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Abstract 

In this paper, a mathematical model on the interaction between hepatitis c virus (HCV) and immune system has 

been developed and analyzed. We have upgraded the model developed by Avendano et al.(2002) by including 

death of hepatocytes due to infection and spontaneous clearance of viruses by a noncytolytic process during acute 

stage of infection. The next generation matrix operator method has been applied to derive the basic reproductive 

number 0R . Also, the stability analysis of the model equilibria has been performed using Meltzer stability theory, 

Routh-Hurwitz criteria and Lyapunov direct method. The results indicate that the disease free equilibrium point 

(DFE) is locally asymptotically stable if 10 R and unstable if 1OR and the endemic equilibrium point (EE) is 

both locally and globally asymptotically stable if 10 R and unstable if 1OR . We calculated the sensitivity 

indices of the dynamic threshold 0R  relating to each parameter in the model, where we found that the decrease in 

the infection rate and the virus production rate have the effect of lessening the infection, which suggests that the 

disease can be controlled when therapeutic intervention is targeted on these sites. We recommend that antiviral 

drug therapy should be used to block virus production and so eradicate or reduce the intensity of the disease in 

vivo. 

Keywords: Hepatitis C virus, Immune system, Basic reproductive number, Disease-free equilibrium point, 

Endemic equilibrium point. 

 

1. Introduction 

1.1 Hepatitis C Virus Infections 

Hepatitis C virus (HCV) has been one of the known types of viruses ever since it was recognized in 1989 (Choo 

et al.,1989; Purcell, 1997). The HCV infection has been one of the main global causes of liver-related diseases 

and hepatocellular carcinoma (Hoofnagle, 2002; Perz et al., 2006), and one source of deaths to hundreds of 

thousands of individuals each year from liver failure including liver cancer (Ashfaq et al., 2011). Also, it has 

been one of the most crucial challenges because of possibly increasing threats it imposes on the global health in 

terms of the number of people who become infected, the burden it imposes on them and their families and 

healthcare providers of the countries they live in. It is documented that approximately 130 to 170 million people 

are infected with HCV worldwide(Lavanchy, 2009). 

 

The channels of transmission of the HCV infection(HCVI) are: blood; blood products; tissue and organs; unsafe 

medical practices; healthcare provision practices, which are precisely identified as needle stick injuries (Xia et 

al., 2008); intravenous drug use (Tohme and Holmberg, 2010); sexual transmission (Jafari et al., 2010); body 

piercings (Lam et al., 2010) and vertical transmission (Owusu‐Ofori et al., 2005). In developing countries(DCs) , 

the transmission results from exposure to infected blood and blood products in healthcare provisions centers 

(HCPCs) while in many developed countries it results from injection drug use(IDU).Also, it is well documented 

that, in many DCs, the transmission of HCVI is commonly through IDU and unsafe injection practices (Williams 

et al., 2011), that results from screening and measures for HCV. IDU can be an outstanding risk source for the 

transmission in developing countries as well (Aceijas and Rhodes, 2007; Nelson et al., 2011). For example, the 

research findings by Nelson et al.(2011) show that China has the highest number of HCV infections due to drug 

use worldwide. However, the most common channels of transmission in DCs are associated with HCPCs (Hauri 

et al., 2004; Prati, 2006) and unsafe injections in HCPCs are a principal source of HCV transmission worldwide, 

which leads to 2 million new HCV infections annually(Hauri et al., 2004). 

.  

At early stages of HCV infection, the progress takes a latent period of about 2 weeks to 6 months. Within this 

period approximately 70% of the infected individuals never experience any symptoms (Busch and Shafer, 2005), 
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which makes its diagnosis very difficult,i.e. only few cases are diagnosed for medical attention or tested for 

evidence of HCV infection (Blackard et al., 2008) Also, within this period, approximately 20% to 30% of the 

infected people spontaneously clear the virus(Rehermann and Nascimbeni, 2005). On the other hand, infected 

individuals who are symptomatic might show the following physical states: fever, fatigue, decreased appetite, 

dark urine, joint pain, jaundice; and gastrointestinal complications, which include vomiting, abdominal pain, 

clay-coloured feces, joint pain and nausea. Literatures from clinical trials reveal that almost 25% of all patients 

with HCV infection present with jaundice; approximately 10% to 20% of cases progress to the following 

gastrointestinal symptoms: nausea, vomiting, and abdominal pain (Prevention, 1998) 

 

Hepatitis C virus causes acute hepatitis C infection (AHCI) and chronic hepatitis C infection (CHCI). The AHCI 

refers to the first 6-month period of infection following acquisition of the virus while CHCI refers to a period 

beyond the AHCI period. It has been found that approximately 20% to 50% of individuals with HCV infection 

spontaneously clear the virus within the AHCI period (Kamal, 2008) when there is no treatment. However, in 

literature about 85% of infected people progress to CHCI, i.e. around 150 million HCV infected people progress 

to chronic state. The risk of cirrhotic CHCI evolution is around 15% to 30% in 20 years’ time  and at least 350 

deaths each year due to hepatitis C related liver problems mostly caused by liver cirrhosis and hepatocellular 

carcinoma (Perz et al., 2006). Currently, there is no vaccine for the HCV disease whereas hepatitis A and B virus 

infections have. However, research in this area is ongoing. 

