (𝑒𝑖𝑒𝑘

𝑇)                       𝐸𝑖𝑗𝑘𝑙 = (𝑒𝑖𝑒𝑗
𝑇) ⊗ (𝑒𝑘𝑒𝑙

𝑇)     

3.2. Information Matrix 𝑪𝑲(𝑴(𝝃)) for m-Factors 

The information matrix for 𝐾′𝜃 with 𝑘 × 𝑠 coefficient matrix 𝐾 of column rank 𝑠, is defined to be 

𝐶𝑘(𝑀) (Koske et. al.,2011 and Cherutich, 2012) where 𝑀 is the moment matrix. Defining 𝐿 every left inverse of 

𝐾 as  𝐿 = (𝐾′𝐾)−1𝐾′  , then 

𝐶𝑘(𝑀(𝜉))  =  𝐿𝑀(𝜉)𝐿′     . thus we obtain: 

𝐶𝐾(𝑀(𝜉)) =
1

𝑁
(

𝑁 (𝐹 + 2𝛼2)( 1𝑚)
𝑇 ∅1

𝑇

(𝐹 + 2𝛼2)1𝑚 𝐺𝑚 ∅2
𝑇

∅1 ∅2 2(𝐹 + 𝛼4)𝐼𝑐

)                                         (18) 

Where 

 1𝑚 = (1,… ,1)𝑇 ∈ ℝ𝑚 denotes the vector with all elements equal to 1, 

𝐺𝑚 denotes an 𝑚 ×𝑚 circulant matrix with diagonal and off-diagonal elements a and b respectively  and entries 

in a and  b are given by (𝐹 + 2𝛼4) and 𝐹. Thus  

𝐺𝑚 = (𝐹 + 2𝛼4)𝐼𝑚 + 𝐹 ∑ 𝑒𝑖𝑒𝑗
𝑇𝑚

𝑖≠𝑗=1 ,   where 𝑒𝑖′𝑠 and 𝑒𝑗′𝑠 are the Euclidean unit vectors in ℝ𝑚 denoted by  

𝑒1, 𝑒2, … , 𝑒𝑚  and  𝐼𝑚 ∈ ℝ𝑚×𝑚 denotes an identity matrix. 

𝐼𝑐 ∈ ℝ
𝑐×𝑐 denotes an identity matrix where  c is the number of parameters resulting from averaging the 

interaction factors. 

∅𝟏  is a 𝑐 × 1 vector with all elements zeros 

∅2 is a  𝒄 × 𝑚 matrix with all elements zeros       

Thus the information matrix 𝐶K(𝑀(𝜉)) is of order (1 + 𝑚 + 𝑐) × (1 +𝑚 + 𝑐). 

4.0.  𝑫 − 𝒐𝒑𝒕𝒊𝒎𝒂𝒍  Rotatable Weighted Central Composite Design   

Let 𝑠 be the number of parameters in the subsystem of interest vector 𝐾′(𝜃). Further let a rotatable CCD of 𝑚 

factors comprise of elementary designs  𝜉𝐹 and  𝜉𝑠 i.e. the fractional factorial portion constructed through 

resolution 𝑅 and the star portion respectively. Then 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Rotatable Weighted Central Composite Design  

(𝜉𝑊𝐶𝐶𝐷)is given by: 

𝜉𝑊𝐶𝐶𝐷 =
𝑠−𝑚

𝑠
𝜉𝐹 +

𝑚

𝑠
𝜉𝑠                                              (19)    

Where 𝑤1 =
𝑠−𝑚

𝑠
   and  𝑤2 =

𝑚

𝑠
   are the weights assigned to each of the design portions, factorial and star 

respectively. 

Further, the determinant of the information matrix can be obtained by using the formula for computing 

determinant of a partitioned symmetric matrix. 

By definition, if 𝐴 = [
𝐴11 𝐴12
𝐴12
𝑇 𝐴22

], then the determinant of 𝐴 is given by: 

|𝐴| = |𝐴22||𝐴11 − 𝐴12𝐴22
−1𝐴12

𝑇 | = |𝐴11||𝐴22 − 𝐴12
𝑇 𝐴11

−1𝐴12|. (Kaare B. P. and Michael S.P., 2012) 

 

Partition the general information matrix (17) such that 

𝐶𝑘(𝑀(𝜉)) = [
𝑈 ∅𝑇

∅ 𝑉
]            

where   𝑈 = [
1

1

𝑁
(𝐹 + 2𝛼2)( 1𝑚)

𝑇

1

𝑁
(𝐹 + 2𝛼2)1𝑚

1

𝑁
𝐺𝑚

]  and  𝑉 =
2

𝑁
(𝐹 + 𝛼4)𝐼𝑐. 

