On Generalized Jordan Isomorphisms of a Gamma- Ring M onto a Gamma- Ring \mathbf{M}^{\prime}

Fawaz Raad Jarullah
Department of Mathematics ,college of Education, Al-Mustansirya University, Iraq

Abstract

: Let M and M^{\prime} be two prime Γ-rings .In the present paper we show that under certain conditions of M , every generalized Jordan homomorphism of a Γ-ring M onto a prime Γ ring M 'is either generalized homomorphism or anti - homomorphism.

Key Words : prime Γ - ring, Isomorphism, Jordan isomorphism .
Mathematic subject classification : 16N60, 16U80 .

1-Introduction:

Let M and Γ be two additive abelian groups, suppose that there is a mapping from $\mathrm{M} \times \Gamma \times \mathrm{M}$ $\longrightarrow \mathrm{M}$ (the image of (a, α, b) being denoted by $a \alpha b, a, b \in \mathrm{M}$ and $\alpha \in \Gamma$). Satisfying for all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma:$
(i) $(a+b) \alpha c=a \alpha c+b \alpha c$
$a(\alpha+\beta) c=a \alpha c+a \beta c$
$a \alpha(b+c)=a \alpha b+a \alpha c$
(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$

Then M is called a Γ-ring. This definition is due to Barnes [1] .
A Γ-ring M is called a prime if $a \Gamma \mathrm{M} \Gamma=(0)$ implies $a=0$ or $b=0$, where $a, b \in$ M.This definition is due to [5].

A Γ-ring M is called semiprime if $a \Gamma \mathrm{M} \Gamma a=(0)$ implies $a=0$, such that $a \in \mathrm{M}$.This definition is due to [5]

Let M be a 2-torsion free semiprime Γ-ring and suppose that $a, b \in \mathrm{M}$ if $a \Gamma \mathrm{~m} \Gamma b+b \Gamma \mathrm{~m} \Gamma a=0$ for all $\mathrm{m} \in \mathrm{M}$, then $a \Gamma \mathrm{~m} \Gamma b=b \Gamma \mathrm{~m} \Gamma a=0$. This definition is due to [7].

Let M be Γ-ring then M is called 2-torsion free if $2 a=0$ implies $a=0$, for every $a \in \mathrm{M}$. This definition is due to [6].

An additive mapping θ of a Γ-ring M into a Γ-ring M^{\prime} is called homomorphism if $\theta(a \alpha b)=\theta(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [1].

An additive mapping θ of Γ-ring M into a Γ-ring M^{\prime} is called Jordan homomorphism if $\theta(a \alpha b$ $+b \alpha a)=\theta(a) \alpha \theta(b)+\theta(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [4].

Let F be an additive mapping of a Γ-ring M into a Γ-ring M^{\prime}. F is called a generalized homomorphism if there exists a homomorphism θ from a Γ-ring M into a Γ-ring M^{\prime}, such that
$\mathrm{F}(a \alpha b)=\mathrm{F}(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, where θ is called the relating homomorphism. This definition is due to [4].

And F is called a generalized Jordan homomorphism if there exists a Jordan homomorphism θ from a Γ-ring M into a Γ-ring M', such that
$\mathrm{F}(a \alpha b+b \alpha a)=\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$, where θ is called the relating Jordan homomorphism. This definition is due to [3].

A bijective additive mapping θ from a Γ-ring M onto a Γ-ring M^{\prime} is called an isomorphism if $\theta(a \alpha b)=\theta(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [2].

A bijective additive mapping θ from a Γ-ring M onto a Γ-ring M^{\prime} is called an anti - isomorphism if $\theta(a \alpha b)=\theta(\mathrm{b}) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.This definition is due to [2].

A bijective additive mapping θ from a Γ-ring M onto a Γ-ring M^{\prime} is called a Jordan isomorphism if $\theta(a \alpha a)=\theta(a) \alpha \theta(a)$, for all $a \in \mathrm{M}$ and $\alpha \in \Gamma$. This definition is due to [2].

Now, the main purpose of this paper is that every generalized Jordan isoomorphism of a Γ-ring M onto a prime Γ-ring M^{\prime} is either generalized isomorphism or anti isomorphism and every generalized Jordan isomorphism from a Γ-ring M onto a 2 -torsion free Γ-ring M^{\prime} such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma, a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$.Then F is a generalized Jordan triple isomorphism.