 
1.2 Immune Responses to Invading Pathogens 

We may refer the immune system (IS) to as an organic structure in an organism composed of cells and molecules 

to provide protection against foreign pathogens which are bacteria, viruses and fungi. In this study, however, our 

discussion focuses on the human immune responses (HIR) against these pathogens. Investigation of the HIR 

indicates that there two foremost classes of immune responses operating against intruding pathogens (Delves and 

Roitt, 2000) , which are the innate immune responses (IIRs) and the adaptive immune responses(AIRs).The IIRs 

are also referred to as nonspecific responses while the AIRs refer to specific responses. They function as the first 

barrier to protect the body against infection. That is, in the presence of pathogens, the IIRs are the first barrier to 

pathogenic operations in protection of the body against the infection. In this case, macrophages and natural killer 

cells are examples of cells that respond in a nonspecific fight against these pathogenic actions. In other words, 

these typical responses are the reactions of the body against an intruder, regardless of the type of pathogen they 

are combating. Fever, coughing, and sneezing are some examples of IIRs. Conversely, the AIRs result due to the 

ability of cells and molecules of the IS to recognize the physical structure of a pathogen (Wodarz, 2005). .These 

cells and molecules are able to detect protein composition of the intruding pathogens. As soon as these cells are 

activated by a signal given by a pathogen, they proliferate ready for the combat. 

 

The lymphocytes, which lay under the AIRs class, are the white blood cells (WBCs) originating from the bone 

marrow. It is known that a microlitre of human blood contains approximately 2500 WBCs, and which totally 

amount to
1210  WBCs in a mature person (Nowak and May, 2000).The lymphocytes can be classified into two 

main subdivisions namely B-lymphocytes (BLs) and T-lymphocytes (TLs) abbreviated as B cells and T-cells 

respectively. The BLs are surrounded with antibodies on their surface membrane which function as receptors to 

detect the presence of pathogens, where for any pathogen entering the body there is always a specific antibody 

that can identify it (Nowak and May, 2000). The TLs further branch into: T- helper lymphocytes (THLs) and 

cytotoxic T-lymphocytes (CTLs), also known as CD4
+
 T cells and CD8

+
 T cells respectively. The THLs have the 

role of not only activating the BLs (B-cells) to secrete antibodies and macrophages but also exterminate ingested 

microbes and activate cytotoxic T-cells to kill infected target cells while the CTLs (CD8
+
 cells) can identify and 

destroy infected or damaged cells. A schematic representation of the types of the IS are summarized in Figure 1. 

 

 

Figure 1: Taxonomy of the immune system (Ramirez, 2014). 
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1.3 Hepatitis C Virus Infection and the Immune Response 

The study intends to understand the interactions between hepatitis C virus and immune system. This begins with 

the fact that when HCV enters the human body hepatocytes are infected, which later become generators of new 

viruses. Then the CD4
+
 T cells activate the B-cells to secrete antibodies and macrophages to eradicate ingested 

microbes; they also help to activate the CD8
+
 T cells to eradicate infected hepatocytes. In the development of this 

proposed model we simply used the CD8
+
 T cells as a representative part in the construction of a nonlinear 

differential equation to describe the IS role in combating the virus. 

 

In this paper, we modify and extend the model that was developed by Avendano et al.(2002)which integrates four 

compartments: susceptible hepatocytes, infected hepatocytes, hepatitis c virus and CD8
+
 T cells. This model 

assumed that individuals in the classes die naturally at different constant per capita rates. It also assumed that the 

supply of CD8
+
 T cells is proportional to the product of the viral load and the relative number of the CD8

+
 T cells 

in the presence of HCV. Our model includes spontaneous cure by a noncytolytic process and disease-induced 

death of infected hepatocytes. The model shows that the susceptible and infected hepatocytes compartments are 

the hepatic population, dying naturally at equal per capita rates. 

 

2. Model Formulation 

We develop and analyze a mathematical model to study the interaction between hepatitis C virus and immune 

system. The model incorporates four compartments: susceptible hepatocytes )(tS , infected hepatocytes (HIs)

)(tI , hepatitis C virus )(tV and CD8
+
 T cells )(tT , where the hepatic population at time t  is given by

     tItStN  .The susceptible hepatocytes )(tS are constantly recruited at the rate and die naturally 

at the rate 1 . They become infected at the rate proportional the product SV with a constant o proportionality

1  .The infected hepatocytes )(tI die naturally at a constant rate 1 and at a constant rate  because of 

infection. They spontaneously recover at a constant rate 2 and generate virions )(tV at a constant rate   .The 

virions die naturally at a constant rate 2 .In the presence of HCV, the CD8
+
 T cells )(tT are activated and 

supplied at a constant rate  .The CD8
+
 T cells kill infected hepatocytes at the rate proportional to the product 

IT ,with a constant of proportionality   and die naturally at a constant rate of 3 .  

 

To achieve our goal, the following assumptions were made: 

We assume that susceptible hepatocytes are produced at a constant rate and are equally likely infected by the 

viruses; the susceptible and infected hepatocytes have equal constant natural death rates; the viruses and the 

CD8
+
 T cells have different constant natural mortality rates. We also assume that the CD8

+
 T cells kill some IHs 

at a constant rate; the remaining IHs recovers at a constant rate while others generate virions at a constant rate; 

the CD8
+
 T cells are generated at a constant rate and the patient can either clear the virus spontaneously or not 

during AHCI. 

The parameters used in the model are listed and briefly described in Table 1. 

