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ABSTRACT 
In this paper, a discrete-time stage-structured mathematical model was formulated for the population density 

dynamics of annual weeds. Biological process was employed to develop the model equations and incorporates 

density-dependent effects at germination and established seedling stages within the weed life-cycle. Besides, the 

developed model framework was applied to investigate the population density dynamics of Bush Mint weed 

(Hyptis suaveolens). The analysis revealed that the steady state solution is locally asymptotically stable and 

conclude that, whenever the steady state population is disturbed through management effort the weeds will 

always proliferate. Also, the steady state density of H. suaveolens is globally asymptotically stable and 

concludes that its population density may be control or eradicated.  

Keywords  Discrete-time, density-dependent,  stage –structured, steady-state, annual weeds,  biological-process, 

Hyptis suaveolens  

 

1. INTRODUCTION  
Weeds are generally defined as uncultivated plant species that proliferate in agricultural setting thereby, 

interfering with crop production. In fact, weed is a term applied to any plant that grows naturally in a place it is 

not wanted. They exist only in natural environments that have been disturbed by human’s activities such as 

agricultural lands, recreational parks, and irrigation dams [1]. However, weeds form an important part of the land 

ecosystem, providing food and cover for animals and birds which are an important indicator of biodiversity 

health [2]. Managing weeds to limit both crop yield loss and environmental impacts is a major challenge of 

agriculture [3] and one of the key elements of most agricultural system. The development of weed’s management 

strategies to limit the deleterious effects of weeds growing with crop plants requires thorough quantitative and 

qualitative in-sight in the behaviour of weeds in agro-ecosystems and their effects. These effects can be quite 

variable and involves understanding the dynamics of weed population, crop-weed competition, weed rate of 

spread (spatial) and invasion as well as environmental interaction.  

 

Population dynamics involve the study of population numerical change in time, composition and spatial 

dispersion. The objectives are to identify the causes of numerical change in population and to explain how this 

cause act and interact to produce the observed pattern. Not until recent past population models were concentrated 

mainly on the use of differential equations. Although, most populations such as weeds and phylogenetically 

more evolved organisms live in seasonal environments and because of this, have annual rhythms of reproduction 

and death. Since plant has discrete generations (seasonal reproduction), difference dynamical equation systems 

are an appropriate mathematical tool to model behaviour of population with no overlapping generations such as 

weeds. Furthermore, many researchers  have paid attention in recent times to discrete- time population models, 

since the discrete time models governed by discrete systems are more appropriate than the continuous ones when 

the populations have non over lapping generations [4]. 

 

Attempts to describe and predict the population dynamics of plants such as arable weeds have tendered to be 

compromised by a lack of generality [5]. Most predictive models have been developed almost exclusively from 

data sets derived from one or only a few years’ trial. Besides, most attempts to model population dynamics of 

arable weeds are compromised by a lack of data. Either data are not available over a long time period or studies 

are not spatially replicated.    

 

It is well-established that population models can be derived from two different sources, data and biological 

process. The first relies completely upon data to look at the dynamics of the population [6]. The second is a 

model defined by biological processes, which do not include any data, but instead attempt to understand the 

dynamics of populations purely from what is expected to occur. These two types of models require different 

frame works; one needs a biologically defined state and the other a data defined state. 
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The aim of this paper is to propose a deterministic discrete-time stage-structured population model using 

biological processes for the dynamics of weed density interaction. Incorporating density-dependent effects at 

different stages of recruitment and maturity within the weed’s life – cycle and apply the formulated model 

framework to investigate the population dynamics of Bush mint weed (H. suaveolens).  

 

2. MATERIALS AND METHODS 
 

2.1 Formulation of the Model Equations  
 

In general, a model for the dynamics of an arable weed requires component to describe changes in the number of 

vegetative plants stages. We divided the life-cycle of an annual weed into three stages; seed (S) in the seed bank 

established seedling (E) and mature weeds (M). Because the life-cycle events of weeds are usually assumed to be 

synchronous, this requires system of difference equations that relate the numbers of seeds, seedling and mature 

weeds at time t to the numbers at time (t+1). 

