FIXED POINT METRICALLY CONVEX METRIC SPACE

Rizwana Jamal*, Nidhi Gargav**, Geeta Modi**

Professor and Head, Department of Mathematics, Safia Science College, Bhopal
**Professor and Head Govt. MVM Bhopal.
*Research Scholar Safia Science College, Bhopal (M.P.)

Abstract
In this paper we establish a fixed point theorem for the hybrid pair of multivalued and single valued nonself JSR mapping in metrically convex metric space. Also we give example in support of the result.

Mathematical Subject Classification(2000) 54h25 , 47h10

KeyWords: Metrically Convex metric space, JSR mapping, common fixed point.

Introduction and Preliminaries
A bulk of literature exist with commuting pairs and its weaker forms such as weakly commuting , compatible, compatible of type A, D-compatible, semi compatible, etc. new pair termed as JSR mapping which is defined by Shrivastav R et. el.[4] in fuzzy menger space and will prove a fixed point theorem for hybrid pair of multivalued and single valued nonself mapping satisfying the ϕ-contraction in a metrically convex metric space.

Let (X,d) be a metric space. Then, following Nadler [2], we have

$CB(X) = \{A : A$ is a nonempty closed and bounded subset of $X\}$,

$C(X) = \{A : A$ is a nonempty compact subset of X $\}$,

$BN(X) = \{A : A$ is a nonempty bounded subset of $X\}$.

For non empty subsets A and B of X and $x \in X$,

$D(A,B) = \inf \{d(a,b) : a \in A$ and $b \in B\},$

$H(A,B) = \max[\sup\{D(a,B) : a \in A\}, \sup\{D(A,b) : b \in B\}],$

$\delta(A,B) = \sup\{d(a,b) : a \in A$ and $b \in B\},$

$d'(x,A) = \inf\{d(x,a) : a \in A\},$

∂K is boundary of K.

A metric space (X,d) is said to be metrically convex if for any $x, y \in X$ $(x \neq y)$ $\partial z \in X$ $(x \neq y \neq z)$ such that $d(x,z) + d(z,y) = d(x,y).$ Further if K is a non
empty closed subset of X and $x \in K$, $y \notin K$, then there exists a point $z \in \partial z$ such that $d(x,z) + d(z,y) = d(x,y)$.

The following lemmas are from Rus[3] and Khan [1].

Lemma 1 Let $A \subseteq \text{CB}(X)$ and $0 < \theta < 1$ be given. Then for every $x \in A$ there exists a point $a \in A$ such that $d(x,z) \geq \theta \delta(x,A)$ and $d(x,z) \geq \theta \delta(x,A)$.

Lemma 2 For any $x \in X$, and any A,B in $\text{CB}(X)$, $|d'(x,A) - d'(x,B)| \leq H(A,B)$.

Lemma 3 For any $x,y \in X$ and $A \subseteq X$, $|d'(x,A) - d'(y,A)| \leq d(x,y)$

Let K be nonempty closed subset of a metric space (X,d), A mapping $T : K \rightarrow \text{CB}(X)$ is said to be continuous at $x_0 \in K$ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that $H(Tx,Tx_0) < \varepsilon$, whenever $d(x,x_0) < \delta$. If T is continuous at every point of K, we say that T is continuous at K.

Let \mathbb{R}^+ be the set of non-negative real and ψ the set of function $\phi: (\mathbb{R}^+)^5 \rightarrow \mathbb{R}$ satisfying the following properties:

(i) ϕ is continuous and increasing in each coordinate variable

(ii) $\phi(1,1,1,1,1) = h < 1$ ($h \in \mathbb{R}^+$)

(iii) Either $u \leq \phi(u,v,u,v,v)$ or $u \leq \phi(v,u,v,u,v)$ implies $u \leq hv$

Let S and T be two self maps of a metric space (X,d). The pair $\{S,T\}$ is said to be S-JSR mappings iff

\[\alpha \ d(STx_n,Tx_n) \leq \alpha \ d(SSx_n,Sx_n) \]

where $\alpha = \lim Sup$ or $\lim inf$ and $\{x_n\}$ is a sequence in X such that

\[\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t \quad \text{for some} \ t \ \text{in} \ X. \]

Example Let $X = [0,1]$ with $d(x,y) = |x-y|$ and S,T are two self mapping on X defined by

\[Sx = \frac{2}{x+2} \quad \text{and} \quad Tx = \frac{1}{x+1} \quad \text{for} \ x \in X. \]
Now we have the sequence \(\{x_n\} \) in \(X \) is defined as \(x_n = 1/n \), \(n \in \mathbb{N} \). Then we have

\[
\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = 1
\]

\[|STx_n - Tx_n| \to 1/3 \text{ and } |SSx_n - Sx_n| \to 2/3 \text{ as } n \to \infty.\]

Clearly we have

\[|TSx_n - Tx_n| < |SSx_n - Sx_n|.\]

Thus pair \(\{S,T\} \) is S-JSR mapping. But This pair is neither compatible nor weakly compatible nor other non commuting mapping. Hence pair of JSR mapping is more general then others.