Then the determinant is: 
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|𝐶𝑘(𝑀(𝜉))| = |𝑉||𝑈 − ∅
𝑇𝑉∅𝑇| = |𝑉||𝑈|        

Now 𝑉 is a 𝑐 × 𝑐 diagonal matrix (c is the number of parameters resulting from averaging the interaction factors)  

Hence |𝑉| = (
2

𝑁
(𝐹 + 𝛼4))

𝑐

 

Next |𝑈| = |𝑈11||𝑈22 − 𝑈12
𝑇 𝑈11

−1𝑈12| 

              = |
1

𝑁
𝐺𝑚 −

1

𝑁2
(𝐹 + 2𝛼2)2(1𝑚)( 1𝑚)

𝑇| 

Substituting 𝐺𝑚 from (20),  

       |𝑈| = |
1

𝑁
{(𝐹 + 2𝛼4)𝐼𝑚 + 𝐹 ∑ 𝑒𝑖𝑒𝑗

𝑇𝑚
𝑖≠𝑗=1 } −

1

𝑁2
(𝐹 + 2𝛼2)2(1𝑚)( 1𝑚)

𝑇| 

Thus  

|𝐶𝑘(𝑀(𝜉))| = (
2

𝑁
(𝐹 + 𝛼4))

𝑐

× |
1

𝑁2
{𝑁(𝐹 + 2𝛼4)𝐼𝑚 + 𝑁𝐹 ∑ 𝑒𝑖𝑒𝑗

𝑇𝑚
𝑖≠𝑗=1 − (𝐹 + 2𝛼2)2𝐽𝑚}|                  (20) 

where 𝐼𝑚 is an 𝑚 ×𝑚 identity matrix, 𝐽𝑚is an 𝑚 ×𝑚 matrix of ones and 𝑒𝑖′𝑠 are the Euclidean unit vectors in 

ℝ𝑚 denoted by  𝑒1, 𝑒2, … , 𝑒𝑚 

Consequently, using formula (10) the D-optimal value is  

𝑽(∅𝟎) = [(
2

𝑁
(𝐹 + 𝛼4))

𝑐

× |
1

𝑁2
{𝑁(𝐹 + 2𝛼4)𝐼𝑚 + 𝑁𝐹 ∑ 𝑒𝑖𝑒𝑗

𝑇𝑚
𝑖≠𝑗=1 − (𝐹 + 2𝛼2)2𝐽𝑚}|]

1

𝑠

                      (21) 

 

4.1. D-Optimal Rotatable WCCD   

In this section the constructed rotatable CCD for m=3 and m=4 are investigated and the corresponding 

optimal rotatable WCCDs are derived. Results obtained in sections 2.2, 3.0 and 3.1 are used in this section. 

4.1.1.  Three Factors  

D-optimal rotatable WCCD for three factors is derived. Using (14), (15), (16) and (17) the following matrices 

are obtained. 

𝐿 =

[
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0]

 
 
 
 
 
 

 

the information matrices for the two portions of the CCD are: 

𝐶𝑘(𝑀𝜉𝐹) =

[
 
 
 
 
 
 
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 4]

 
 
 
 
 
 

       and     𝐶𝑘(𝑀𝜉𝑠) =

[
 
 
 
 
 
 
 
 1

2

3

2

3

2

3
0 0 0

2

3

4

3
0 0 0 0 0

2

3
0

4

3
0 0 0 0

2

3
0 0

4

3
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 

                     (22) 

The information matrix for the WCCD is: 

𝐶𝑘(𝑀(𝜉)) = 𝑤1𝐶𝑘(𝑀𝜉𝐹) + 𝑤2𝐶𝑘(𝑀𝜉𝑠) 
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                 =

[
 
 
 
 
 
 
 
 
 𝑤1 + 𝑤2

3𝑤1+2𝑤2

3

3𝑤1+2𝑤2

3

3𝑤1+2𝑤2

3
0 0 0

3𝑤1+2𝑤2

3

3𝑤1+4𝑤2

3
𝑤1 𝑤1 0 0 0

3𝑤1+2𝑤2

3
𝑤1

3𝑤1+4𝑤2

3
𝑤1 0 0 0

3𝑤1+2𝑤2

3
𝑤1 𝑤1

3𝑤1+4𝑤2

3
0 0 0

0 0 0 0 4𝑤1 0 0
0 0 0 0 0 4𝑤1 0
0 0 0 0 0 0 4𝑤1]

 
 
 
 
 
 
 
 
 

                         (23) 

To obtain 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Rotatable WCCD, matrices (22) and (23) are used in the relation (13) and this results in 

relation (19) such that   

𝑤1 =
4

7
  and 𝑤2 = 1 − 𝑤1 =

3

7
                                        (24) 

Hence the 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 WCCD is 

 𝜉𝑊𝐶𝐶𝐷 = 𝑤1𝜉𝐹 + 𝑤2𝜉𝑠 =
4

7
𝜉𝐹 +

3

7
𝜉𝑠                                                         (25)  

Using (24) in (23) and working out (21) the D-optimal value is obtained as: 

𝑉(∅0) = 0.849                                                                                                            (26)  

4.1.2.  Four Factors 

 D-optimal rotatable WCCD for four factors is derived. Using (14), (15), (16) and (17) the following 

matrices are obtained. 