On the basis of the classification into three stages, we consider the schematic life-cycle graph of the annual weed 

model shown in Figure (1) below, 

 

 

 

 

 

 

 

Figure 2.1  Schematic diagram for Modified Three-Stages of Annual Weed Model 

The feedback life cycle diagram shows the fate of seeds and above the ground weed densities. 

The individuals that are classed as dormant seeds may remain as viable dormant seeds in the seed bank after 

surviving dry season or they may germinate at some rate to become established seedling. The established 

seedling may survive and grow at some rate to become reproductive mature weeds those individuals classed as 

mature weeds has two possible routes after flowering and seeds production: 

Newly produced seeds may either germinate late in the season to become establish seedling or become part of 

the dormant seed bank. In order to track number of individuals in the various life stages, we use the variables 

below for the three biological stages of the life cycle of our hypothetical annual weed. 

 

Variables   Biological interpretation 

𝒏𝟏,𝒕   Density of seeds in the seed bank 

𝒏𝟐,𝒕   Density of the established seedling 

𝒏𝟑,𝒕   Density of mature weeds 

Their units are weed density per unit area. 

Parameters 

𝑝𝑑 Fraction (possibility) of seeds in the seed bank that survive and viable  

𝑝𝑔2
 Fraction of the survive and viable new seeds that germinate within the season                                       

𝑝𝑔1
 Fraction (possibility) of viable seeds older than one year germinate from the seed bank 

𝑝𝑒 Fraction (possibility) of germinated seeds that become established seedlings  

𝑝𝑚 Fraction of the established seedlings that survive to mature weeds 
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b average number of seeds produced by the mature weed per unit area. 

 

Assumptions 

We made the following simple biologically realistic assumptions 

i. There is no mortality of dormant seeds once they enter the seed bank, seeds can only leave the seed 

bank through germination 

ii. There is no significant difference in seed germination of newly produced seeds and old seed from the 

seed bank 

iii. Seedling recruitment and the established seedling (growth) become mature are density dependent  

iv. There is competition among the population for the available micro site space while there are enough of 

other resources. 

v. The number of established seedling between the time interval increases with the available micro site 

(space) for seeds to germinate and establish.   

Applying the variables, parameters definitions and the above assumptions, the stage structured population model 

for the abundant densities of seeds (𝑛1 ,𝑡), established seedlings (𝑛2 ,𝑡) and mature-weeds (𝑛3 ,𝑡) is given by the 

following system of difference equations: 

tgdtgdt nnpbpnnppn ,32
1

,12
1

1,1 ))(1())(1(  ,     (1) 

tgedtgedt nnppbpnnpppn ,32
2

,12
1

1,2 )()(  ,      (2) 

tmt nnpn ,221,3 )( .         (3) 

Biologically, it has been observed that any of the parameters me
i

g ppp ,,  and b                                                                                                                                                                                                                                                       

may experience density-dependence due to resource limitation (e.g. space, nutrient, water and light). A thorough 

understanding of the occurrence and effects of density-dependence at different stage has been called for by 

several authors. However, density-dependent fecundity and survival have been observed most frequently in 

perennial plant population [7,8]. Density-dependence germination (recruitment), survival and growth of annual 

weed population are hardly been investigated as far as we know. 

 

We consider density-dependence seed germination (seedling recruitment) 𝑝𝑔𝑖
(𝑛𝑖), and survival of the established 

seedling to mature weeds 𝑝𝑚(𝑛𝑖). For the functions 𝑝𝑔𝑖
(𝑛𝑖) and  𝑝𝑚(𝑛2) we adopted the Beaverton-Holt 

density-dependence function type (we choose this form because it can be derived by assuming competition 

among individuals for an available resource) due to the assumption 4. Thus; 
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where 

ig  =  the maximum value of  
igp  at a low density of established seedling )( ,2 tn . 

   =  the effect of established seedling density on the rate of seed germination   (recruitment)  

and survival to mature weed. 

So, substituting (4) and (5) into (1) – (3) we have 
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In the next section, we carried out the stability analysis of the model equations proposed above. 
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2.2 Stability Analysis of the Model Equations 

  

In order to carry out the stability analysis the stage-structured model equations (6) – (8) is re-expressed in matrix 

form without any loss or gain of mathematical content. Although it reveals more, the structure of the stage 

population (life cycle) of the weed, Thus; 
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Written (9) in a general matrix equation, we have 

t1t nPn ),( tn ,         (10) 

Where 
T

ttt nnn ),,( ,3,2,1tn is the stage density vector at time t and 1tn   , density vector at time (t+1). 

 ijpP  is the stage density-dependent matrix elements called projection (or transition) matrix with entries   

ijp    which are density dependents. Here;   

 𝑝11 = fraction of a seed bank seeds that remain dormant. 