 
Table 1: Parameters and their descriptions 

Parameter Description 

1  Per capita rate of infection 

2  Per capita rate of spontaneous cure of infected hepatocytes by a noncytolytic process 

  Per capita production rate of viruses are within infected hepatocytes 

  Rate at which the CD8
+
 T cells kill infected hepatocytes 

  Per capita production rate production rate of susceptible hepatocytes  

  Per capita growth rate of the CD8
+
 T cells in the presence of HCV 

1  Per capita natural death rate susceptible and infected hepatocytes  

2  Per capita natural death rate of virions 

3  Per capita natural death rate of CD8
+
 T cells 

  Disease-induced death rate of infected hepatocytes 

  maxT  Maximum CD8
+
 T cells population level 

 

It is very important to note that we mostly use the symbols S , I ,V andT to denote )(tS , )(tI , )(tV and )(tT
respectively for brevity of calculations and expressions. 

 

If we consider the above notations and assumptions, we construct a compartmental diagram to demonstrate the 

HCV dynamics as in Figure 2. 
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Figure 2: Compartmental diagram for the hepatitis C virus model with immune system response. 

 

Based on the assumptions made and relationships existing between the state variables as shown in Figure 2, we 

construct a system of four non-linear ordinary differential equations describing the dynamics of hepatitis c virus 

with immune system response. 

SSV
dt

dS
112                                            (1a) 

IIIITSV
dt

dI
211                                     (1b) 

VI
dt

dV
2                                                      (1c) 

T
T

T
V

dt

dT
3

max

)1(                                             (1d) 

with initial conditions   00 S ,   00 I ,   00 V ,   00 T ,  

 

2.1 Basic Properties of the Model 

In this section, we analyze the properties of the model as the initial stage of understanding the dynamical structures 

of the model. We begin the analysis by determining the invariant region for each population involved in the model 

system (1) and then prove that the solutions of the system are positive entities 0t . 

 
2.1.1 Invariant Region 

Since the system (1) is modeling of susceptible hepatocytes, infected hepatocytes, virions and the CD8
+
 T cells, 

we assumed that the state variables and parameters are non-negative. As stated earlier, the hepatic population 

incorporates two compartments  tS and  tI
,
 which are combined to form      tItStN  , whereby  tN

stands for the hepatic population at time t . Moreover, the virions and the CD8
+
 T cells are considered as different 

populations. Then we determined the invariant region for the whole system (1) by dealing with each population 

in the model. We achieve this through the following theorem: 

Theorem 1: All forward solutions of the system in 
4

R  are feasible 0t if they enter the invariant region

TVL  ,  

where  

  NISRISL   :, 2

         

1

 RVV
         

IS

T V

I

V(1-T/T
max

) I


1
S 

1
SV


2
I


1
I


2
V

3
T

IT
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1

 RTT  

and  is the invariant region of the whole system 

Proof: 

We prove the theorem by initially determining the invariant region for each population, where the solutions are 

feasible 0t . 

 

Hepatic population  

We have to determine the invariant region L of the sub-system (Hepatocytes) containing the feasible solutions

0t .  Let   }:,{ 2 NISRISL  
be any solution set with non-negative initial conditions. 

We know that the hepatic population N  is given by 

ISN   

Then we find that  

ITIN
dt

dI

dt

dS

dt

dN
  1                                 (2) 

From (2), we obtain                   

1N
dt

dN
   

This implies that     

)exp()()( 1

1

0

1

tNtN 








                                    (3)                                                     

               

 

where is the initial size of the hepatic population. 

From (3), we deduce that 

},max{)(
1

0



 NtN                                               (4) 

Thus, the feasible solutions of the sub-system are positively invariant in the region 

}},max{)(:)({
1

0



 NtNtNL  

Hepatitis c viral population  

We have to determine the invariant region V of the sub-system (HCV) containing feasible solutions 0t .  

 Let 
1

 RVV be any solution with non-negative initial conditions.     

From (1c) and (4) we obtain: 

V
dt

dV
2

1








                                                                (5) 

This implies that 

)exp()()( 2

21

0

21

tVtV 













                                       (6) 

where 0V  is the initial size of the hepatitis c viral population. 

From (6), we deduce that 
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},max{)(
21

0



 VtV                                                         (7)                                                     

Thus, the feasible solutions for the viral population in the system (1) are positively invariant in the region: 

}},max{)(:)({
21

0



 VtVtVV                     

CD8
+
 T cells population 

We have to determine the invariant region T of the sub-system (CD8
+
 T cells) containing feasible solutions

0t .  Let 
1RVT  be any solution with non-negative initial condition.    

From (1d) and (7), we obtain 

     T
T

T

dt

dT
3

max21

)1( 






                                              (8) 

This implies that 

    

])(exp[)()( 3

max21max321

max

0

max321

max t
TT

T
T

T

T
tT 

























           (9) 

where 0T  is the initial size of the CD8
+
 T cells population. 

From (9), we deduce that

  

},max{)(
max321

0
T

TtT







                                        (10) 

Thus, the feasible solutions of the subsystem are positively invariant in the region 

}},max{)(:)({
max321

0
T

TtTtTt









 

Thus,
112

  RRRTVL such that  

)},max()(:),{( 10

2   NtNRISL  

}},max{)(:)({
21

0



 VtVtVV  

}},max{)(:)({
max321

0
T

TtTtTt







  

We conclude that the model system (1) is positively invariant in the region .Thus, the model is epidemiologically 

and mathematically realistic. 