Let \(S \) self map of a metric space \((X,d)\) and \(T \) be multivalued map . The pair \(\{S,T\} \) is said to be hybrid T-JSR mappings iff

\[
\alpha d'(TSx_n,Sx_n) \leq \alpha H(Tx_n,Tx_n)
\]

where \(\alpha = \lim \sup \) or \(\lim \inf \) and \(\{x_n\} \) is a sequence in \(X \) such that

\[
\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = t \text{ for some } t \in X.
\]

Main Result

Theorem 1 Let \((X,d)\) be a complete and metrically convex metric space and \(K \) be a nonempty closed subset of \(X \). Let \(T:K \to CB(X) \) and \(S:K \to X \) such that

(i) \(\partial K \subseteq SK, \ TK \subseteq SK; \ Sx \in \partial K \Rightarrow TX \subseteq K, \)

\[
H(Tx,Ty) \leq \phi[d(Sx,Sy), \ d'(Sx,Tx), d'(Sy,Ty)], \ d'(Sx,Ty), d'(Sy,Tx)]
\]

For all \(x,y \in K \)

(ii) \(\{T,S\} \) is hybrid T-JSR pair,

(iii) \(SK \) is closed

then there exists a point \(p \) in \(K \) such that \(p=Sp \in Tp \) i.e. \(p \) is common fixed point.

Proof. Construct the sequences \(\{x_n\} \) and \(\{y_n\} \) in the following way:

Let \(x \in \partial K \), then there exists a point \(x_0 \in K \) such that \(x=Sx_0 \) as \(\partial K \subseteq SK \). Form \(Sx_0\in\partial K \) and by the implication of \(Sx \in \partial K \Rightarrow TX \subseteq SK \), we conclude that

\[
d(y_1,y_2) \leq \frac{1}{\sqrt{n}} H(Tx_0,Tx_1)
\]

\[
 \leq \phi[d(Sx_0,Sx_1), \{d' (Sx_0,Tx_0),d' (Sx_1,Tx_1)\},d' (Sx_0,Tx_1),d' (Sx_1,Tx_0)]
\]

Suppose \(y_2 \in K \), then \(y_2 \in K \cap TK \subseteq SK \) which implies that there exists a point \(x_2 \in K \) such that \(y_2 = Sx_2 \). Suppose \(y_2 \notin K \), then there exists a point \(w \in K \) such that \(d(Sx_1,w)+d(w,y_2) \)
=d(Sx₁,y₂). Since w ∈ K ⊆ SK, there exists a point x₂ ∈ K such that w = Sx₂ and so d(Sx₁, Sx₂) + d(Sx₂,y₂) = d(Sx₁,y₂).

Let y₃ ∈ Tx₂ such that

d(y₂,y₃) ≤ 1 h H(Tx₁,Tx₂)

On repeating this process, we obtain two sequences {xₙ} and {yₙ} such that

(a) yₙ₊₁ = Tyₙ
(b) yₙ ∈ K ⇒ Sxₙ or yₙ ∉ K ⇒ Sxₙ ∈ ∂K and d'(Txₙ₋₁,Sxₙ) + d(Sxₙ,yₙ) ≥ d(Sxₙ₋₁,yₙ),
(c) d(yₙ,yₙ₊₁) ≤ 1 h H(Txₙ₋₁,Txₙ)

Let us denote P = [Sxⱼ ∈ {Sxₙ} : Sxⱼ = yⱼ] and Q = [Sxⱼ ∈ {Sxₙ} : Sxⱼ ≠ yⱼ].

Now there arise three cases:

Case I: If (Sxₙ,Sxₙ₋₁) ∈ PxP then by (a), we get

d(Sxₙ,Sxₙ₊₁) = d(yₙ,yₙ₊₁) ≤ 1 h H(Txₙ₋₁,Txₙ)

⇒ d(Sxₙ,Sxₙ₊₁) ≤ 1 h d(Sxₙ₋₁,Sxₙ)

⇒ d(Sxₙ,Sxₙ₊₁) ≤ h d(Sxₙ₋₁,Sxₙ).

