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Abstract 

In this paper we establish a fixed point theorem for the hybrid pair of multivalued and single 

valued nonself JSR mapping in metrically convex metric space. Also we give example in 

support of the result. 
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Introduction and Preliminaries 

 A bulk of literature exist with commuting pairs and its weaker forms such as weakly 

commuting ,compatible, compatible  of type A, D-compatible, semi compatible , etc. new pair 

termed as JSR mapping which is defined by Shrivastav R et. el.[4] in fuzzy menger space and  

will prove a fixed point theorem for hybrid pair of multivalued and single valued nonself 

mapping satisfying the -contraction in a metrically convex metric space. 

 Let (X,d) be a metric space. Then, following Nadler [2] ,we have 

CB(X) = {A:A is a nonempty closed and bounded subset of X}, 

C(X)=   {A:A is a nonempty compact subset of X }, 

BN(X) = {A:A is a nonempty bounded subset of X}. 

For     non empty subsets A and B of X and xX, 

D(A,B) = inf {d(a,b):aA and bB}, 

H(A,B) max[ sup{ D(a,B):aA }, sup{D(A,b):bB}], 

(A,B) = sup {d(a,b) : aA and bB}, 

d(x,A) = inf {d(x,a):aA}, 

K is boundary of K. 

A metric space (X,d) is said to be metrically convex if for any x, y X  (xy) z X  

(xyz)    such that d(x,z) +d(z,y) = d(x,y). Further if K is a non 
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empty closed subset of X and xK , yK, then there exists a point z z such that d(x,z) + d(z,y) 

= d(x,y). 

The following lemmas are from Rus[3] and Khan [1]. 

 

Lemma 1 Let A  CB(X) and 0 <  < 1 be given. Then for every xA there exists a point aA 

such that  

d (x,z)   (x,A) and d(x,z)   (x,A). 

 

Lemma 2  For any xX, and any A,B in CB(X), 

d(x,A)-d(x,B) H(A,B). 

 

Lemma 3 For any x,y X and AX,d(x,A)-d(y,A) d(x,y) 

 

Let  K be nonempty closed subset of a metric space (X,d).A mapping  

T:KCB(X) is said to be continuous at x0K if for any >0, there exists >0 such that 

H(Tx,Tx0)<,whenever d(x,x0)< . If T is continuous at every point of K, we say that T is 

continuous at K. 

 

    Let 
+ 

be the set of non-negative real and  the set of function :(
+
)
5 
 

Satisfying the following properties: 

(i)  is continuous and increasing in each co-ordinate variable 

(ii) (1,1,1,1,1) =h <1 (h
+
)  

(iii) Either u(u,v,u,v,v) or u(v,u,v,u,v) or u(v,u,v,v,u)  implies u  hv 

 

 Let S and T be two self maps of a metric space (X,d). The pair {S,T} is said to be S-

JSR mappings iff  

 d(STxn,Txn)   d(SSxn,Sxn) 

where  = lim Sup or lim inf and {xn} is a sequence in X such that  

lim lim .n n
n n

Sx Tx t for some t in X
 

   

Example Let X = [0,1] with d(x,y) =x-y and S,T are two self mapping on X defined by 

2 1

2 1
Sx and Tx

x x
 

 
      for x  X.  
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Now we have the sequence {xn} in X is defined as xn = 1/n   ,nN. Then we have 

lim lim 1n n
n n

Sx Tx
 

 
 

STxn-Txn  1/3 and SSxn-Sxn  2/3  as n.  

Clearly we have  

TSxn-Txn < SSxn-Sxn.  

Thus pair {S,T} is S-JSR mapping. But This pair is neither compatible nor weakly compatible 

nor other non commuting mapping. Hence pair of  JSR mapping is more general then others. 

 

Let S self map of a metric space (X,d) and  T be multivalued map . The pair {S,T} is 

said to be  hybrid T-JSR mappings iff  

 d(TSxn,Sxn)   H(TTxn,Txn) 

where  = lim Sup or lim inf and {xn} is a sequence in X such that  

lim Sxn  = lim Txn  = t for some tX. 

n                n 

 Main Result 

Theorem 1 Let (X,d) be a complete and metrically convex metric space and K be a nonempty 

closed subset of X. Let  T:KCB(X) and S:KX such that 

(i) KSK,  TKSK;  Sx  K   TX  K,  

H(Tx,Ty)  [d(Sx,Sy),  d(Sx,Tx), d(Sy,Ty)}, d(Sx,Ty), d(Sy,Tx)] 

For all x,y K 

(ii) {T,S} is hybrid T-JSR pair, 

(iii) SK is closed 

then there exists a point p in K such that p=Sp Tp i.e. p is common fixed point. 

 

Proof .  Construct the sequences {xn}and {yn} in the following way: 

Let xK, then there exists a point x0 K such that x=Sx0 as K SK. Form Sx0K and by 

the implication of SxK  TxSK, we conclude that 

d (y1,y2)  
1

h
H(Tx0,Tx1) 

                  [d(Sx0,Sx1),{d (Sx0,Tx0),d (Sx1,Tx1)},d (Sx0,Tx1),d (Sx1,Tx0)] 

Suppose y2  K, then y2K  TK  SK which implies that there exists a point  x2  K such 

that y2 = Sx2. Suppose y2  K, then there exists a point wK  such that d(Sx1,w)+d(w,y2) 
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=d(Sx1,y2). Since w K SK, there exists a point x2K such that w=Sx2 and so d(Sx1, 

Sx2)+d(Sx2,y2) =d(Sx1,y2). 