  
2.1.2 Positivity of Solutions 

Since the system (1) refers to modeling of populations, where all state variables and parameters are assumed to be 

non-negative 0t , we have to test for positivity of the state variables using the equations of the model. We 

achieve this thorough the following theorem: 

Theorem 2: If the initial values of a given system are 0})0(),0(),0(),0({
4
 RTVIS  then the solution 

set )}(),(),(),({( tTtVtItS consists of positive entities 0t  

Proof: We test for positivity of each state variable. 
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From (1c), we have 

cV
dt

dV
                                                        (11) 

This implies that 

)exp()( 0 ctVtV                                                   (12) 

where 
0V  is the initial size of the viral population. 

From (12), we have: 

At 0t , 0)0( 0 VV .If 0t , 0)]0(exp[ 2   as 01  .So, we have: 0)exp()( 1  ttV  ,

0t  

From (1a), we have:  

)()( 1111   V
S

dS
SV

dt

dS
                                          

That is,             ])(exp[ 110 tVSS                                                       (13)                                                                      

where 0S is the initial size of the susceptible hepatocytes sub-population. 

At 0t , 0)0( 0  SS .If 0t ,
 

0]))((exp[ 11  ttV   as 0)( 11   tV
.
So, we have: 

0]))((exp[)( 11  ttVtS  , 0t .. 
From (1d), we have: 

   

dt
T

TV

T

dT
)(

max

max3 
                                                      (14) 

Then, we obtain:  

   

])(exp[)(
max

max3

0 t
T

TV
TtT

 
                                             (15) 

where 0T is the initial size of the CD8
+
 T cells population.  

At 0t , 0)0( 0 TT . If 0t , 0])(exp[
max

max3 


 t
T

TV 
as 0

max

max3 


T

TV 
. So, we have: 

0])(exp[)(
max

max3 


 t
T

TV
tT


,. 0t .. 

From (1b), we have: 

IT
dt

dI
)( 21  

 
That is,                 

])(exp[)( 210 tTItI                                                (16)   

where 0I  is the initial size of the infected hepatocytes sub-population.                                           

At 0t , 0)0( 0  II .If 0t , 0]))((exp[ 21  ttT  as 0)( 21   tT . So, we have:
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0]))((exp[)( 21  ttTtS  , 0t . 

 

Since the solution set )}(),(),(),({ tTtVtItS consists of positive entities 0t , we conclude that the model 

system (1) is epidemiologically and mathematically realistic(Hethcote, 2000). 

 

3. Existence of Disease Free Equilibrium Point (DFE) 

In the absence of HCV, there are no infected hepatocytes and so the CD8
+
 T cells of the immune system are not 

generated to combat the infected hepatocytes. Then we calculate the values of S , I  and T if 0V . Using the 

notations by Chong et al.(2015), we can compute the disease free equilibrium point ),,,(0

 TVISU if 

   
0dtdS , 0dtdI , 0dtdV and 0dtdT                                  (17a)      

That is  

       
0112  SSVI  , 0211  IIIITSV  ,

 
02  VI  and    

      0)1( 3

max

 T
T

T
V  , 

where 

              11

2
















V

I
S  , 



 

 
V

I 2
  and   

m a x3

m a x

TV

VT
T













               (17b) 

 In the absence of HCV, we find that 

 
  002  I         0)0()0( max3max  TTT   

Using 0I  and 0V , we find that 
1112 ))0(())0((  S

 

Thus ,we have:
 

                

)0,0,0,(),,,( 10   TVISU
                                 (18) 

3.1 The Basic Reproductive Number  

Definition 1: The basic reproduction number 0R  is defined as the average number of secondary infections 

produced when a single infected individual is introduced into a host population where all individuals are 

susceptible in the period of infection (Dietz, 1975; Diekmann et al., 1990; Van den Driessche and Watmough, 

2002). Also, it is known as the basic reproduction ratio or basic reproductive rate (Hethcote, 2000).  

 
Relevant to our study, this dynamical threshold can be defined as the average number of infections instigated by 

an infectious hepatocyte in a hepatic population (the liver) during the period of infection. The basic reproductive 

number is a very important threshold since it can be used as a reference to determine whether the disease (HCV 

infection) persists in the hepatic population or goes to extinction (Diekmann et al., 1990; Van den Driessche and 

Watmough, 2002). We see that if 10 R  the infection dies out and it spreads if 10 R . 

  

We compute the basic reproductive number by using the technique developed by Diekmann et al.(1990) and 

improved by Van den Driessche and Watmough (2002) as follows: 

If we assume F  as a non-negative mm matrix and Y  as a non-singular M matrix such that 

 


















j

i

x

UF
F 0

 and 
 


















j

i

x

UY
Y 0

 with mji  ,1  
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where iF  is the occurrence of new infections in compartment i ,
  iii YYY  in which 



iY is the rate of 

transfer of entities into compartment i  by all other means while 


iY is the rate of transfer of entities out of 

compartment i , and 


0U  is the disease free equilibrium state (point), it follows that the basic reproductive 

number is the spectral radius(dominant eigenvalue) of 
1FY which is denoted by )( 1

0

 FYR   

If we rearrange the equations of the system (1) in such a way that the infectious classes occur first, we obtain a 

system of equations represented by 

)()()( xYxFxfx iiii  , ni ,...,2,1  

At this juncture, we assume that each function if  is continuous and at least twice differentiable in the region . 