𝐿 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0]

 
 
 
 
 
 
 

                           (27) 

Information matrices for the two portions of the CCD are: 

𝐶𝑘(𝑀𝜉𝐹
) =

[
 
 
 
 
 
 
 
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
0 0 0 0 0 16 0 0
0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 16]

 
 
 
 
 
 
 

   and  

𝐶𝑘(𝑀𝜉𝑠
) =

[
 
 
 
 
 
 
 

1 0.7071 0.7071 0.7071 0.7071 0 0 0
0.7071 2 0 0 0 0 0 0
0.7071 0 2 0 0 0 0 0
0.7071 0 0 2 0 0 0 0
0.7071 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

                                              (28) 

The information matrix for the WCCD is: 

𝐶𝑘(𝑀(𝜉)) = 𝑤1𝐶𝑘(𝑀𝜉𝐹) + 𝑤2𝐶𝑘(𝑀𝜉𝑠) = 
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[
 
 
 
 
 
 
 

𝑤1 + 𝑤2 𝑤1 + 0.7071𝑤2 𝑤1 + 0.7071𝑤2 𝑤1 + 0.7071𝑤2 𝑤1 + 0.7071𝑤2 0 0 0
𝑤1 + 0.7071𝑤2 𝑤1 + 2𝑤2 𝑤1 𝑤1 𝑤1 0 0 0
𝑤1 + 0.7071𝑤2 𝑤1 𝑤1 + 2𝑤2 𝑤1 𝑤1 0 0 0
𝑤1 + 0.7071𝑤2 𝑤1 𝑤1 𝑤1 + 2𝑤2 𝑤1 0 0 0
𝑤1 + 0.7071𝑤2 𝑤1 𝑤1 𝑤1 𝑤1 + 2𝑤2 0 0 0

0 0 0 0 0 16𝑤1 0 0
0 0 0 0 0 0 16𝑤1 0
0 0 0 0 0 0 0 16𝑤1]

 
 
 
 
 
 
 

 

       

(29) 

To obtain 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Rotatable WCCD, matrices (28) and (29) are used in the relation (13) and this results in 

relation (19) such that   

𝑤1 =  0.4999861 ≅ 0.5    ⟹    𝑤2 = 0.5000139 ≅ 0.5                                                      (30) 

Hence the 𝐷 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 WCCD is 

 𝜉𝑊𝐶𝐶𝐷 = 0.50𝝃𝑭 + 0.50𝝃𝒔                                                                                                    (31) 

Using (30) in (29) and working out (21) the D-optimal value is obtained as: 

𝑉(∅0) = (𝑑𝑒 𝑡 𝐶)
1

8 =  1.605                                                                                                                         (32)

  

5.0.  Results and conclusion                                  

The theoretical results obtained in this study are given in the table below and a discussion is done. 

Table 5.1 D-optimal Rotatable Designs 

m- 

Factors 

Resolution   

R 

Uniform 

weighted CCD 

WCCD Efficiency Weights 

3 𝐼𝐼𝐼 0.8 0.84 1.061 𝑤1 =
4

7
            𝑤2 =

3

7
  

4 𝐼𝑉 1.66 1.60 0.969 𝑤1 =
1

2
             𝑤2 =

1

2
  

5 𝑉 1.53 1.54 1.0114 𝑤1 =
11

16
           𝑤2 =

5

16
  

D-optimal rotatable weighted central composite designs have been derived for three and four factors constructed 

through resolution III and IV. Optimal values and weights for the weighted central composite designs were 

numerically obtained using both R and wxMaxima softwares. A generalized form of the moment matrix 𝑀(𝜉), 
coefficient matrix 𝐾, the information matrix 𝐶𝐾(𝑀(𝜉)), D-optimal rotatable WCCD for m-factors were also 

obtained. A comparison is done on the optimal values for the uniform weighted rotatable CCDs and the derived 

optimal rotatable WCCDs as well as the weights assigned to each of the two portions of the D-optimal rotatable 

WCCD. 

Resolution  𝐼𝐼𝐼 and 𝑉 weighted central composite design is better than the uniformly weighted CCD in terms of 

the D- optimality criterion since the D-optimal value is larger. Resolution 𝐼𝑉 uniformly weighted CCD is better 

than the weighted central composite design since the D- optimal value is greater  

The mass assigned to the cube portion is greater than the one assigned to the star portion for resolution III and V 

designs indicating that the cube portion plays a greater role in D-optimal resolution III and V designs. But equal 

weight is assigned to the two portions of the design constructed through resolution IV indicating that the two 

portions are of equal importance in D-optimal resolution IV designs.  

 

Recommendation 

From the results of this study it would be interesting to compare the same designs investigated under the A-, E- 

and I-optimality criteria as well the practicability of the theoretical results.  
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