On Generalized Jordan Isomorphisms of a Gamma- Ring M onto a Gamma- Ring M'

Fawaz Raad Jarullah

Department of Mathematics ,college of Education , Al-Mustansirya University , Iraq

Abstract:

Let M and M' be two prime Γ -rings .In the present paper we show that under certain conditions of M, every generalized Jordan homomorphism of a Γ -ring M onto a prime Γ -ring M is either generalized homomorphism or anti - homomorphism.

Key Words : prime Γ -ring , Isomorphism , Jordan isomorphism .

Mathematic subject classification : 16N60, 16U80.

1-Introduction:

Let M and Γ be two additive abelian groups, suppose that there is a mapping from $M \times \Gamma \times M$ $\longrightarrow M$ (the image of (a, α, b) being denoted by $a\alpha b$, $a, b \in M$ and $\alpha \in \Gamma$). Satisfying for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$:

(i) $(a+b)\alpha c = a\alpha c + b\alpha c$ $a(\alpha + \beta) c = a\alpha c + a\beta c$ $a\alpha (b+c) = a\alpha b + a\alpha c$

```
(ii) (a\alpha b)\beta c = a\alpha(b\beta c)
```

Then M is called a Γ -ring. This definition is due to Barnes [1].

A Γ -ring M is called a prime if $a\Gamma M\Gamma b = (0)$ implies a = 0 or b = 0, where $a, b \in M$. This definition is due to [5].

A Γ -ring M is called semiprime if $a\Gamma M\Gamma a = (0)$ implies a = 0, such that $a \in M$. This definition is due to [5]

Let M be a 2-torsion free semiprime Γ -ring and suppose that $a, b \in M$ if $a\Gamma m\Gamma b + b\Gamma m\Gamma a = 0$ for all $m \in M$, then $a\Gamma m\Gamma b = b\Gamma m\Gamma a = 0$. This definition is due to [7].

Let M be Γ -ring then M is called 2-torsion free if 2a = 0 implies a = 0, for every $a \in M$. This definition is due to [6].

An additive mapping θ of a Γ -ring M into a Γ -ring M' is called homomorphism if $\theta(a\alpha b) = \theta(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [1].

An additive mapping θ of Γ -ring M into a Γ -ring M' is called Jordan homomorphism if $\theta(a\alpha b + b\alpha a) = \theta(a)\alpha\theta(b) + \theta(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [4].

Let F be an additive mapping of a Γ -ring M into a Γ -ring M'. F is called a generalized homomorphism if there exists a homomorphism θ from a Γ -ring M into a Γ -ring M', such that

 $F(a\alpha b) = F(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$, where θ is called the relating homomorphism. This definition is due to [4].

And F is called a generalized Jordan homomorphism if there exists a Jordan homomorphism θ from a Γ -ring M into a Γ -ring M', such that

 $F(a\alpha b + b\alpha a) = F(a)\alpha\theta(b) + F(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$, where θ is called the relating Jordan homomorphism. This definition is due to [3].

A bijective additive mapping θ from a Γ -ring M onto a Γ -ring M' is called an isomorphism if $\theta(a\alpha b) = \theta(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [2].

A bijective additive mapping θ from a Γ -ring M onto a Γ -ring M' is called an anti - isomorphism if $\theta(a\alpha b) = \theta(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. This definition is due to [2].

A bijective additive mapping θ from a Γ -ring M onto a Γ -ring M' is called a Jordan isomorphism if $\theta(a\alpha a) = \theta(a)\alpha\theta(a)$, for all $a \in M$ and $\alpha \in \Gamma$. This definition is due to [2].

Now, the main purpose of this paper is that every generalized Jordan isoomorphism of a Γ -ring M onto a prime Γ -ring M' is either generalized isomorphism or anti-isomorphism and every generalized Jordan isomorphism from a Γ -ring M onto a 2-torsion free Γ -ring M' such that $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, $a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$. Then F is a generalized Jordan triple isomorphism.

2. Generalized Jordan Isomorphism on $\Gamma\text{-}$ Rings

Definition (2.1):

Let F be a bijective additive mapping of a Γ -ring M onto a Γ -ring M'. F is called a **generalized isomorphism** if there exists an isomorphism θ from a Γ -ring M onto

a Γ -ring M' such that

 $F(a\alpha b) = F(a)\alpha\theta(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Where θ is called the **relating isomorphism** .