2. Generalized Jordan Isomorphism on Γ - Rings

Definition (2.1):

Let F be a bijective additive mapping of a Γ-ring M onto a Γ-ring $\mathrm{M}^{\prime} . \mathrm{F}$ is called a generalized isomorphism if there exists an isomorphism θ from a Γ-ring M onto
a Γ-ring M' such that
$\mathrm{F}(a \alpha b)=\mathrm{F}(a) \alpha \theta(b)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.
Where θ is called the relating isomorphism .

Example(2.2):

Let R be a ring. Let $M=M_{1 \times 2}(R), M^{\prime}=M_{1 \times 2}(R)$ and $\Gamma=\left\{\binom{n}{0}, n \in Z\right\}$. Then M and M^{\prime} are two Γ-rings.

Let F be an additive mapping of a Γ-ring M into a Γ-ring M^{\prime}, such that
$\mathrm{F}\left(\left(\begin{array}{ll}a & b\end{array}\right)\right)=\left(\begin{array}{ll}-a & 0\end{array}\right)$, for all $\left(\begin{array}{ll}a & b\end{array}\right) \in \mathrm{M}$.
Then there exists an isomorphism θ from a Γ-ring M onto a Γ-ring M^{\prime}, such that
$\theta\left(\left(\begin{array}{ll}a & b\end{array}\right)\right)=\left(\begin{array}{ll}a & 0\end{array}\right)$, for all $\left(\begin{array}{ll}a & b\end{array}\right) \in \mathrm{M}$.
Then F is generalized isomorphism.

Definition (2.3):

Let F be a bijective additive mapping of a Γ-ring M onto a Γ-ring $\mathrm{M}^{\prime} . \mathrm{F}$ is called generalized Jordan isomorphism if there exists a Jordan isomorphism θ from a Γ - ring M onto a Γ - ring M^{\prime} such that
$\mathrm{F}(a \alpha b+b \alpha a)=\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.
Where θ is called the relating Jordan isomorphism.

Definition (2.4):

Let F be an additive mapping of a Γ-ring M onto a Γ-ring $\mathrm{M}^{\prime} . \mathrm{F}$ is called generalized Jordan triple isomorphism if there exists a Jordan triple isomorphism θ from a Γ-ring M onto a Γ-ring M^{\prime} such that
$\mathrm{F}(a \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Where θ is called the relating Jordan triple isomorphism.

Definition (2.5):

Let F be an additive mapping of a Γ-ring M onto a Γ-ring $\mathrm{M}^{\prime} . \mathrm{F}$ is called generalized anti - isomorphism if there exists an anti - isomorphism from a Γ-ring M onto a Γ-ring M^{\prime} such that
$\mathrm{F}(a \alpha b)=\mathrm{F}(b) \alpha \theta(a)$, for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.
Where θ is called the relating anti isomorphism.

Lemma (2.6):

Let F be a generalized Jordan triple isomorphism of a Γ-ring M onto a Γ-ring M^{\prime}. Then for all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)$
(ii) $\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)$
(iii) In particular, if $\mathrm{M}, \mathrm{M}^{\prime}$ be two commutative Γ-rings and M^{\prime} is a 2 -torsion free Γ-ring, then

$$
\mathrm{F}(a \alpha \mathrm{~b} \beta \mathrm{c})=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)
$$

(iv) $\mathrm{F}(a \alpha b \alpha c+c \alpha b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \alpha \theta(c)+\mathrm{F}(c) \alpha \theta(b) \alpha \theta(a)$

Proof:

(i) Replace $a \beta b+b \beta a$ for b in Definition (2.3), we get:

$$
\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a) \alpha \theta(a \beta b+b \beta a)+\mathrm{F}(a \beta b+b \beta a) \alpha \theta(a)
$$

$$
\begin{equation*}
=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a) \tag{1}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& \mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a) \\
& =\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)+\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a) \tag{2}
\end{align*}
$$

Compare (1) and (2), we get:

$$
\mathrm{F}(a \alpha b \beta a+a \beta b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)
$$

(ii) Replace $a+c$ for a in Definition (2.4), we get:

$$
\begin{align*}
& \mathrm{F}((a+c) \alpha b \beta(a+c))=\mathrm{F}(a+c) \alpha \theta(b) \beta \theta(a+c) \\
= & \mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(c) \tag{1}
\end{align*}
$$

