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Abstract 

This paper presents a mathematical model that captures some essential information about the impacts of 

treatment on hepatitis B vertical transmission. The treatment induced reproduction number is compared with the 

basic reproduction number to assess the possible benefits to be obtained from this control measure. Numerical 

results and sensitivity analysis are carried out to support the analytical results and determine the parameters 

influencing the dynamics of the disease. It is indicated that in the presence of treatment, transmission of infection 

decreases, implying that the number of acute and chronic infected adult women decrease as well, resulting into 

fewer infected newborn babies. 
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1. Introduction   

Hepatitis B is a liver disease that emanates from the infection with hepatitis B virus (HBV). The infection is 

spread when the body fluid of an infected individual enters the body of a person who is not yet infected (Sirilert 

et al., 2014). Hepatitis B can either be acute or chronic, and an easily detectable sign of acute disease is the 

distinctive yellow jaundice that hepatitis B imparts to the skin of the infected individual. Some people with 

chronic hepatitis B do not experience acute symptoms, but may lose weight, feel tired, have abdominal pain and 

experience liver damage (Kamyad et al., 2014). Globally, about 360 million people are chronically infected with 

HBV (WHO 2012). Upon encountering the virus, adults have roughly 90% chance of undergoing an acute 

infection with clinical symptoms and subsequent clearance of the virus. However, children have usually mild or 

no clinical symptoms immediately after infection, but do not clear the virus, and hence they become chronic 

carriers (Shepard et al., 2006, Goldstein et al 2005). About 25% of chronic carriers will die from liver cancer 

induced by the virus (Nowak and May 2000). It is asserted that in highly endemic countries, mother to child 

(vertical) transmission accounts for most cases of chronic infections (see e.g. Borgia et al., 2012, Jonas 2009, 

Lavanchy 2004, Shepard et al., 2006 for detail). This is the case, because transmission from an infected woman 

to her infant during delivery is efficient and is one of the most common routes of HBV infection worldwide.   

 

Much work has been done in modelling the transmission dynamics of HBV in the community across various 

regions in the world. For example, the relationship between the age at infection with HBV and the development 

of carrier (Edmunds et al. 1993), dynamics and control of hepatitis B in China (Zou et al. 2010), challenges 

imposed by vertical transmission of HBV (Gentile and Borgia 2014), the impacts of vaccination and treatment 

on HBV transmission (Shepard et al 2006, Zhao et al 2000, Zou et al 2010), and transmission dynamics and 

optimal control of vaccination and treatment of hepatitis B virus (Kamyad et al., 2014). However, vaccination 

can greatly reduce the risk of infection but does not help people who are already infected. No previous study has 

focused on the effect of treatment and the disease drivers in chronically HBV infected adult women capable of 

giving birth to newborns. The present paper contributes to this work by proposing a mathematical model 

incorporating treatment of infected adult females for the sake of saving the newborns from contracting the 

infection during the delivery process. Another aim of the paper is to derive expressions for the reproduction 

numbers, without treatment as well as when treatment is implemented, and to analyse the efficiency of treatment 

in serving lives of infants born by infected women. The rest of the paper is organized as follows: In Section 2 we 

describe the model to incorporate treatment and discusses the existence of model solutions. Section 3 gives the 

analysis of the HBV model and describes the impacts of treatment as a control measure against HBV infection 

from mother to newborns. Section 4 provides numerical simulation results of the model. Finally, Section 5 

discusses the results and provides some concluding remarks.    
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2. Model Formulation 

We propose a mathematical model to understand the vertical transmission of HBV in the presence of treatment. 

The population under consideration is comprised of adult females capable of giving birth and juvenile persons. 

Each group in the host population is divided into the following epidemiological classes: the proportion of 

susceptible to infection ( )iS t , acute infections representing symptomatic cases ( )iU t , chronic carriers 