Example(2.2):

Let R be a ring .Let M = M_{1×2}(R), M' = M_{1×2}(R) and
$$\Gamma = \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in \mathbb{Z} \right\}$$
. Then M and M'

are two Γ -rings.

Let F be an additive mapping of a Γ -ring M into a Γ -ring M', such that

 $F((a \ b)) = (-a \ 0)$, for all $(a \ b) \in M$.

Then there exists an isomorphism θ from a $\Gamma\text{-ring}\ M$ onto a $\Gamma\text{-ring}\ M',$ such that

 $\theta((a \ b)) = (a \ 0)$, for all $(a \ b) \in M$.

Then F is generalized isomorphism.

Definition (2.3):

Let F be a bijective additive mapping of a Γ -ring M onto a Γ -ring M'. F is called **generalized Jordan isomorphism** if there exists a Jordan isomorphism θ from a Γ - ring M onto a Γ - ring M' such that

 $\mathrm{F}(a\alpha b+b\alpha a)=\mathrm{F}(a)\alpha\theta(b)+\mathrm{F}(b)\alpha\theta(a)\;\text{, for all }a,b\in\mathrm{M}\text{ and }\alpha\in\Gamma\;\text{.}$

Where θ is called the **relating Jordan isomorphism**.

Definition (2.4):

Let F be an additive mapping of a Γ -ring M onto a Γ -ring M'. F is called **generalized** Jordan triple isomorphism if there exists a Jordan triple isomorphism θ from a Γ -ring M onto a Γ -ring M' such that

 $F(a\alpha b\beta a) = F(a)\alpha \theta(b)\beta \theta(a)$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

Where θ is called the **relating Jordan triple isomorphism**.

Definition (2.5):

Let F be an additive mapping of a Γ -ring M onto a Γ -ring M'. F is called **generalized**

anti - isomorphism if there exists an anti - isomorphism from a Γ -ring M onto a Γ -ring M' such that

 $F(a\alpha b) = F(b)\alpha\theta(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Where θ is called the **relating anti isomorphism**.

Lemma (2.6):

Let F be a generalized Jordan triple isomorphism of a Γ -ring M onto a Γ -ring M'. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$

- (i) $F(a\alpha b\beta a + a\beta b\alpha a) = F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a)$
- (ii) $F(a\alpha b\beta c + c\alpha b\beta a) = F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(a)$
- (iii) In particular, if M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring , then

 $F(a\alpha b\beta c) = F(a)\alpha\theta(b)\beta\theta(c)$

(iv) $F(a\alpha b\alpha c + c\alpha b\alpha a) = F(a)\alpha\theta(b)\alpha\theta(c) + F(c)\alpha\theta(b)\alpha\theta(a)$

Proof:

(i) Replace $a\beta b + b\beta a$ for *b* in Definition (2.3), we get: $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a)\alpha\theta(a\beta b + b\beta a) + F(a\beta b + b\beta a)\alpha\theta(a)$

 $= F(a)\alpha\theta(a)\beta\theta(b) + F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a) + F(b)\beta\theta(a)\alpha\theta(a) \dots (1)$ On the other hand $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$ $= F(a)\alpha\theta(a)\beta\theta(b) + F(b)\beta\theta(a)\alpha\theta(a) + F(a\alpha b\beta a + a\beta b\alpha a)$ (2). . . Compare (1) and (2), we get: $F(a\alpha b\beta a + a\beta b\alpha a) = F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a)$ (ii) Replace a + c for a in Definition (2.4), we get: $F((a + c)\alpha b\beta(a + c)) = F(a + c)\alpha\theta(b)\beta\theta(a + c)$ $= F(a)\alpha\theta(b)\beta\theta(a) + F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(a) + F(c)\alpha\theta(b)\beta\theta(c) \dots (1)$ On the other hand $F((a + c)\alpha b\beta(a + c)) = F(a\alpha b\beta a + a\alpha b\beta c + c\alpha b\beta a + c\alpha b\beta c)$ $= F(a)\alpha\theta(b)\beta\theta(a) + F(c)\alpha\theta(b)\beta\theta(c) + F(a\alpha b\beta c + c\alpha b\beta a)$ (2). . . Compare (1) and (2), we get: $F(a\alpha b\beta c + c\alpha b\beta a) = F(a)\alpha\theta(b)\beta\theta(c) + F(c)\alpha\theta(b)\beta\theta(a)$