On the other hand

$$
\mathrm{F}((a+c) \alpha b \beta(a+c))=\mathrm{F}(a \alpha b \beta a+a \alpha b \beta c+c \alpha b \beta a+c \alpha b \beta c)
$$

$$
\begin{equation*}
=\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a) \tag{2}
\end{equation*}
$$

Compare (1) and (2), we get:
$\mathrm{F}(a \alpha b \beta c+c \alpha b \beta a)=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)+\mathrm{F}(c) \alpha \theta(b) \beta \theta(a)$
(iii) By (ii) and since M , M^{\prime} be two commutative Γ-rings and M^{\prime} is a 2 -torsion free Γ-ring

$$
\mathrm{F}(a \alpha \mathrm{~b} \beta \mathrm{c}+a \alpha \mathrm{~b} \beta \mathrm{c})=2 \mathrm{~F}(a \alpha \mathrm{~b} \beta \mathrm{c})=\mathrm{F}(a) \alpha \theta(b) \beta \theta(c)
$$

(iv) Replace α for β in (ii), we get:

$$
\mathrm{F}(a \alpha b \alpha c+c \alpha b \alpha a)=\mathrm{F}(a) \alpha \theta(b) \alpha \theta(c)+\mathrm{F}(c) \alpha \theta(b) \alpha \theta(a)
$$

Definition (2.7):

Let F be a generalized Jordan isomorphism of a Γ-ring M onto a Γ-ring M^{\prime}, then for all a, $b \in \mathrm{M}$ and $\alpha \in \Gamma$, we define $\delta: \mathrm{M} \times \Gamma \times \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ by $\delta(a, b)_{\alpha}=\mathrm{F}(a \alpha b)-\mathrm{F}(a) \alpha \theta(b)$.

Lemma (2.8):

If F is a generalized Jordan isomorphism of a Γ-ring M onto a Γ-ring M^{\prime}.Then all $a, b, c \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\delta(a, b)_{\alpha}=-\delta(b, a)_{\alpha}$
(ii) $\delta(a+b, c)_{\alpha}=\delta(a, c)_{\alpha}+\delta(b, c)_{\alpha}$
(iii) $\delta(a, b+c)_{\alpha}=\delta(a, b)_{\alpha}+\delta(a, c)_{\alpha}$
(iv) $\delta(a, b)_{\alpha+\beta}=\delta(a, b)_{\alpha}+\delta(a, b)_{\beta}$

Proof:

(i) By Definition (2.3):
$\mathrm{F}(a \alpha b+b \alpha a)=\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(b) \alpha \theta(a)$
$\mathrm{F}(a \alpha b)-\mathrm{F}(a) \alpha \theta(b)=-(\mathrm{F}(b \alpha a)-\mathrm{F}(b) \alpha \theta(a))$
$\delta(a, b)_{\alpha}=-\delta(b, a)_{\alpha}$
(ii) $\delta(a+b, c)_{\alpha}=\mathrm{F}((a+b) \alpha c)-\mathrm{F}((a+b) \alpha \theta(c))$

$$
\begin{aligned}
& =\mathrm{F}(a \alpha c+b \alpha c)-\mathrm{F}(a) \alpha \theta(c)-\mathrm{F}(b) \alpha \theta(c) \\
& =\mathrm{F}(a \alpha c)-\mathrm{F}(a) \alpha \theta(c)+\mathrm{F}(b \alpha c)-\mathrm{F}(b) \alpha \theta(c) \\
& \quad=\delta(a, c)_{\alpha}+\delta(b, c)_{\alpha}
\end{aligned}
$$

(iii) $\delta(a, b+c)_{\alpha}=\mathrm{F}(a \alpha(b+c))-\mathrm{F}(a) \alpha \theta(b+c)$

$$
\begin{aligned}
& =\mathrm{F}(a \alpha b+a \alpha c)-\mathrm{F}(a) \alpha \theta(b)-\mathrm{F}(a) \alpha \theta(c) \\
& =\mathrm{F}(a \alpha b)-\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(a \alpha c)-\mathrm{F}(a) \alpha \theta(c) \\
& =\delta(a, b)_{\alpha}+\delta(a, c)_{\alpha}
\end{aligned}
$$