 𝑝21 = fraction of the germinated seeds from the seed bank that survive to established weed  

seedling 

𝑝23 = fraction of newly produced seed that germinate directly during the raining season and  

become established seedling . 

𝑝32 =fraction of the established weed seedling that survive to become mature weeds. 

𝑝13 = fraction of new seeds that enter the seed bank (i.e become dormant). 

 

Applying the idea in [9, 10], we assume that seedling recruitment and established seedling survival to maturity 

functions, )(np
i

g
 2,1i  and )(npm  as given in (4) and (5) respectively satisfy the following conditions, 
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The analysis of the steady-state solutions are carried out next. 

 

2.2.1 Stability of Zero Steady-State (Extinction of Weed Population) 

System (9) has the zero steady-state solution (extinction) )000()( 03210 EnnnE T  . This is the 

situation liken to clearance of agricultural field before planting season either by fire, tillage, or weeding, that 

destroys all above – ground weed biomass, and the initial population will consist entirely of seedling germinated 

(recruited) from surviving viable seeds left in the seed bank. At a very low population density, individuals rarely 

interfere with each other, there is enough space for seeds to germinate and established so the intra- species 

competitive pressure does not occurred. In consequence, the density dependent germination (recruitment) and 

maturity (survival) terms will be negligible. So the weed populations will exponentially grow in constant 

environment (time-invariant) if all the resources are available. This can be achieved mathematically either by 

setting  𝑛2(𝑡) = 0 in (9) or by its linearization at the trivial steady-state point which gives a density-dependent 

linear population model, in a constant environment [11, 12, 10] characterized by exponential growth. The rate of 

its population growth describes the asymptotic dynamics or long-term behaviour and the stability of the zero 

steady state point. This rate is computed as the dominant eigenvalue )( of the population variational 

(projection) matrix ),( tnP . However, inherent net reproductive value (R0 ) idea is employed instead to 

determined the stability of (9). The value R0 also determines the asymptotic dynamics of the linear systems and 
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the stability of its zero (trivial) steady-state point and the bifurcation of positive steady-state [13, 11, 16, 12,10 

and 14).  

 

The stability analysis based on variational principle [15] and inherent basic reproductive value [16, 12, 17, 18, 

19] are used. The variational matrix D(n) which is obtained from the partial derivatives of the right side of 

equations (6) – (8), thus has the form;  
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Note:  Subscript of the vital parameter is used to represent the parameter value in (11) for convenience of 

expression. 

Evaluating the variational matrix (11) at )000()( 3210 TnnnE  gives the inherent variational 

matrix of the nonlinear system (10) thus 
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As stated in the assumption, not all dormant seeds are viable due to heat and predation by insects so survivorship 

probability is assumed to be  10  d . 

Using the techniques and framework given in [12, 16, 9, 10, 14], the matrix (12) is non-negative, irreducible and 

primitive since the first entry in the third column is positive ( that is 1
2
g ), therefore, it is additively 

decomposed into the sum of two non-negative matrices; 
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The right eigenvector associated with R0 gives the population stable stage distribution (that is the proportion of 

individuals in each stage.). Thus, w after normalization is  
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w is positive and independent of initial size. 0R  as given in (17) may not have the biological interpretation of 

the expected number of seeds produced per individual weed per season life-time. Hence, may not be the net 

reproductive value which depends on how variational matrix is additively decomposed, but by means of which 

stability can be determined.  

 

To determine the stability of the zero steady-state point we apply the following stability Theorem (1) which has 

been adopted by several researchers  

 

Theorem 1 

The zero steady-state point of model (10), )000(0E  is globally asymptotically stable if 10 R  and 

unstable if  10 R . 

Proof 
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Therefore, )000(0E  is globally asymptotically stable if 10 R . 