- (iii) By (ii) and since M, M' be two commutative Γ -rings and M' is a 2-torsion free Γ -ring $F(a\alpha b\beta c + a\alpha b\beta c) = 2F(a\alpha b\beta c) = F(a)\alpha \theta(b)\beta \theta(c)$
- (iv) Replace α for β in (ii), we get:

 $F(a\alpha b\alpha c + c\alpha b\alpha a) = F(a)\alpha\theta(b)\alpha\theta(c) + F(c)\alpha\theta(b)\alpha\theta(a)$

Definition (2.7):

Let F be a generalized Jordan isomorphism of a Γ -ring M onto a Γ -ring M', then for all a, $b \in M$ and $\alpha \in \Gamma$, we define $\delta : M \times \Gamma \times M \longrightarrow M'$ by $\delta(a,b)_{\alpha} = F(a\alpha b) - F(a)\alpha\theta(b)$.

Lemma (2.8):

If F is a generalized Jordan isomorphism of a Γ -ring M onto a Γ -ring M'. Then all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$

- (i) $\delta(a,b)_{\alpha} = -\delta(b,a)_{\alpha}$
- (ii) $\delta(a+b,c)_{\alpha} = \delta(a,c)_{\alpha} + \delta(b,c)_{\alpha}$
- (iii) $\delta(a,b+c)_{\alpha} = \delta(a,b)_{\alpha} + \delta(a,c)_{\alpha}$
- (iv) $\delta(a,b)_{\alpha+\beta} = \delta(a,b)_{\alpha} + \delta(a,b)_{\beta}$

Proof:

(i) By Definition (2.3):

 $F(a\alpha b + b\alpha a) = F(a)\alpha\theta(b) + F(b)\alpha\theta(a)$ $F(a\alpha b) - F(a)\alpha\theta(b) = -(F(b\alpha a) - F(b)\alpha\theta(a))$ $\delta(a,b)_{\alpha} = -\delta(b,a)_{\alpha}$

(ii) $\delta(a+b,c)_{\alpha} = F((a+b)\alpha c) - F((a+b)\alpha\theta(c))$ $= F(a\alpha c + b\alpha c) - F(a)\alpha\theta(c) - F(b)\alpha\theta(c)$ $= F(a\alpha c) - F(a)\alpha\theta(c) + F(b\alpha c) - F(b)\alpha\theta(c)$ $= \delta(a,c)_{\alpha} + \delta(b,c)_{\alpha}$ (iii) $\delta(a,b+c)_{\alpha} = F(a\alpha(b+c)) - F(a)\alpha\theta(b+c)$ $= F(a\alpha b + a\alpha c) - F(a)\alpha\theta(b) - F(a)\alpha\theta(c)$ $= F(a\alpha b) - F(a)\alpha\theta(b) + F(a\alpha c) - F(a)\alpha\theta(c)$ $= \delta(a,b)_{\alpha} + \delta(a,c)_{\alpha}$ (iv) $\delta(a,b)_{\alpha+\beta} = F(a(\alpha+\beta)b) - F(a)(\alpha+\beta)\theta(b)$ $= F(a\alpha b) - F(a)\alpha\theta(b) + F(a\beta b) - F(a)\beta\theta(b)$ $= \delta(a,b)_{\alpha} + \delta(a,b)_{\beta}$

Remark (2.9):

Note that F is a generalized isomorphism of a Γ -ring M onto a Γ -ring M' if and only if $\delta(a,b)_{\alpha} = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Lemma (2.10):

Let F be a generalized Jordan isomorphism of a Γ -ring M onto a Γ -ring M'. Then for all $a, b, m \in M$ and $\alpha, \beta \in \Gamma$

(i) $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}+\delta(b,a)_{\alpha}\beta\theta(m)\beta G(a,b)_{\alpha}=0$

- (ii) $\delta(a,b)_{\alpha}\alpha\theta(m)\alpha G(b,a)_{\alpha}+\delta(b,a)_{\alpha}\alpha\theta(m)\alpha G(a,b)_{\alpha}=0$
- (iii) $\delta(a,b)_{\beta}\alpha\theta(m)\alpha G(b,a)_{\beta}+\delta(b,a)_{\beta}\alpha\theta(m)\alpha G(a,b)_{\beta}=0$

Proof:

(i) Let $w = a\alpha b\beta m\beta b\alpha a + b\alpha a\beta m\beta a\alpha b$

since F is a generalized Jordan isomorphism

```
F(w) = F(a\alpha(b\beta m\beta b)\alpha a + b\alpha(a\beta m\beta a)\alpha b)
```