(iv) $\delta(a, b)_{\alpha+\beta}=\mathrm{F}(a(\alpha+\beta) b)-\mathrm{F}(a)(\alpha+\beta) \theta(b)$

$$
\begin{aligned}
= & \mathrm{F}(a \alpha b)-\mathrm{F}(a) \alpha \theta(b)+\mathrm{F}(a \beta b)-\mathrm{F}(a) \beta \theta(b) \\
& =\delta(a, b)_{\alpha}+\delta(a, b)_{\beta}
\end{aligned}
$$

Remark (2.9):

Note that F is a generalized isomorphism of a Γ-ring M onto a Γ-ring M^{\prime} if and only if $\delta(a, b)_{\alpha}=0$ for all $a, b \in \mathrm{M}$ and $\alpha \in \Gamma$.

Lemma (2.10):

Let F be a generalized Jordan isomorphism of a Γ-ring M onto a Γ-ring M^{\prime}.Then for all $a, b, \mathrm{~m} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(b, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}=0$
(ii) $\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(b, a)_{\alpha}+\delta(b, a)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(a, b)_{\alpha}=0$
(iii) $\delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(b, a)_{\beta}+\delta(b, a)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(a, b)_{\beta}=0$

Proof:

(i) Let $\mathrm{w}=a \alpha b \beta \mathrm{~m} \beta b \alpha a+b \alpha a \beta \mathrm{~m} \beta a \alpha b$
since F is a generalized Jordan isomorphism

$$
\begin{align*}
\mathrm{F}(\mathrm{w}) & =\mathrm{F}(a \alpha(b \beta \mathrm{~m} \beta b) \alpha a+b \alpha(a \beta \mathrm{~m} \beta a) \alpha b) \\
& =\mathrm{F}(a) \alpha \theta(b \beta \mathrm{~m} \beta b) \alpha \theta(a)+\mathrm{F}(b) \alpha \theta(a \beta \mathrm{~m} \beta a) \alpha \theta(b) \\
& =\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{m}) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta \theta(a) \alpha \theta(b) \tag{1}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
& \mathrm{F}(\mathrm{w})=\mathrm{F}((a \alpha b) \beta \mathrm{m} \beta(b \alpha a)+(b \alpha a) \beta \mathrm{m} \beta(a \alpha b)) \\
&=\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \theta(b \alpha a)+\mathrm{F}(b \alpha a) \beta \theta(\mathrm{m}) \beta \theta(a \alpha b) \\
& \mathrm{F}(\mathrm{w})=\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta(\theta(a) \alpha \theta(b)+\theta(b) \alpha \theta(a)-\theta(a \alpha b))+(-\mathrm{F}(a \alpha b)+\mathrm{F}(a) \alpha \theta(b)+ \\
&\mathrm{F}(b) \alpha \theta(a)) \beta \theta(\mathrm{m}) \beta \theta(a \alpha b)
\end{aligned}
$$

$$
\begin{align*}
= & -\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta(\theta(a \alpha b)-\theta(a) \alpha \theta(b))-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta(\theta(a \alpha b)-\quad \theta(b) \alpha \theta(a)) \\
& +\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{m}) \beta \theta(a \alpha b)+\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta \theta(a \alpha b) \tag{2}
\end{align*}
$$

Compare (1) and (2), we get :
$0=-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+$
$\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{m}) \beta \theta(a \alpha b)+\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta$
$\theta(a \alpha b)-\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{m}) \beta \theta(b) \alpha \theta(a)-\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta \theta(a) \alpha \theta(b)$
$0=-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+$
$\mathrm{F}(a) \alpha \theta(b) \beta \theta(\mathrm{m}) \beta(\theta(a \alpha b)-\theta(b) \alpha \theta(a))+$
$\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta(\theta(a \alpha b)-\theta(a) \alpha \theta(b))$
$0=-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}-\mathrm{F}(a \alpha b) \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+$ $\mathrm{F}(a) \alpha \theta(\mathrm{b}) \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\mathrm{F}(b) \alpha \theta(a) \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}$
$0=-(\mathrm{F}(a \alpha b)-\mathrm{F}(b) \alpha \theta(a)) \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}-(\mathrm{F}(a \alpha b)-\mathrm{F}(a) \alpha \theta(\mathrm{b})) \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}$
Thus, we have:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(b, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}=0$
(ii) Replace α by β in (i), we get (ii).
(iii) Interchanging α and β in (i), we obtain (iii).