We then derive iF  and iV  as 











I

SV
Fi



1
 and 







 


V

IT
Yi

2

21 )(





 

Then, we have:  


















































0

0)( 1

22

11

0



 S

V

f

I

f
V

f

I

f

X

UF
F

j

i
 








 









































2

21

22

11

0

0

0)(



T

V

y

I

y
V

y

I

y

X

UY
Y

j

i

 
where   

SVf 11           If 2         ITy )( 211          Vy 22   

 At the disease free equilibrium state


0U , i.e. using the result (13), we find that       













 



0

0
1

1






F  and 






 


2

21

0

0




Y  

Then the inverse matrix 
1Y and the product 

1FY were computed to obtain: 

 





















2

211

1
0

0
1




Y

 

and 

























0

0

21

21

1

1








FY  

Since Van den Driessche and Watmough (2002) define 0R as the spectral radius    of
1FY , then we have: 

),max()( 21

1

0   FYR
,
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This means we initially determine the eigenvalues, lambda, of
1FY  from 

 
01  IFY 

 

That is,                   0

21

21

1


















 

                      

0
)( 2121

12 










 

The eigenvalues of 
1FY are  

      
)( 2121

1

1








 and

)( 2121

1
2









  

Thus, the basic reproductive number

221212

2

1

1
210 ),max(









R

 

 
4. Existence of Endemic Equilibrium Point (EE) 

We obtain the endemic equilibrium point ),,,(   TVISE if 0V , which is derived as follows:                                               

Substituting    VI 2
 into )/()( 112    VI converts (12b) into (14), where the expressions 

for 
S ,

I and 
T  all appear in terms of the state variable

V . 

    11

22
















V

V
S         



 

 
V

I 2
         

max3

max

TV

VT
T













              (19) 

Substituting
S ,

I  and 
T from (19) into equation 0211  IIIITSV   in (17a), we obtain a 

quadratic equation in terms of 
V  

01

2

2 )()()( aVaVaVP    

where the coefficients are given by 

 21213212  a ; 

   1max31212max21max

2

321

2

11  TTTa ; 

  max21321max21max3

2

10 TTTa    

 

Theorem 4: The HCV model system (1) has: 

i) A unique endemic equilibrium point if 00 a , which implies 10 R  

ii) A unique endemic equilibrium point if 01 a  and 00 a  or 04 02

2

1  aaa  
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iii) Two endemic equilibrium points if 00 a , 01 a  and 04 02

2

1  aaa  

iv) No solution elsewise. 

 

5. Dynamical Behavior of the System 

In this section, we investigate the dynamical behavior of the system (1) by analyzing the stabilities of the DFE and 

EE points. We analyze the local and global stability of each of these points.  

 

5.1 Local Stability of the DFE Point 
We begin the analysis by presenting and then prove the following theorem: 

Theorem 5: The disease free equilibrium point of the system (1) is locally asymptotically stable in the region  if 

10 R  and unstable if 10 R .  

Proof: 

We have to show that the trace of the Jacobian matrix 
0UJ of the model (1) is negative and its determinant is a 

positive entity. Let the trace and determinant of the Jacobian matrix be )(
0UJTr and )(

0UJDet respectively. 


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























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
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
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2

1

1

21

1

1

21

00
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0)(0

0

0














UJ  

Thus, we have: 

32212)(
0

 UJTr , which is a negative entity. 

)()( 1221212

2

130
 UJDet

                

Now, 0)(
0
UJDet  if 01221212

2

1    

That is,                1

221212

2

1

1 







 

This implies that           11
221212

2

1

1 








 

Thus, we have 

                    10 R                          

Hence the disease free equilibrium point 
0U of the model system (1) is locally asymptotically stable in the region

  if 10 R  and unstable if 10 R  , which implies that the HCV infection will not spread at this state. So, it 

can be controlled. Thus, we have proved Theorem 5. 
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5.2 Global Stability of the DFE Point 

Using the method proposed by Castillo-Chavez et al.(2002), we begin the analysis by presenting and then prove 

the following theorem:  

Theorem 6: The disease free equilibrium state of the system (1) is globally asymptotically stable if the matrix A  

has negative eigenvalues and C is a Meltzer matrix when the system is expressed in the format: 














n

n

nnUN

N

CX
dt

dX

BXXXA
dt

dX
)( ,0

                                            (20) 

where  

NX  is the non-transmitting class; 
nX  is the transmitting class, nUX ,0

is a class of the same size as 
nX  at the 

DFE point 0U ;
 

BA,  and C  are matrices. 

Proof: 

We need to prove that the DFE point of the system (1) is globally asymptotically stable by investigating the nature 

of the matrices A and C in equations in the format (20) above. 

We first express the system (1) in the form (20) as follows: 

   dtdTdtdSdtdXTSX NN ,,    

 TSXX DFEN ,1       
 

   dtdVdtdIdtdXVIX nn ,,    

So, we have:             





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                   (21a)                          
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IIIITSVf

23

2112




                           (21b)                                        

Then we solve for the matrices A  and C  in equation (21a) and equation (21b) respectively to obtain: 
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We determine the eigenvalues, lambda, of A  from 

0 IA    , where 








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I  
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That is,                   0
0

0

3

1









 

 

This implies that             031    

    11   and 32    

We find that the eigenvalues of A  are 1  
and

3 , which are negative; and C  is a Meltzer matrix as the 

entries in the leading diagonal are all negative while the others are positive. Hence the disease free equilibrium 

point 
0U of the system (1) is globally asymptotically stable in the region  if 10 R  and unstable if 10 R . 