 $= F(a)\alpha\theta(b\beta m\beta b)\alpha\theta(a) + F(b)\alpha\theta(a\beta m\beta a)\alpha\theta(b)$

```
= F(a)\alpha\theta(b)\beta\theta(m)\beta\theta(b)\alpha\theta(a) + F(b)\alpha\theta(a)\beta\theta(m)\beta\theta(a)\alpha\theta(b) \qquad \dots (1)
```

On the other hand

 $F(w) = F((a\alpha b)\beta m\beta(b\alpha a) + (b\alpha a)\beta m\beta(a\alpha b))$

 $= F(a\alpha b)\beta\theta(m)\beta\theta(b\alpha a) + F(b\alpha a)\beta\theta(m)\beta\theta(a\alpha b)$

 $F(w) = F(a\alpha b)\beta\theta(m)\beta(\theta(a)\alpha\theta(b) + \theta(b)\alpha\theta(a) - \theta(a\alpha b)) + (-F(a\alpha b) + F(a)\alpha\theta(b) + F(b)\alpha\theta(a))\beta\theta(m)\beta\theta(a\alpha b)$

 $= -F(a\alpha b)\beta\theta(m)\beta(\theta(a\alpha b) - \theta(a)\alpha\theta(b)) - F(a\alpha b)\beta\theta(m)\beta(\theta(a\alpha b) - \theta(b)\alpha\theta(a))$

+ $F(a)\alpha\theta(b)\beta\theta(m)\beta\theta(a\alpha b)+F(b)\alpha\theta(a)\beta\theta(m)\beta\theta(a\alpha b)$...(2)

Compare (1) and (2), we get :

 $0 = -F(a\alpha b)\beta\theta(m)\beta G(a,b)_{\alpha} - F(a\alpha b)\beta\theta(m)\beta G(b,a)_{\alpha} +$

 $F(a)\alpha\theta(b)\beta\theta(m)\beta\theta(a\alpha b)+F(b)\alpha\theta(a)\beta\theta(m)\beta$

 $\theta(a\alpha b) - F(a)\alpha\theta(b)\beta\theta(m)\beta\theta(b)\alpha\theta(a) - F(b)\alpha\theta(a)\beta\theta(m)\beta\theta(a)\alpha\theta(b)$

 $0 = -F(a\alpha b)\beta\theta(m)\beta G(a,b)_{\alpha} - F(a\alpha b)\beta\theta(m)\beta G(b,a)_{\alpha} +$

 $F(a)\alpha\theta(b)\beta\theta(m)\beta(\theta(a\alpha b) - \theta(b)\alpha\theta(a)) +$

 $F(b)\alpha\theta(a)\beta\theta(m)\beta(\theta(a\alpha b) - \theta(a)\alpha\theta(b))$

 $0 = -F(a\alpha b)\beta\theta(m)\beta G(a,b)_{\alpha} - F(a\alpha b)\beta\theta(m)\beta G(b,a)_{\alpha} +$

 $F(a)\alpha\theta(b)\beta\theta(m)\beta G(b,a)_{\alpha}+F(b)\alpha\theta(a)\beta\theta(m)\beta G(a,b)_{\alpha}$

 $0 = -(F(a\alpha b) - F(b)\alpha\theta(a))\beta\theta(m)\beta G(a,b)_{\alpha} - (F(a\alpha b) - F(a)\alpha\theta(b))\beta\theta(m)\beta G(b,a)_{\alpha}$

Thus, we have:

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}+\delta(b,a)_{\alpha}\beta\theta(m)\beta G(a,b)_{\alpha}=0$

- (ii) Replace α by β in (i), we get (ii).
- (iii) Interchanging α and β in (i), we obtain (iii).

Lemma (2.11):

Let F be a generalized Jordan isomorphism of a Γ -ring M onto a 2- torsion free prime

Γ-ring M', then for all *a*, *b*, m ∈ M and α, β ∈ Γ

- (i) $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}=\delta(b,a)_{\alpha}\beta\theta(m)\beta G(a,b)_{\alpha}=0$
- (ii) $\delta(a,b)_{\alpha}\alpha\theta(m)\alpha G(b,a)_{\alpha}=\delta(b,a)_{\alpha}\alpha\theta(m)\alpha G(a,b)_{\alpha}=0$
- (iii) $\delta(a,b)_{\beta}\alpha\theta(m)\alpha G(b,a)_{\beta} = \delta(b,a)_{\beta}\alpha\theta(m)\alpha G(a,b)_{\beta} = 0$