Case I: If (Sxₙ,Sxₙ₋₁) ∈ PxQ then by (b), we get

d(Sxₙ,Sxₙ₊₁) = d(Sxₙ,yₙ₊₁) ≤ d(yₙ,yₙ₊₁). Proceeding as in case I, we get

⇒ d(Sxₙ,Sxₙ₊₁) ≤ h d(Sxₙ₋₁,Sxₙ).

Case III: If (Sxₙ,Sxₙ₋₁) ∈ QxP then Sxₙ₋₁ = yₙ₋₁. Hence

d(Sxₙ,Sxₙ₊₁) = d(Sxₙ,yₙ) + d(yₙ,yₙ₊₁)

≤ d(Sxₙ,yₙ) + 1 h H(Txₙ₋₁,Txₙ)

≤ d(Sxₙ,yₙ) + 1 h [d(Sxₙ₋₁,Sxₙ), d'(Sxₙ₋₁,Txₙ₋₁), d'(Sxₙ,Txₙ)]
\[\leq d(Sx_n, y_n) + \frac{1}{\sqrt{h}} \phi [d(Sx_{n-1}, Sx_n), d(Sx_{n-1}, y_n), d(Sx_n, Sx_{n+1}), d(Sx_n, y_{n+1})] \]

\[\leq d(Sx_n, y_n) + \frac{1}{\sqrt{h}} \phi [d(Sx_{n-1}, y_n), d(Sx_{n-1}, y_n), d(Sx_n, y_{n+1}), d(Sx_n, y_{n+1})] \]

\[\leq d(Sx_n, y_n) + \frac{1}{\sqrt{h}} \phi [d(Sx_{n-1}, y_n), d(Sx_{n-1}, y_n), d(Sx_n, y_{n+1}), +d(y_n, y_{n+1}), d(Sx_n, y_{n+1}), d(Sx_n, y_{n+1})] \]

By using triangular inequality, we obtain

\[d(Sx_{n-1}, Sx_n) \leq \sqrt{h} d(Sx_{n-1}, Sx_n) \}

Since \(Sx_{n-1} = y_{n-1} \), as in case(II), we obtain

\[d(Sx_{n-1}, Sx_n) \leq \sqrt{h} d(Sx_{n-2}, Sx_{n-1}) \}

On continuing this process we obtain that \(\{Sx_n\}\) is a cauchy sequence and so it converge to a point \(p \) in \(X \) such that \(p = Su \) for some \(u \) in \(K \).

Thus, there exists a subsequence \(\{x_{nk}\}\), such that \(y_{nk} = Sx_n = Tx_{nk-1} \)

It implies that \(p = Su \in T v \) for some \(v \) in \(X \). Thus by using hybrid T- JSR pair \(\{S,T\}\), we have

\[Sx_n \in Tx_{n-1} \cap K \] and \(Sx_{n-1} \in K \),

\[\alpha d(TSx_{n-1}, Sp) \leq \alpha H(TTx_{n-1}, Tp) \]

On letting \(n \to \infty \), we get

\[\alpha d(TSu, Sp) \leq \alpha H(Tp, Tp) \]

\[\Rightarrow \alpha d(Tp, Sp) \leq \alpha H(Tp, Tp) \]

\[\Rightarrow Sp \in Tp \) (as \(Tp \) is closed).

Now consider,

\[D(Sx_n, Sp) \leq \frac{1}{\sqrt{h}} H(Tx_{n-1}, Tp) \]

\[\leq \frac{1}{\sqrt{h}} \phi [d(Sx_{n-1}, Sp), d(Sx_{n-1}, Tx_{n-1}), d(Sp, Tp), d(Sx_{n-1}, Tp), d(Sp, Tx_{n-1})] \]

\[\leq \frac{1}{\sqrt{h}} \phi [d(Sx_{n-1}, Sp), d(Sx_{n-1}, Sx_n), d(Sp, Tp), d(Sx_{n-1}, Tp), d(Sp, Sx_n)] \]

On letting \(n \to \infty \), we get

\[d(p, Sp) \leq \frac{1}{\sqrt{h}} h d(p, Sp) \}

\[d(p, Sp) \leq \sqrt{h} d(p, Sp) \}

\[\Rightarrow p = Sp. \]
Hence \(p = \text{Sp} \in \text{Tp} \).

Example: Let \(X = [1, \infty) \) with usual metric. Define \(S:X \to X \) as \(Sx = 2 + x/3 \) and \(T:CB(X) \to X \) as \(Tx = [1, 2 + x] \). Consider the sequence \(\{x_n\} = \{3 + 1/n\} \). Then all conditions are satisfied by the theorem and hence 3 is the common fixed point.

References