Thus, we have proved Theorem 6. 

 

5.3 Local Stability of the EE Point. 

We analyze the local stability of the EE point by initially presenting and then prove the following theorem: 

Theorem 7: The endemic equilibrium point
E of the system (1) is locally asymptotically stable in the region  if 

10 R and unstable if 10 R  

Proof: 

Let the Jacobian matrix of the system (1) at the EE point 
E  be E

J Then we have:  

 

        








































)()1(00

00

)(

0)(

max

max3

max

2

1211

1211

T

TV

T

T

ISTV

SV

J
E










 

We then find that the characteristic polynomial equation of E
J is  

001

2

2

3

3

4

4  dxdxdxdxd  , 

where 

14 d ; 
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d x   
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         VTTVTTTTVT 22maxmax311max23max 22
 

     max22max32max32max21max32 2 TTTTTVV   
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      )max1max1max
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1   VVTVTV

T
d            

         VTTSVST 21max321max31111max3212
      

      max32

2

11max32121221 TTITTVTV   
        

      max1max3213212

2

1 TIVTTVTVV      

      
)m a x12

2

11 TITVTIV   
 

By using the Routh-Hurwitz criteria, as detailed by Sivanandam and Deepa (2007) and Parks (1962), the 

characteristic equation has eigenvalues with negative real parts if all coefficients satisfy the following inequalities:  

  00 d , 01 d , 02 d , 03 d , 04 d , 01423  dddd , 0)( 0

2

3

2

14123  ddddddd                

Hence the endemic equilibrium point 
E of system (1) is locally asymptotically stable in the region  if 10 R  

and unstable if 10 R . Thus, we have proved Theorem 7. 

 
5.4 Global Stability of the EE Point 

We examine the EE point for global stability. The analysis begins by constructing Lyapunov function using the 

approach of Edward et al.(2014).But, we initially present and then prove the following theorem:  

Theorem 8: The endemic equilibrium point
E  of the system (1) is globally asymptotically stable in the region 

  if 10 R  and unstable if 10 R .  

Proof: 

To prove that the EE point is globally asymptotically stable, we make use of the following constructed Lyapunov 

function:  

  )ln()ln()ln()ln(,,, 4321
T

T
TT

V

V
VV

I

I
II

S

S
SSTVISf











            
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Differentiating f with respect to t  produces                        

dt

dT

T

T

dt

dV

V

V

dt

dI

I

I

dt

dS

S

S

dt

df
)1()1()1()1( 4321



 

   

 

Substitution of the expressions for dtdS , dtdI , dtdV , dtdT from the system (1) produces:

                      

IT
S

I

I
SSVI

S

S

dt

df
)]()[1(])[1( 21

2

1
21121 




 



 

      ])[1(])[1( 3

max

423 T
T

VT
V

T

T
VI

V

V



 



                                     (22)              

At the endemic equilibrium point
E , we have                                                                           

  ISVS 211                                                   (23)                                                                                                                  





 T
S







2

1

21 ;                                                (24)                                    






V

I
2 ;                                                                      (25)                                             

)1(
max

3
T

T

T

V





                                                           (26)                                           

Substituting (23), (24), (25) and (26) into (22), we have:

                      

])[1( 1122111 SSVIISVS
S

S

dt

df
  



                             

     ])[1(])[1( 3

2

1

2

1
2 V

V

I
I

V

V
IT

S
T

S

I

I



















          

     

])[1(
maxmax

4
T

TV

T

V

T

VT
V

T

T 








  

Simplification produces

                       









 





VS
VS

SV
I

I

I
S

S

S

S

S

dt

df
1211 )1()1()1()1(                                  

      I
IV

VI

V

V
IT

T

T
SI

S

S

I

I





 























1)1()1()1()1( 3

2

1
2  
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      















max

4 )1()1(
T

VT

V

V

T

V
V

T

T 
  

Further simplification produces                    

S
S

S

dt

df
1

2

1 )1( 


 +






 VS
VS

SV

S

S
I

I

I

S

S
1121 )1)(1()1)(1(                                  

        I
IV

VI

V

V
IT

T

T

I

ISI

S

S

I

I





 )1)(1()1)(1()1)(1( 32

2

1
2 



  

        

m a x

444 )1)(1()1()1(
T

VT

V

V

T

T

T

V

T

T
V

T

T 











  

Thus, we have ),,,()1( 1

2

1 TVISGS
S

S

dt

df




 , where 







 VS
VS

SV

S

S
I

I

I

S

S
TVISG 1121 )1)(1()1)(1(),,,(                             

              I
IV

VI

V

V
IT

T

T

I

ISI

S

S

I

I





 )1)(1()1)(1()1)(1( 32

2

1
2 



  

             

max

444 )1)(1()1()1(
T

VT

V

V

T

T

T

V

T

T
V

T

T 











  

If we use a modified version of Barbalat’s (1959) Lemma or follow the approaches of  Mukandavire et al.(2009) 

and Edward et al.(2014), function ),,,( TVISG  is non-positive. That is, 0G for every 0,,, TVIS
.
Then,

0dtdf for all 0,,, TVIS , and 0dtdf if and only if
 SS ,

 II ,
VV an

 TT .Thus, the 

largest compact invariant set in region is the singleton }{ E where 
E is the endemic equilibrium point of 

the system (1). By the invariant principle (La Salle,1976), we find that 
E  is globally asymptotically stable in 

the region if 10 R  and unstable if 10 R .Thus, we have proved Theorem 8 

 

6. Numerical Sensitivity Analysis 

In order to find a way that will best assist in lessening human morbidity and  mortality due to HCV,we find it 

necessary to investigate the sensitivity index of 0R  relating to each parameter appearing in the expression for 

0R  by means of the technique established by Chitnis et al.(2008). The sensitivity indices reveal parameters that 

highly influence 0R  and which can then be considered for therapeutic intervention strategies. These sensitivity 

indices always help to express relative degree in state variable when the parametric value alters (Chitnis et al., 

2008).  