(asymptomatic) ( )iI t . Here ,i a c denote respectively adult females and juveniles. Treatment is implemented 

only to infected adult females who are at acute stage and form a treated class denoted as ( )aT t . Susceptible 

adult females may acquire HBV infection at the rate   after having sufficient contacts at the rate   with an 

infectious individual (possibly a sexual partner). The number of susceptible females is increased through 

recruitment of adult females at the rate   and maturing female from the juvenile group at the rate  . The 

number of susceptible juveniles is increased by birth at the rate b . Also, a proportion p  of births from HBV 

acute females is assumed to be susceptible and the remaining (1 )p of births are infected infants who are in 

acute status. Individuals who are in HBV acute status progress to chronic stage at the rates a  and c  for adult 

females and juveniles respectively. Adult females are treated at the rate   and recover at the rate   and become 

susceptible. We assume that treatment is not perfect, and so some of the treated females may progress to chronic 

stage at the rate  . The proportion   of births from treated adult females is assumed to be susceptible and the 

remaining proportion  1  is infected and join acute class. Adult females experience natural death at the rate 

  and juveniles at the rate c . Infected individuals will experience an additional disease induced death at the 

rate a  for adult females and c  for juveniles.  The compartments and model variables are illustrated by the 

flow chart in Figure 2.1. The model is given by seven ordinary differential equations:  
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(2.1) 

 

 

where 
a a a

a

U I T
c

N

 
 

  
  

 
, with c being the average number of sexual partners per infected adult 

female,   is a modifying parameter of the relative infectiousness of HBV chronic females and  modifies the 

relative infectiousness of adult females undergoing treatment. We should note also that 

a a a a aN S U I T      is the total of all adult females in the host population. 
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        Figure 2.1: Model compartments and flow for HBV vertical transmission with treatment  

2.1. Existence of Solutions  

The model system (2.1) describes the dynamics of human population in the presence of HBV infection. All the 

model variables are non-negative. Hence, model (2.1) is biologically and mathematically well posed in the 

closed set  
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 
,  

this is a positively invariant and attracting in the domain of Ω. 

 

 

3. Analysis of the HBV Sub-models  

3.1 The basic vertical transmission HBV model 

This is obtained when 0         . Thus, model (2.1) reduces to  
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where the force of infection is 
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3


. 

Similarly, the set    3 1
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3


. The following Lemma summarizes the results: 

 

Lemma 3.1: Model (3.1) has solutions which are contained in the feasible region a c  , implying that 
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3.1.1 Disease Free Equilibrium and Stability 

The disease free equilibrium points are steady state solutions where there is no disease (that is, HBV) in the 

community. It is the most important equilibrium state for disease control and its linear stability is governed by 

the basic reproduction number R0 (see e.g. Hethcote 2000; Diekmann et al., 1990; Castillo-Chavez et al., 2002), 

mathematically defined as the spectral radius of the next generation matrix. It is a unitless threshold quantity for 

the disease control which defines the number of secondary infections produced by a single infected individual in 

a completely susceptible population. The disease free equilibrium for basic model of HBV with vertical 

transmission is given by  

 * *

0

( )
, ,0,0,0,0 , ,0,0,0,0 .
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    
   

 

Applying the notations as in Van den Driessche and Watmough (2002) for the model system (3.1), the matrices 

F and V for the new the new infection terms and the remaining transfer terms are respectively given by   
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The basic reproduction number for HBV vertical transmission denoted by R0 is  

 1

0

( )( )

( )( ) ( )

c a a

a a c

c
R FV

b b

      


       

   
 

    
.  

Thus, using Theorem 2 of Van den Driessche and Watmough (2002) the following result is established. 

Theorem 3.1: The DFE of the model (3.1) is locally asymptotically stable if 0 1R   and unstable if 0 1R  .  

 

The basic reproduction number measures the average number of new infections generated by a single infected 

individual in a completely susceptible population. Theorem 3.1 implies that HB disease can be eliminated from 

the community (when 0 1R   ) if the initial sizes of the subpopulations of the model are in the basin of 

attraction of the disease- free equilibrium. 

3.2  HBV Model with Treatment  

HBV infection during pregnancy poses particular problems. These include the effect of HBV infection in 

pregnancy, the effect of pregnancy on HBV infection, the mother to child transmission of HBV, and the 

management of drugs. The aim of this section is to examine in detail the current risk and the impact of treatment 

strategy to reduce or ideally eliminate this risk. The model system (2.1) incorporates treatment campaign and the 

analysis is done in the positively invariant region Ω. 

3.2.1 Disease Free Equilibrium and Local Stability 

The disease free equilibrium of the model (2.1) is given by  
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For the model system (2.1), the next generation matrix calculation (Van den Driessche and Watmough, 2002) 

shows that the reproduction number Re in the presence of treatment is  
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It is noted that in the absence of treatment 0eR R , where 0R  is the basic reproduction number. From Theorem 

2 in Van den Driessche and Watmough (2002), we have the following result: 

Theorem 3.2: The DFE of the model system (2.1) is locally asymptotically stable if 1eR  and unstable if 

1eR  . 