Proof:

(i) By Lemma (2.10)(i)

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}+\delta(b,a)_{\alpha}\beta\theta(m)\beta G(a,b)_{\alpha}=0$

And since by Lemma (Let M be a 2-torsion free semiprime Γ -ring and suppose that $a, b \in M$ if $a\Gamma m\Gamma b + b\Gamma m\Gamma a = 0$ for all $m \in M$, then $a\Gamma m\Gamma b = b\Gamma m\Gamma a = 0$). Then we get :

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}=\delta(b,a)_{\alpha}\beta\theta(m)\beta G(a,b)_{\alpha}=0$

- (ii) Replace α for β in (i), we obtain (ii).
- (iii) Interchanging α and β in (i), we get (iii).

www.iiste.org

Lemma (2.12):

Let F be a generalized Jordan isomorphism of a Γ -ring M onto a prime Γ -ring M', then

for all $a, b, c, d, m \in M$ and $\alpha, \beta \in \Gamma$

- (i) $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,c)_{\alpha} = 0$
- (ii) $\delta(a,b)_{\alpha}\alpha\theta(m)\alpha G(d,c)_{\alpha} = 0$

(iii) $\delta(a,b)_{\alpha}\alpha\theta(m)\alpha G(d,c)_{\beta} = 0$

Proof:

(i) Replacing a + c for a in Lemma (2.11) (i), we get:

 $\delta(a+c,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(\mathbf{b},a+c)_{\alpha}=0$

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}+\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,c)_{\alpha}+$

 $\delta(c,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,a)_{\alpha}+\delta(c,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,c)_{\alpha}=0$

By lemma (2.11)(i), we get:

 $\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,c)_{\alpha}+\delta(c,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,a)_{\alpha}=0$

Therefore, we get

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,c)_{\alpha}\beta\theta(m)\beta\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,c)_{\alpha}=0$

$$= - \,\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,c)_{\alpha}\beta\theta(\mathbf{m})\beta\delta(c,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,a)_{\alpha} = 0$$

Since M' is prime Γ -ring and therefore:

 $\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,c)_{\alpha} = 0 \qquad \dots(1)$

Now, replacing b + d for b in Lemma (2.11)(i), we get:

 $\delta(a,b+d)_{\alpha}\beta\theta(m)\beta G(b+d,a)_{\alpha}=0$

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha} + \delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,a)_{\alpha} +$

 $\delta(a,d)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha} + \delta(a,d)_{\alpha}\beta\theta(m)\beta G(d,a)_{\alpha} = 0$

By lemma (2.11)(i), we get:

 $\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(d,a)_{\alpha}+\delta(a,d)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(b,a)_{\alpha}=0$

Therefore, we get:

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,a)_{\alpha}\beta\theta(m)\beta\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,a)_{\alpha}=0$

 $= -\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,a)_{\alpha}\beta\theta(m)\beta\delta(a,d)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha} = 0$

Since M' is prime Γ -ring and therefore:

$$\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(d,a)_{\alpha} = 0 \qquad \dots (2)$$

Now, $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b+d,a+c)_{\alpha} = 0$

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,a)_{\alpha}+\delta(a,b)_{\alpha}\beta\theta(m)\beta G(b,c)_{\alpha}+$

 $\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(d,a)_{\alpha}+\delta(a,b)_{\alpha}\beta\theta(\mathbf{m})\beta\mathbf{G}(d,c)_{\alpha}=0$

Since by lemma (3.2.15) (i) and (1), (2), we get: $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,c)_{\alpha} = 0.$

- (ii) Replace α for β in (i), we get (ii).
- (iii) Replace $\alpha + \beta$ for α in (ii), we get:

 $\delta(a,b)_{\alpha + \beta} \alpha \theta(m) \alpha G(d,c)_{\alpha + \beta} = 0$ $\delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\alpha} + \delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} +$ $\delta(a,b)_{\beta} \alpha \theta(m) \alpha G(d,c)_{\alpha} + \delta(a,b)_{\beta} \alpha \theta(m) \alpha G(d,c)_{\beta} = 0$ By (i) and (ii), we get: $\delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} + \delta(a,b)_{\beta} \alpha \theta(m) \alpha G(d,c)_{\alpha} = 0$ Therefore, we have: $\delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} \alpha \theta(m) \alpha \delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} = 0$ $= - \delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} \alpha \theta(m) \alpha \delta(a,b)_{\beta} \alpha \theta(m) \alpha G(d,c)_{\alpha} = 0$ Since M' is prime Γ-ring, then: $\delta(a,b)_{\alpha} \alpha \theta(m) \alpha G(d,c)_{\beta} = 0.$

3.2 The main result

Theorem (3.1):

Every generalized Jordan isomorphism of a Γ -ring M onto prime Γ -ring M' is either generalized isomorphism or anti - isomorphism.