But, clearly the value of 
0

R  as given in (17) indicates that 10 R . That is 
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So, we conclude that the zero steady-state point )000(0E  is unstable, and there exists a positive steady-

state point that bifurcates from the zero steady state at 10 R .  

This positive steady-state point exist for 10 R and is obtained analytically next.  

 

2.2.2 Stability of Positive Steady-state Solution 
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From equation (25) , 3
2

2

1
n

m

n
n


  and substituting this  into equation (24) we obtained 
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Putting (27) into (23) and after some algebraic rearrangement we obtained 
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Assuming that 1d (i.e all dormant seed are viable), we have 
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1
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

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n .          (29) 

Putting (29) into (25) and simplified to obtained 

be

bme
n

1
3


 .          (30) 

Putting (29) and (30)   into (23) and then simplify to have 
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1
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1

))(1(

eg

gbmebme
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
 .        (31) 

Thus, the analytical expression for positive Steady-state solution is given by the expression;  
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They all exist and are positive.  

 

Once the Steady-state solutions for a dynamical system are obtained, then we shift our focus to the local stability 

of the system about the steady state solution. 

  

2.2.3 The Stability of Positive Steady-State Solution 

Suppose 10 R  and ),,( 3211 nnnE  in (32) is the unique positive Steady-state solution of (9). A precise 

local stability result of the positive Steady-state solution 
1E  is obtained from the variation matrix given in (11), 

evaluated at ),,( 3211 nnnE  has the form of 
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Taken 1d  (assuming that all the seeds are viable) yield the following matrix after simplification;  
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Then characteristics polynomial of D(E1) is given by 
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After simplification, it gives  
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To utilize Schur-Cohn stability criteria (also called Jury Criteria), Let 

1321 aaab  ,  2312 aaab   , 
2

33 1 ab  .     

and
 

31131 bbbbc  , 21232 bbbbc  ,  
2
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The necessary and sufficient conditions for the characteristic polynomial )(f  to have all its solutions inside 

the unit circle (less than 1) are 

i. 0)1( f ,   0)1(3)1(  f ,     103  aa . 

ii. 13 bb  ,   23 cc  . 

Now, suppose that the existence conditions for E1 and condition C2 are satisfied, we have the following local 

asymptotic stability result for the positive steady-state point (solution) E1. 

 

Theorem 2 
The unique positive steady-state point E1, is locally asymptotically stable if the condition 

2

12 )(bmegg   is satisfied. 

Proof 
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Also, for the constant term 

1
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
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gg
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2

12 )(bmegg 
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Clearly, this inequality holds. Therefore, the positive steady-state point E1, is locally asymptotically stable. The 

proof is complete. 

 

This result implies that whenever the steady state population density is disturbed through management effort by 

mowing or herbicide application the weeds will always grow (Proliferate) to the new steady state if the control is 

not sustained.  

 

3.0  RESULTS AND DISCUSSION 

3.1 Application of the Model Framework to Bush Mint Weed (Hyptis suaveolens)  
3.1.1 The Study Species 

Hyptis suaveolens is a broad-leaved annual Savanna herb of neotropical origin, tropical and subtropical 

distribution [20, 21].  It is one of the aromatic and odoriferous annual herb weed of aggressive nature belonging 

to the Lamiaceae family that are highly utilized for medicinal purposes and research in Nigeria and endowed 

Countries of the world [22]. The plant has been considered as an obnoxious weed distributed in the tropical and 

subtropical regions, among its common names are Mint-weed, Bush-mint, Bush-tea, Horehound, Pignut and 

American-mint [23]. Some of its local names are efirin in Yoruba, daddoya-ta-daji in Hausa and nchuanwu in 

Ibo [24].  It has a major three-stage life cycle; persistent seed bank, Seedling, and Adults (mature flowers and set 

seed) and subsequently dies in dry season. Although it may also behave as a perennial plant if resources are 

available. H. suaveolens usually covers a large area after the rains and not allows the adjoining species to 

flourish, so has potential for a successful invader. Besides, H. suaveolens also shows strategy for better survival 

and establishment. It exhibits vigorous growth on the agricultural fields, wastelands and along roadsides. 