Biologically speaking, Theorem (3.2) implies that hepatitis B may be prevented from the community with 

treatment as a control strategy if the initial sizes of the sub-populations of the model are in the region of 

attraction of the disease free equilibrium.  

 

3.2.2 Global Stability of Disease-Free Equilibrium 

We have the following result on the global stability of the disease free equilibrium.  

Theorem 3.3 If R e <1, the disease free equilibrium is globally asymptotically stable and unstable if R e >1 

Proof: We can use the comparison theorem to prove the global stability. 

The rate of change of the variables representing the infected components of the system (2.1) can be re-written as
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                                                                   (3.6) 

where matrix F and V in (3.7) are defined as in (3.2) and (3.3) respectively.

 

Hence, we have 
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 .                                                                      (3.7) 

Therefore, all the eigenvalues of the matrix (3.7) have negative real parts, it follows that the above matrix is 

stable for 1,eR   and as t   we will have , , , ,( ) (0,0,0,0,0)a a a c cU I T U I  . By comparison theorem 

(Lakshmikantham et al., (1989)) it follows that ,( , , , ) (0,0,0,0,0)a a a c cU I T U I 
 
as t  , evaluating the 

system (2.1) at 0a a a c cU I T U I      gives,
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1eR  Hence, 
2E  is globally and asymptotically stable.
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3.2.3 Impact of Treatment strategy 

The reproduction number is a measure of the ability of the disease to invade the population under conditions that 

facilitate maximal growth. Re-writing the reproduction number accrued during treatment eR   in terms of 0R  we 

get  

                          0 1 ,eR R M  

where  
   

 
1

c

c

A B E b
M

DG b

  

   

  


   
,  

with      aA b b                ,  

   aB b c         ,  

   a aD b b               ,  

   a a cE b           ,  

  c a aG         . 

Now, using parameter values given in Table 4.1, it can easily be shown that 1 1M   implying that, M1 is the 

factor by which treatment reduces the number of potential secondary HBV infections among pregnant women 

and hence 0eR R . 

 

4. Numerical Results  

We have explored the impact of treatment in reducing vertical transmission of HBV (i.e. from mother to the 

infants) during delivery process by simulations of model (2.1) using a set of parameter values given in Table 4.1. 

We have also performed sensitivity analysis to determine the relative importance of various parameters to the 

dynamic of the disease. The summary of the results for sensitivity analysis are shown in Table 4.2. The 

effectiveness of treatment is determined by comparing the dynamism of juvenile individuals before and after the 

implementation of the intervention. It is observed that value of the basic reproduction number (before treatment) 

is 0R equals 3.7; whereas the treatment induced reproduction number (after treatment) eR equals 0.94. This 

implies that treatment of the pregnant women infected with HBV can greatly serve lives of newborns by 

reducing the number of infections during delivery.   

Figures 4.1 and 4.2 illustrate the change of the number of juvenile individuals in their respective classes before 

and after treatment respectively. Figure 4.1 (before treatment) shows that the number of juvenile individuals is 

decreasing in both classes of susceptible (Figure 4.1 (a)) and acute (Figure 4.1 (b)); whereas the number of 

juvenile with chronic infections increases (see Figure 4.1 (c)). The increase of chronic juvenile may be due to the 

fact that before treatment is put in place, majority of pregnant women with HBV infections are likely to give 

birth to already infected babies with hepatitis B chronic status because of their inability to clear viruses at their 

early stage of life.     
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Table 4.1: Parameters values for HBV vertical model with treatment 

Parameters Value (yr)
-1

 Source 

  
  

b  
  

c  

a  

c  

  

p  

a  

c  

  


 

c  

  
  

  
  

70 

3.1 

0.8 

0.4 

0.0054 

0.7 

0.05 

0.6 

0.7 

0.47 

0.04 

0.53 

2.8 

1.5 

0.88797 

0.34 
0.5 

0.47 

Gumel,(2003) 

Assumed 

Assumed 

Ciupe et al., (2007) 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Nowak and May,(2000) 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Assumed 

Mayar (2013) 

Assumed 

 

 

Figure 4.1: The dynamics of individuals in the juvenile population. In (a) and (b) the number of susceptible and 

acute juvenile respectively, decrease and in (c) the number of juvenile with chronic infections increase.  