 

The sensitivity indices corresponding to the parameters appearing in the expression for the basic reproductive 

number are computed by making use of the parametric values (PVs) itemized in Table 2. More of these PVs are 

estimated while others are adopted from some research literatures. We then apply the technique expounded in 

Definition 2 below. 
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Table 2: Parametric values (PVs) used for computing sensitivity indices of 0R   

Parameter Value Units Source 

1  00001.0  virus
-1

ml
-1

day
-1 

Estimated 

2  2  day
-1 

Estimated 

  6  
virus cell

-1
day

-1 
Estimated 

1  00014.0  day
-1 

 Estimated  

2  10  
day

-1
 Estimated 

3  02.0  day
-1

 Avendano et al.(2002) 

  486.0  
day

-1
 Estimated 

  100 cells ml
-1

day
-1 

Estimated 

  0003.0  day
-1 

Avendano et al.(2002) 

  00000001.0  virus cell
-1

day
-1

 Dahari et al.(2005) 

 

Definition 2: By Chitnis et.al. (2008), the forward normalized sensitivity index of a variable p that depends on a 

parameter q  is defined as  

p

q

q

p
X p

q 



                                                      (27)                                                        

Replacing p by 0R
 

in equation (27), the expression for the sensitivity of 0R
 

appears  

0

00

R

q

q

R
X

R

q 



                                                   (28)                                                       

Replacing q by a parameter in (28), we can compute the analytical expression for the sensitivity of 0R related to 

each parameter using the normalized forward sensitivity index expression as follows: 

5.0
0

1

1

00

1







R

R
X

R 




; 5.0
0

00 





R

R
X

R 


 ;

 

5.0
0

00 








R

R
X

R

 

The remaining sensitivity indices are computed using the same approach. Table 3 summarizes the sensitivity 

indices of the basic reproductive number 0R with respect to all parameters.                                   

Table 3: The sensitivity indices of 0R  relating to each parameter 

Parameter  Sensitivity index 

1  5000.0  

2  5000.0  
1  5000.0  

  5000.0  

  5000.0  

2  4022.0  

  0977.0  

 

In Table 3, we see that the parameters 1 , , for the infection rate, viral replication rate and  recruitment 

rate of susceptible hepatocytes respectively are positively sensitive parameters, which suggests that an increase 

in 1 ,  orwill give rise to an increase of exactly the same proportion in 0R and vice versa, as each of these 

parameters is directly proportional to the threshold parameter 0R . We also observe that the parameters for the 

natural death rate of susceptible and infected hepatocytes and natural death rate of the virus 1 and 2
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respectively are the most negatively sensitive parameters, followed by the recovery rate of infected hepatocytes 

2 and followed by the disease-induce death rate  , which is the least negatively sensitive parameter. The 

increase in the value of any of these parameters will decrease the value of 0R and vice versa. Thus, to eradicate 

or reduce intensity of the HCV morbidity, this study recommends that therapic interventions should be executed 

to reduce strictly 0R  less than unity. This means therapy will lessen or stop HCV infection in the hepatic 

population. Specifically, antiviral drug therapy will prevent or reduce the viral replication for new infections in 

the population. 

 
7. Numerical Simulations and Discussion  

The aim of this study is to assess the interaction between the HCV and the immune system in the acute phase of 

infection. In order to support the analytical results, numerical simulations were performed to graphically illustrate 

variations in parametric values with respect to different state variables of the model and are presented in this 

section. To accomplish the analysis, it was found convenient to use the PVs simply for the purposes of illustrating 

how the model would behave at varying real situations. Table 2 shows the PVs used in the simulations. 

(a) 

 

(b) 

Figure 3: a and b show graphs of susceptible and infected hepatocytes/ml vs. time respectively for the first 20 

days of infection  
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(a)       

 

(b) 

Figure 4: a and b show graphs of HCV load and CD8 
+ 

T cells /ml vs. time respectively for the first 20 days of 

infection.                                                                                 

 

(a) 

 

(b) 

Figure 5: a and b show graphs of susceptible and infected hepatocytes/ml vs. time respectively for the first 

180 days (6 months) of infection.  

0 2 4 6 8 10 12 14 16 18 20
-200

0

200

400

600

800

Time[days]

H
C

V
 l
o

a
d

/m
l

0 2 4 6 8 10 12 14 16 18 20
600

700

800

900

1000

Time[days]

C
D

8+  T
 c

el
ls

/m
l

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2
x 10

4

Time[days]

S
u

sc
ep

ti
b

le
 h

ep
at

o
cy

te
s/

m
l

0 20 40 60 80 100 120 140 160 180
-200

0

200

400

600

Time[days]

In
fe

c
te

d
 h

e
p

a
to

c
y
te

s
/m

l

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.6, 2016 

 

130 

 

                                            

(a) 

 

(b) 

 

Figure 6: a and b show graphs of HCV load and CD8 
+ 

T cells /ml vs. time respectively for the first 180 days 

(6 months) of infection.   