Lemma (2.11):

Let F be a generalized Jordan isomorphism of a Γ-ring M onto a 2 - torsion free prime Γ-ring M^{\prime}, then for all $a, b, \mathrm{~m} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=\delta(b, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}=0$
(ii) $\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(b, a)_{\alpha}=\delta(b, a)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(a, b)_{\alpha}=0$
(iii) $\delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(b, a)_{\beta}=\delta(b, a)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(a, b)_{\beta}=0$

Proof:

(i) By Lemma (2.10)(i)
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(b, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}=0$
And since by Lemma (Let M be a 2-torsion free semiprime Γ-ring and suppose that a, b
$\in \mathrm{M}$ if $a \Gamma \mathrm{~m} \Gamma b+b \Gamma \mathrm{~m} \Gamma a=0$ for all $\mathrm{m} \in \mathrm{M}$, then $a \Gamma \mathrm{~m} \Gamma b=b \Gamma \mathrm{~m} \Gamma a=0)$. Then we get :
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=\delta(b, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(a, b)_{\alpha}=0$
(ii) Replace α for β in (i), we obtain (ii).
(iii) Interchanging α and β in (i), we get (iii).

Lemma (2.12):

Let F be a generalized Jordan isomorphism of a Γ-ring M onto a prime Γ-ring M^{\prime}, then for all $a, b, c, d, \mathrm{~m} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$
(i) $\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, c)_{\alpha}=0$
(ii) $\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha}=0$
(iii) $\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}=0$

Proof:

(i) Replacing $a+c$ for a in Lemma (2.11) (i), we get:
$\delta(a+c, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(\mathrm{b}, a+c)_{\alpha}=0$
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha}+$
$\delta(c, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(c, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha}=0$
By lemma (2.11)(i), we get:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha}+\delta(c, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=0$
Therefore, we get
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha} \beta \theta(\mathrm{m}) \beta \delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, \mathrm{c})_{\alpha}=0$
$=-\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha} \beta \theta(\mathrm{m}) \beta \delta(c, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=0$
Since M^{\prime} is prime Γ-ring and therefore:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha}=0$
Now, replacing $b+d$ for b in Lemma (2.11)(i), we get:
$\delta(a, b+d)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b+d, a)_{\alpha}=0$
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}+$
$\delta(a, d)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(a, d)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}=0$
By lemma (2.11)(i), we get:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}+\delta(a, d)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=0$
Therefore, we get:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \delta(a, \mathrm{~b})_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}=0$
$=-\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha} \beta \theta(\mathrm{m}) \beta \delta(a, d)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}=0$
Since M^{\prime} is prime Γ-ring and therefore:
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}=0$
Now, $\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b+d, a+c)_{\alpha}=0$
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, a)_{\alpha}+\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(b, c)_{\alpha}+$
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, a)_{\alpha}+\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, c)_{\alpha}=0$

Since by lemma (3.2.15) (i) and (1), (2), we get:

$$
\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, \mathrm{c})_{\alpha}=0 .
$$

(ii) Replace α for β in (i), we get (ii).
(iii) Replace $\alpha+\beta$ for α in (ii), we get:

$$
\begin{aligned}
& \delta(a, b)_{\alpha+\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha+\beta}=0 \\
& \delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha}+\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}+ \\
& \delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha}+\delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}=0
\end{aligned}
$$

By (i) and (ii), we get:

$$
\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}+\delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha}=0
$$

Therefore, we have:
$\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta} \alpha \theta(\mathrm{m}) \alpha \delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}=0$
$=-\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta} \alpha \theta(\mathrm{m}) \alpha \delta(a, b)_{\beta} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\alpha}=0$
Since M^{\prime} is prime Γ-ring, then:
$\delta(a, b)_{\alpha} \alpha \theta(\mathrm{m}) \alpha \mathrm{G}(d, c)_{\beta}=0$.

3.2 The main result

Theorem (3.1):

Every generalized Jordan isomorphism of a Γ-ring M onto prime Γ-ring M^{\prime} is either generalized isomorphism or anti - isomorphism.