 

Besides, H. suaveolens has good medicinal value owing to the presence of essential oil, a characteristic feature to 

the family Lamiaceae. Although H. suaveolens possess medicinal properties but it is not efficiently utilized in 

this context. Damage to the biodiversity of the adjoining areas, farmlands is much greater than its utilization as 

medicinal plants. To avoid its spread, therefore efforts should be made to check its spread so that it may not 

become a successful invader in near future in the farmlands. 
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A field observation was performed in order to obtain parameter data to demonstrate the theoretical results and 

the dynamics of the developed models to investigate the population density dynamics and control of H. 

suaveolens. as far as we know, no data of such nature have been collected for the weed species. The field 

observation was conducted at the School farm of the Federal Polytechnic Nasarawa, Nasarawa State, Nigeria. It 

was carried out in 2013 raining (cropping) season from April – September. About 90% of the rainfall occurs 

during this period that begins in March and ends in October. The vegetation at the study field was dominated by 

the study species growing with other grasses and weeds such as Broom weed (Sida acuta). Besides, the study 

species (H. suaveolens) is the most common weed found in farm lands, along roadsides, open land and waste 

lands in Nasarawa town of Nasarawa State and its surrounding villages. The most common agricultural 

productions (practice) in the surrounding farms of the study field are corn (Plate III), groundnut and guinea corn. 

However, the study site was not cultivated before the observation plots were established. Two study sites were 

established in an open field where H. suaveolens were fairly in abundance. Ten (10) 1x1m square plots were 

marked using metal pegs and wire for each site. Site 1 (one) was mowed and herbicide applied to the site 2 

(two). Mean values obtained for these parameters are presented for each site in Table 1. 

 

 
Plate I   The established seedling of Bush Mint weed (H. suaveolens) growing at high density  

   tends to have fewer stems and compete for survival to mature weed.  

 

 
Plate II  Mature Bush mint weed (H. suaveolens)  in a dense infestation flowering and producing  

   seeds.  

 

Source    Field observation 2013 

 

3.1.2 Parameter Data and Base-line Values  

 

Table 1 Approximate values obtained for some parameters in each population of H. Suaveolens. 

  

Site No of 

Plot 

1x1 

m
2 

Seedling 

Density(mean) 

established 

seedling 

Density 

(mean) 

Mature 

weed 

Density 

(mean) 

Fraction of 

establish 

seedling (Pe) 

Fraction of 

mature 

weed (Pm) 

Average seed 

production per 

Plant 

(b) 

 

1 

 

2 

 

10 

 

10 

 

254.00 

 

175.00 

 

151,00 

 

114.00 

 

78.00 

 

63.00 

 

0.5944 

 

0.6514 

 

0.5166 

 

0.5526 

 

25 – 128 

 

31 - 190 

 

Source: Field Observation (2013) 
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The parameter base values used to validate the developed models and formulation of specific model equations 

for the population density dynamics of  H. suaveolens is presented in Table 2 below 

 

Table 2  Parameters Baseline Value 

Parameter Variation in observed rates Base Value for the model 

dp  0.60 - 1.00 0.95 

gp  0.10 -  0.20 0.15 

ep  0.59; 0.65 0.62 

mp  0.51 ; 0.55 0.53 

B 25 – 128; 31 - 190 30 

 

3.1.3 The Dynamics of Population Density of H. sauveolens 

The population growth rate of H. sauveolens at low density in the absence of intra-specific competition is 

examined by using (9) to obtain the projection matrix P(0) ,thus  



















053.00

65.2008.0

22.24080.0

)0(P         (39) 

For the stability of the Steady-state )0,0,0(0E  the characteristic equation is 

096.134.128.03)(  f
       (40)

 

So the three eigenvalues are 

 62.11   , 07.02  and  89.03  .        

The dominant eigenvalue is 62.11  . Therefore, the annual population growth rate of H. suaveolens is 62%. 

It is noticed that one of the eigenvalues 162.11   which, implies that the zero steady-state is not stable. 

That is bush-mint weed will always proliferate to a positive steady state density. Besides, 107.70 R  and 

the right eigenvector w associated with R0 gives the approximate population stable stage distribution. Thus, for 

H. sauveolens it is   

0

1
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
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
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

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



w  .         (41)  

In order to obtain its positive steady state, we use the parameter values in Table 2 and expression (32) to obtain 

the new fixed point (steady state) densities  )(),(),( 321 tntntnE . Thus; 

 10,177,1700
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05.0
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,

005.0

84.85
)

3
,

2
,

1
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


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


nnnE .    (42)

 
It exists and positive. 