 

Figures 3, 4, 5 and 6 show the graphs of the susceptible and infected hepatocytes, virus and CD8
+
 cells for the 

first 20 or 180 days in the acute phase of infection, where the initial numerical values are all positive entities. It 

can be seen that in Fig. 4(a) and Fig.6 (a); and Fig. 3(a) and Fig.5 (a), the levels of HCV load and infected 

hepatocytes monotonously decrease with time and finally level off at 0V and 0I  respectively. The 

decrease in the level of infected hepatocytes must be due to the spontaneous recovery, natural mortality, death 

due to infection and the CD8
+
 T cells destructive role which accounts for the decrease in the viral production as 

well. Also, we find that there is an increase in the level of susceptible hepatocytes with time (Fig. 3a and Fig.5a). 

The increase in the level of susceptible hepatocytes must be due to immigration or/and spontaneous recovery of 

infected hepatocytes by a noncytolytic process. Conversely, the decrease in the level of CD8
+
 T cells (Fig,. 4b 

and Fig.6b) must be because of the decreased level of CD4
+
 T cells signals sent to the CD8

+
 T cells for the 

destructive role in the presence of HCV. 

 

By using the parametric values itemized in Table 2, we find that 3129.10 R which suggests that the disease 

will spread, i.e. within this acute stage of infection the HCV patient might not recover from the liver disease. 

Nevertheless, we can show the impact of varying the values of some parameters in the 0R . To achieve this goal, 

we present graphical illustrations that show the variation of 0R with respect to the rate of infection (Fig.7a), 

recovery rate of infected hepatocytes (Fig. 7b), rate of virus replication (Fig. 8a) and disease-induced death rate 

(Fig. 8b) 
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(a) 

 

(b) 

Figure 7: a and b show variations in the value of the basic reproductive number with respect to the infection 

rate and recovery rate respectively. 

 

 (a)          

 

(b) 

Figure 8: a and b  show variations in the value of the basic reproductive number with respect to viral 

production rate and death rate due to disease respectively. 

 

In Fig. 7(b) and Fig, 8(b), we see that the value of 0R decreases with increase in the recovery rate and 

disease-induced death rate, as the parameters are inversely proportional to it. Conversely, we see that an increase 

in the value of each parameter will give rise to the decrease in the value of 0R , implying gradual lowering of the 

HCV infection. Also, in Fig. 7(a) and Fig.8 (a), we observe that the value of 0R increases when the infection 
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rate and virus production rate increase respectively, due to the direct proportionality between 0R and these 

parameters. Conversely, the decrease in the value of each of these parameters will give rise to the decrease in the 

value of 0R , suggesting that the HCV morbidity will decrease as well. 

 

Figure 9: Graphs of infected hepatocytes/ml vs. time for the first 14 days of infection, varying recovery rate

)14,9,4( 2  . 

 

Figure 10: Graphs of infected hepatocytes/ml vs. time for the first 180 days (6 months) of infection, varying 

viral production rate )18,12,6(  . 

 
Figure 11: Graphs of infected hepatocytes/ml vs. time for the first 20 days of infection, varying death rate due to 

disease )986.0,486.0(   

 
The graph in Fig. 9 shows that an increase in the recovery rate decreases the number of hepatocytes. This enables 

the acutely HCV infected individual to clear off the virus faster in the acute stage. Nevertheless, in Fig.10 the 

graph indicates that the increases in the virus production rate initially causes a drastic decrease in the number of 

infected hepatocytes and later increases to attain an endemic equilibrium state, meaning that more hepatocytes 

become infected due to increased number of viruses. This implies that the recovery rate of infected hepatocytes 

does not have any significant effect on the HCV infection. So, the disease progresses to chronic stage. The graph 

in Fig. 11 shows that the increase in the disease-induced death rate reduces the number of infected hepatocytes, 

which subsequently levels off at 0I . 

 
8. Conclusion 

This paper presents a formulated deterministic mathematical model for the interaction between HCV and immune 

system. From the model, we computed the disease free equilibrium point (DFP) and endemic equilibrium point 

(EEP).We derived the basic reproductive number 0R , which was subsequently employed to determine the scope of 

the disease control. We found that the DFP is both locally and globally asymptotically stable if 10 R and 

unstable if 10 R . Moreover, we found that the EEP is both locally and globally asymptotically stable if 10 R  

unstable if 10 R .We used the parametric values to determine the sensitivity induces of 0R relating to each 

parameter embedded in 0R and found that the infection rate, viral production rate and recruitment rate of new 

susceptible could be targeted for strategic intervention to eradicate or reduce intensity of the disease. Numerical 

simulations were performed and the results supported the analytical results.  
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Finally, we have seen that the analyses were performed based the knowledge acquired from findings from various 

HCV epidemiological studies, whereby we adopted several parametric values. The analytical and simulation 

results, we obtained, can be a beginning of harm-reduction strategy (HRS).The HRS is a public health strategy that 

could help in reducing threats of HCV transmission, rather than eliminating the infection in vivo, which should be 

taken as early as possible to prevent or diminish the incidence of the disease. In this paper, we recommend that 

antiviral drug therapy should be implemented in order to eradicate or reduce the intensity of the disease by 

blocking the virus replication during early phase. This will absolutely stop the disease progression to chronicity, 

and possibly stop mortality.  
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