Proof:

Let F be a generalized Jordan isomorphism of a Γ-ring M onto prime Γ-ring M^{\prime}. Then by Lemma (2.12) (i) we get :
$\delta(a, b)_{\alpha} \beta \theta(\mathrm{m}) \beta \mathrm{G}(d, c)_{\alpha}=0$.
Since M^{\prime} is prime Γ-ring therefore either $\delta(a, b)_{\alpha}=0$ or $\mathrm{G}(d, c)_{\alpha}=0$ for all $a, b, c, d \in \mathrm{M}$ and α $\in \Gamma$.

If $\mathrm{G}(d, c)_{\alpha} \neq 0$ for all $c, d \in \mathrm{M}$ and $\alpha \in \Gamma$ then $\delta(a, b)_{\alpha}=0$, hence we get F is generalized isomorphism.

But if $\mathrm{G}(d, c)_{\alpha}=0$ for all $c, d \in \mathrm{M}$ and $\alpha \in \Gamma$, then we get F is anti - isomorphism.

Proposition (3.2):

Let F be a generalized Jordan isomorphism from a Γ-ring M onto a 2 -torsion free
ring M^{\prime}, such that $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma, a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$.Then F is a generalized Jordan triple isomorphism.

Proof:

Replace b by $a \beta b+b \beta a$ in Definition (2.3), we get:

$$
\begin{aligned}
& \mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)= \mathrm{F}(a) \alpha \theta(a \beta b+b \beta a)+ \\
& \mathrm{F}(a \beta b+b \beta a) \alpha \theta(a) \\
&=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(a) \beta \theta(b) \alpha \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)
\end{aligned}
$$

Since $a^{\prime} \alpha b^{\prime} \beta a^{\prime}=a^{\prime} \beta b^{\prime} \alpha a^{\prime}$, for all $a^{\prime}, b^{\prime} \in \mathrm{M}^{\prime}$ and $\alpha, \beta \in \Gamma$, we get:
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+2 \mathrm{~F}(a) \alpha \theta(b) \beta \theta(a)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)$
On the other hand:
$\mathrm{F}(a \alpha(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha a)=\mathrm{F}(a \alpha a \beta b+a \alpha b \beta a+a \beta b \alpha a+b \beta a \alpha a)$
Since $a \alpha b \beta a=a \beta b \alpha a$, for all $a, b \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, we get:
$=\mathrm{F}(a) \alpha \theta(a) \beta \theta(b)+\mathrm{F}(b) \beta \theta(a) \alpha \theta(a)+2 \mathrm{~F}(a \alpha b \beta a) \ldots(2)$
Compare (1) and (2), we get:
$2 \mathrm{~F}(a \alpha b \beta a)=2 \mathrm{~F}(a) \alpha \theta(\mathrm{b}) \beta \theta(a)$.
Since M^{\prime} is 2-torsion free Γ-ring .Then F is a generalized Jordan triple isomorphism.

References:

[1] W.E.Barnes, "On The Г-Rings of Nobusawa", Pacific J.Math., Vol.18(3)(1966) , pp.411-422 .
[2] S.Chakraborty and A.C.Paul, "On Jordan Isomorphism Of 2- Torsion Free Prime Gamma Rings ", Novi Sad J. Math . , Vol.40(2) (2010), pp. 1-5.
[3] S .Chakraborty and A.C .Paul, "On Jordan K-Derivations of 2-Torsion Free Prime Γ_{N}-Rings", Journal of Mathematics, Vol.40, pp.97-101, 2008.
[4] R.C.Shaheen , "On Higher Homomorphisms of Completely Prime Gamma Rings", Journal of Al-Qadisiyah For Pure Science, Vol.13, No.2,pp. 1-9, 2008.
[5] S. Kyuno , "On Prime Gamma Rings", Pacific Journal of Mathematics, Vol.75(1) (1978), pp.185-190 .
[6] A.C.Paul and A.Nazneen, "On Jordan K-Derivations on Lie Ideals of Prime Γ-Rings", Universal Journal of Computational Mathematics, Vol.2(1) (2014), pp.17-21.
[7] N.N.Suliman and A.H.Majeed, "On Orthogonal Generalized Derivations of Semiprime Gamma Ring", International Journal of Computational Science and Mathematics, Vol.4(2) (2012),pp.113-122.