Proof:

Let F be a generalized Jordan isomorphism of a Γ -ring M onto prime Γ -ring M'.Then by Lemma (2.12) (i) we get :

 $\delta(a,b)_{\alpha}\beta\theta(m)\beta G(d,c)_{\alpha} = 0.$

Since M' is prime Γ -ring therefore either $\delta(a,b)_{\alpha}=0$ or $G(d,c)_{\alpha}=0$ for all $a, b, c, d \in M$ and $\alpha \in \Gamma$.

If $G(d,c)_{\alpha} \neq 0$ for all $c, d \in M$ and $\alpha \in \Gamma$ then $\delta(a,b)_{\alpha} = 0$, hence we get F is generalized isomorphism.

But if $G(d,c)_{\alpha} = 0$ for all $c, d \in M$ and $\alpha \in \Gamma$, then we get F is anti - isomorphism.

Proposition (3.2):

Let F be a generalized Jordan isomorphism from a Γ -ring M onto a 2-torsion free Γ ring M', such that $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma, a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$. Then F is a generalized Jordan triple isomorphism.

Proof:

Replace *b* by $a\beta b + b\beta a$ in Definition (2.3), we get:

 $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a)\alpha\theta(a\beta b + b\beta a) +$

 $F(a\beta b + b\beta a)\alpha\theta(a)$

 $= F(a)\alpha\theta(a)\beta\theta(b) + F(a)\alpha\theta(b)\beta\theta(a) + F(a)\beta\theta(b)\alpha\theta(a) + F(b)\beta\theta(a)\alpha\theta(a)$

Since $a'\alpha b'\beta a' = a'\beta b'\alpha a'$, for all $a', b' \in M'$ and $\alpha, \beta \in \Gamma$, we get:

 $=F(a)\alpha\theta(a)\beta\theta(b)+2F(a)\alpha\theta(b)\beta\theta(a)+F(b)\beta\theta(a)\alpha\theta(a) \qquad \dots (1)$

On the other hand:

 $F(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = F(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$

Since $a\alpha b\beta a = a\beta b\alpha a$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, we get:

 $= F(a)\alpha\theta(a)\beta\theta(b) + F(b)\beta\theta(a)\alpha\theta(a) + 2F(a\alpha b\beta a) \dots (2)$

Compare (1) and (2), we get:

 $2F(a\alpha b\beta a) = 2F(a)\alpha\theta(b)\beta\theta(a).$

Since M' is 2-torsion free Γ -ring .Then F is a generalized Jordan triple isomorphism.

References:

[1] W.E.Barnes, "On The Γ-Rings of Nobusawa", Pacific J.Math., Vol.18(3)(1966), pp.411-422.

[2] S.Chakraborty and A.C.Paul, "On Jordan Isomorphism Of 2- Torsion Free Prime Gamma Rings ", Novi Sad J. Math., Vol.40(2) (2010), pp. 1-5.

[3] S .Chakraborty and A.C .Paul, "On Jordan K-Derivations of 2-Torsion Free Prime Γ_N -Rings", Journal of Mathematics, Vol.40, pp.97-101, 2008.

[4] R.C.Shaheen, "On Higher Homomorphisms of Completely Prime Gamma Rings", Journal of Al-Qadisiyah For Pure Science, Vol.13, No.2, pp. 1-9, 2008.

[5] S. Kyuno, "On Prime Gamma Rings", Pacific Journal of Mathematics, Vol.75(1) (1978), pp.185-190.

[6] A.C.Paul and A.Nazneen, "On Jordan K-Derivations on Lie Ideals of Prime Γ -Rings", Universal Journal of Computational Mathematics, Vol.2(1) (2014), pp.17-21.

[7] N.N.Suliman and A.H.Majeed, "On Orthogonal Generalized Derivations of Semiprime Gamma Ring", International Journal of Computational Science and Mathematics, Vol.4(2) (2012),pp.113-122.