 
 

For the stability of the steady-state we use (34) at the steady state to obtain 



















001.00

27.006.001.0

93.2715.093.0

)( 1ED .       (43)  

The characteristic polynomial of (43) is 

 06.0286.03)( f .        (44) 

From the Jury stability criterion given in Table4.1 the solutions of the characteristic polynomial (44) have 

magnitudes less than one. 
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Table 3  Jury’s stability criterion for Population Density of H.sauveolens Model
 

 Condition System Stability Result 

1 0)1( f  008.0)1( f  satisfied 

2 
0)1()1(  fn  080.1)1()1( 3  f  satisfied 

3 
1

3
a  10    satisfied 

 

Since all the three conditions are satisfied, the positive steady state solution E1 is locally asymptotically stable, 

which indicates that the weed density growth of H.sauveolen. is predictable and can be controlled. Besides, this 

implies that whenever the equilibrium (steady state) population density is perturbed through management effort 

by mowing or herbicide application the H. suaveolens will always grow, if the management effort is not 

sustained.  

 

3.1.4   Graphical Profiles of the Population Density Dynamics of H. sauveolens 

The parameters base value in the table 2 were employed in equations (6) – (8) to obtained the stage-structured 

model for non-homogeneous population density  of  H. suaveolens. The graphical profiles of the resulting system 

were obtained as shown in figures 2 and 3 below  

 
Figure 2 Dynamics of non-homogeneous population density of H. suaveolens with initial densities 

)00700()( ,3,2,1 ttt nnn  

 

The seed bank seed population were depleted due to the germination of seedling that becomes established within 

the first two time steps, when there were no mature weeds, which produces seed to replenish the seed bank. 

However, the abundance of seeds in the seed bank rises due to constant seed production by the matured H. 

suaveolens from one time step to another. 
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Figure 3 Dynamics of the Effective Population Density of H. suaveolens with initial densities 

)00()( ,3,2 tt nn  

As observed in the figure 3, the effective densities of H. suaveolens tend to reach a stable stage distribution at 

about 30 time steps. But it’s matured density become stable after 15 time steps. This may be due to its extinction 

after seed production, which usually create micro-site space for established seedling to become mature and more 

seedlings to be recruited. 

 

4.   CONCLUSION 

In this paper a discrete-time staged-structured model was formulated to investigate the population density 

dynamics of weed proliferation. The models equation was analyzed for stability based on variational and basic 

reproductive value principles. The model frame work was applied to investigate the population density dynamics 

of Bush mint (H. suaveolens), an annual weed. From the analysis, the following findings / conclusion were 

made. 

i. The zero steady-state solution of non-homogeneous model equation always exists and is unstable. 

The positive steady state exists and is locally asymptotically stable. From the biological point of 

view we conclude that whenever the steady state population is disturbed through management 

effort the weeds will always proliferate  

ii. Steady state density of H. suaveolens is globally asymptotically stable and concludes that its 

population density may be control or eradicated.  
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Appendix 

 

Matlab Code for Density-Dependent Stage-structured Population Density dynamics Model of Bush Mint 

Weed (H. sauveolens) 

 

set(0,'DefaultAxesFontSize',12);%size of fonts; 

time=30; 

d=0.95; 

g1=0.15; 

g2=0.15; 

a=0.05; 

b=30; 

e=0.62; 

m=0.53; 

n1(1)=700; 

n2(1)=0; 

n3(1)=0; 

for t=1:time; 

n1(t+1)=d*(1-g/(1+a*n2(t)))*n1(t)+b*d*(1+h/(1+a*n2(t)))*n3(t); 

n2(t+1)=d*e*g*n1(t)/(1+a*n2(t))+b*d*e*h*n3(t)/(1+a*n2(t)); 

n3(t+1)=m*n2(t)/(1+a*n2(t)); 

end 

%--------The graph----------- 

plot(0 : time, n1, 0 : time, n2, 0 : time, n3); 

leg1 = legend(‘n1’ , ‘n2’ , ‘n3’) ; 

plottools 
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