 

4.1 Implication of treatment on vertical HBV transmission 

Figure 4.2 shows the dynamics of the state variables of the juvenile population under the presence of treatment 

intervention. The increase of susceptible juveniles in Figure 4.2(a) shows that by treating a good number of acute 

infected pregnant women may help in giving births to susceptible juveniles.  Figures 4.2(b) and 4.2(c) show that 
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the number of both acute and chronic infected juveniles respectively, is decreasing a fact which may be due to 

few births from non treated female adults. Thus, we note that by treating majority of the pregnant women 

infected with HBV may greatly reduce or minimize the number of infected newborns occurring during delivery 

process. Also, Figure 4.3(a) shows that, the number of susceptible juvenile increases when the treatment rate is 

increased. But Figure 4.3(b) and Figure 4.3(c) show that acute and chronic infectious juveniles respectively, both 

decrease when treatment rate increases. Thus, the higher the treatment rates the fewer infected infants are likely 

to be born by acute pregnant women. 

 

Figure 4.2: Simulation results showing the trends of the state variables of the HBV model with 

treatment for (a) susceptible juvenile population (b) acute juvenile population (c) chronic juvenile 

population   

 

Figure 4.3: Simulation results showing the effect of varying treatment rates ( ) on (a) susceptible juvenile 

population (b) acute juvenile population (c) chronic juvenile population. 
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4.2 Sensitivity analysis 

Sensitivity analysis is used to determine the relative importance of model parameters to HBV transmission and 

its prevalence. The analysis is performed by computing the sensitivity indices of the effective reproduction 

number eR . According to Chitnis et al., (2008), sensitivity analysis is commonly used to determine the 

robustness of model predictions to parameter values. Sensitivity analysis determines parameters which have high 

impact on treatment induced (effective) reproduction number, and can be used to measure the relative change in 

the reproduction number to the relative change in the parameter. The negative sign of the sensitivity indices 

means that the increase in the corresponding parameter value leads to a decrease of the effective reproduction 

number and the positive indices show that increase in the corresponding parameter value leads to an increase of 

the effective reproduction number. In interpreting the sensitivity of the parameters, Table 4.2 shows that, 

parameters , , , , , ,b c      and  do have positive indices, implying that the reproduction number increases 

whenever the values of these parameters increase. They have to be targeted if any control measure of the disease 

is to be implemented otherwise a major outbreak may occur.   Similarly, parameters , , ,a c a     and   do 

have negative indices, indicating that the reproduction number decreases even if the values of these parameters 

increase. The most, sensitive parameters are the effective contact rate 
, 

and the average number of sexual 

partners c. Increasing or decreasing the value of   and c lead to the increase or decrease the reproduction 

number with the same proportional since the sensitivity index equal to one. Therefore, as   increases many 

individuals become infected, so HBV transmission increases in the community. Furthermore, when treatment 

rate increases it decreases eR , showing that many infected individual recover from the disease after treatment.  

            Table 4. 2: Numerical values of sensitivity indices of eR
 

 

 

 

 

 

 

 

5 Conclusions 

In the present paper we have studied the dynamics of vertical transmission of hepatitis B disease when treatment 

strategy is implemented to women who are in their child bearing age and are acute infected with hepatitis B. The 

aim was to incorporate treatment and determine its impact in reducing or minimizing the number of infant born 

with hepatitis infections. The reproduction numbers before and after treatment were derived and compared. It 

was shown through numerical simulations that an increase in the rates of providing treatment against HBV 

disease may generally result in the increase of the number of susceptible juveniles. Finally, because of the 

complication of HBV disease in terms of different transmission levels and different immunological status 

prevalent in different locations, some guidelines should be developed to give researchers and health 

professionals a more accurate foundation on the treatment of HBV infected mothers against vertical transmission 

of the disease. 

 

The model developed in this paper is not fully realistic, but it is believed that it can capture some relevant 

properties also valid in more complex HBV infection models. For example, to make the model more realistic, the 

community can be considered to consist of individuals of different types, assuming that HBV transmission 

Parameter symbol  Sensitivity index 


 

+1 

c  +1 

b  +0.83445 

a  -0.4505 

  +0.88797 

  +0.00001 
  +0.85001 

c  -0.2027 

a  -0.0608 


 -0.0090 

  -0.365103 
  -0.210326 

  +0.399081 
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depends on the type of individuals. For instance, it would be interesting to investigate the effect of public health 

education campaign and treatment in controlling vertical transmission of hepatitis B.   

 

Acknowledgement  

Authors gratefully acknowledge the support accrued from the Department of Mathematics of the University of 

Dar es Salaam.  