Let y3 Tx2 such that  

d (y2,y3) 
1

h
  H(Tx1,Tx2) 

On repeating this process, we obtain two sequences {xn} and {yn} such that 

(a) yn+1 = Tyn 

(b) yn KSxn or yn K SxnK and d(Txn-1,Sxn) + d(Sxn,yn)d(Sxn-1,yn), 

     (c)    d(yn,yn+1)  
1

h
H(Txn-1,Txn) 

Let us denote P = [Sxj{Sxn} : Sxj = yj] and Q = [Sxj{Sxn} : Sxjyj]. 

Now there arise three cases: 

Case I:  If (Sxn,Sxn-1) PxP then by (a), we get 

d(Sxn,Sxn+1) = d(yn,yn+1)  
1

h
H(Txn-1,Txn) 

     
1

h
[d(Sxn-1,Sxn),d(Sxn-1,Txn-1),d(Sxn,Txn),d(Sxn-1,Txn),d(Sxn,Txn-1)] 

     
1

h
[d(Sxn-1,Sxn),{d (Sxn-1,Sxn),d (Sxn,Sxn+1),d(Sxn-1,Sxn+1),d(Sxn,Sxn)] 

    
1

h
[d(Sxn-1,Sxn), d (Sxn-1,Sxn),d (Sxn,Sxn+1),d(Sxn-1,Sxn)+ d(Sxn,Sxn+1), d(Sxn,Sxn)] 

By triangular inequality, we obtain  

 d (Sxn,Sxn+1)  
1

h
h.d(Sxn-1,Sxn)} 

 d (Sxn,Sxn+1)  h.d(Sxn-1,Sxn)}. 

Case I:  If (Sxn,Sxn-1) PxQ then by (b), we get  

d(Sxn,Sxn+1) = d(Sxn,yn+1)  d(yn,yn+1), Proceeding as in case I, we get 

 d (Sxn,Sxn+1)  h.d(Sxn-1,Sxn)}. 

 CaseIII:  If (Sxn,Sxn-1) QxP then Sxn-1 = yn-1. Hence  

d(Sxn,Sxn+1) = d(Sxn,yn)+d(yn,yn+1) 

  d(Sxn,yn) +
1

h
 H(Txn-1,Txn) 

  d(Sxn,yn) +
1

h
[d(Sxn-1,Sxn),d(Sxn-1,Txn-1),d(Sxn,Txn}, d(Sxn-1,Txn), d(Sxn,Txn)] 
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  d(Sxn,yn) +
1

h
[d(Sxn-1,Sxn),d (Sxn-1,yn),d (Sxn,Sxn+1), d(Sxn-1,Sxn+1), d(Sxn,Sxn+1)] 

  d(Sxn,yn) +
1

h
[d(Sxn-1,yn),d (Sxn-1,yn),d (Sxn,yn+1), d(Sxn-1,yn+1),d(Sxn,yn+1)}] 

 d(Sxn,yn)  +
1

h
[d(Sxn-1,yn),d (Sxn-1,yn),d (Sxn,yn),+d(yn, yn+1), d(Sxn-1,yn) + d(yn,yn+1) ,   

                                                                                                                            d(Sxn,yn+1)}] 

By using triangular inequality, we obtain 

 d (Sxn,Sxn+1)  h.d(Sxn-1,Sxn)}. 

Since Sxn-1 = yn-1, as in case(II),we obtain 

 d (Sxn-1,Sxn)  h.d(Sxn-2,Sxn-1)} 

On continuing this process we obtain that {Sxn} is a cauchy sequence and so it converge to a 

point p in X such that p = Su for some u in K. 

Thus, there exists a subsequence {xnk}, such that ynk = Sxn=Txnk-1 

It implies that p = Su  Tv for some v in X. Thus by using hybrid T- JSR pair {S,T}, we have 

SxnTxn-1K and Sxn-1K,    

d(TSxn-1,Sp)    H(TTxn-1,Tp) 

On letting n, we get  

d(TSu,Sp)  H(Tp,Tp) 

 d(Tp,Sp)  H(Tp,Tp) 

 SpTp(as Tp is closed). 

Now consider, 

D(Sxn,Sp)   
1

h
H(Txn-1,Tp) 

  
1

h
 [d(Sxn-1,Sp),d (Sxn-1,Txn-1),d (Sp,Tp),d(Sxn-1,Tp),d(Sp,Txn-1)] 

 
1

h
[d(Sxn-1,Sp),d (Sxn-1,Sxn),d (Sp,Tp),d(Sxn-1,Tp),d(Sp,Sxn)] 

On letting n, we get 

d(p,Sp) 
1

h
h.d(p,Sp)} 

d(p,Sp) h.d(p,Sp)} 

p = Sp.  
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 Hence p = Sp Tp. 

Example: Let X = [1,) with usual metric .Define S:XX as Sx = 2+x/3 and T:CB(X)X 

as Tx = [1,2+x]. Consider the sequence {xn} ={3+1/n}. Then all conditions are satisfies of the 

theorem and hence 3 is the common fixed point.  
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