 

References 

Borgia, G., Calrleo, M.A., & Gaeta, G.B., Gentile, I., (2012).  “Hepatitis B in pregnancy”. World J. 

Gastroenterol. 18(34):4677-4683. 

Castillo-Chavez, C., Feng, Z., and  Huang, W., (2000). “On the computation of R0 and its role on global 

stability”, www.math.la.asu.edu/chavez/2002/JB276.pdf 

Chitnis, N., Hyman, J. M. and Cushing, J.M., (2008). “Determining important parameters in the spread of 

malaria through the sensitivity analysis of a mathematical model”, Butte in of Mathematical Biology; 

DOI10.1007/s11538-008-9299-0. 

Ciupe, S.M., Ribeiro, R.M and Nelson P.W., (2007). “Modelling of acute hepatitis b virus infected”. Theoretical 

Biology, 247: 23-35.  

Diekmann, O., Heestebeek, J.A and Metz J.A.J., (1990). “The Definition and the computation of the Basic 

Reproduction Ratio, R0 in Models of Infectious Disease in Heterogeneous Population”. J.Math. Biol., 

Volume 70, pp1272-1296.  

Edmunds, W.J., Medley, G.F., Nokes, D.J., Hall, A.J., and Whittle, H.C., (1993). “The influence of age on the 

development of the hepatitis B carrier state”. Proc. R. Soc. Lond. B 253, 197-201. 

Gentile I., and Borgia G. (2014). “Vertical transmission of hepatitis B virus: challenges and solutions”. 

International Journal of Women’s Health: 6, 605-611. 

Goldstein S.T., Zhou F., Hadler S.C., Bell B.P., Mast E.E., and Margolis H.S (2005). “A mathematical model to 

estimate global hepatitis B disease burden and vaccination impact”. International Journal of 

Epidemiology; 34:1329-1339. 
Gumel, A.B., and Moghadas, S.M, (2003). “Qualitative study of a vaccination model with a non-linear 

incidence”. Applied Mathematics and Computational, 143: 403-419. 

Hethcote , H.W.,(2000). “The mathematics of infectious diseases”, SIAM Rev. 42 (2000), 599-653. 

Hyams, K.C., (1995). “Risk of chronicity following acute hepatitis B virus infection: a review”. Clin. Infect. Dis. 

20, 992-1000.  

Jonas, M.M., (2009). “Hepatitis B and pregnancy: an underestimated issue”. Liver Int.; 29 Suppl 1:133-139. 

Kamyad,  V.A., Akbari R., Heydari A..A. and Heydari A. (2014). “Mathematical modelling of transmission 

dynamics and optimal control of vaccination and treatment for hepatitis B virus”. Computational and 

Mathematical Methods in Medicine, Hindawi publishing Corporation, volume 2014, Article ID 475451, 

15 pages.  

Lakshmikanthan V., Bainov D. and Simeonov P.S., (1989). “Theory of Impulsive differential equations”, World 

Scientific Singapore.  

Lavanchy D., (2004). “Hepatitis B virus epidemiology, disease burden, treatment and current and emerging 

prevention and control measures” J. Viral. Hepat. 11, 97-107. 

Mayar, M., (2013). “Mathematical modelling of the role of public health education program on HBV 

transmission”, Unpublished MSc Dissertation, University of Dar es Salaam 

Nowak, M.A., and May, R.M., (2002). “Viral dynamics”, Oxford university Press 

Shepard, C.W, Simard, E.P., Finelli, L., Fiore, A.E., and Bell, B., P., (2006). “Hepatitis B virus infection: 

epidemiology and vaccination”,  Epidemiol. Rev. 28, 112-125. 

Sirilert S., Traisrisilp K., Siritanapa P. and Tongsong T. (2014). “Pregnancy outcomes among chronic carriers of 

hepatitis B virus”, International Journal of Gynecology and Obstetrics 126, 106-110. 

Van den Driessche, P and Watmough, J., (2002). “Reproduction numbers and Sub-threshold endemic equilibria 

for compartmental models of disease transmission”, Mathematical Bio-sciences, 180 29-48.  

World Health Organization, (2012). “Prevention and Control of Viral Hepatitis Infection”, 

WHO/HSE/PED/GHP 1  

Zou L., Zhang W., Ruan S., (2010). “Modelling the transmission dynamics and control of hepatitis B virus in 

China”, Journal of Theoretical Biology 262, 330-338 

http://www.iiste.org/

