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Abstract 

In this paper we study Fractional Burger's Equation of the form 𝑢𝑡 + 𝑢𝑢𝑥 − 𝑢𝑥
(𝛼)

=0, 𝑥∈ℝ, 𝑡>0 and solving it by 

method namely fractional power series. Statistical concepts are used to show that our solution agrees with nature. 
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 1. Introduction 

It is well known that a large number of mathematical models were classified by differential equations (partial or 

ordinary) of integer or fractional order with initial or boundary or initial and boundary conditions especially 

applications in the areas of physics and engineering, chemistry,…, etc. such as electromagnetics,   acoustics, 

viscoelasticity, electrochemistry, and material science are well described by fractional partial differential 

equations. In  general ,  there  exists  no  method  that  yields   an  exact Solution  for a fractional partial 

differential equation . Since most of the nonlinear fractional partial differential equations cannot be solved 

exactly, thus approximate and numerical methods must be used.  

Burger's equations are used and study for Control of flows and It  has a large  variety  of  applications  in  

modeling  of water  in  unsaturated oil, dynamics  of  soil  in  water,  statics  of  flow problems, mixing and 

turbulent diffusion, cosmology and seismology. The one dimensional nonlinear Burger's equation was first 

introduced by (Bateman 1915), who found its steady solutions descriptive of certain viscous flows.  It  was  later  

proposed  by  (Burger1948) , as  one  of  a class of equation describing  mathematical  models  of  turbulence.  In  

the   context  of  gas dynamics  it  was  discussed  by(  Hopf , and  Cole1950) . In  recent years many researchers  

have  used  various  numerical  methods  specially  based  on finite  difference,  finite element  boundary element 

techniques and direct variational method to solve Burger ᾿s equation  . (E. Benton and platzman) surveyed exact 

solution of one dimensional Burger ᾿s equation. In (1997 D.S. Zhang , G.W. Wei and D. J. Kouri) ,  solved  it  

for  high   Reynolds number , this  simple  approach  can  provide  very  high  accuracy  while using  a  small  

number  of  grid  points . In (2005A. Gorguis )  gives comparison between   Cole - Hopf   transformation and 

Decomposition method   for    solving     Burger ᾿s    equation.  In( 2006 Jerome   I. V. Lewandowski )  used  

Marker   method  which  relies  on  the definition of Convective  field  associated  with  the  underlying  PDE, 

the information About   the  approximate  solution   is  associated  with  the   response   of convective field. In 

(2006K. Altiparmak) gave Economized   Rational approximation method using  pade ᾿s approximation  which  is  

efficient than Rational approximation. In (2006 M. K. Kadalbajoo and A. Awasti) developed stable  numerical  

method  based  on  Crank  Nicolson to solve Burger's equation. In( 2009 J.  Biazar and H.  Aminikhah) solve 

Burger's equation by using variational iteration method   by   which Approximate solution can be found and 

which is better than ADM. In (2008 J. K.  Djoko)  examine   the   stability   of   a   finite   difference 

Approximation   for   Burger's equation by approximating the nonlinear term by  a linear expression  using  

techniques  based  on  the  boundaries of   the  solution  sequence  with  respect to ∆𝑡 for 𝑡∈ (0 , ∞) and with the 

help  of discrete Aronwall lemma stability is achieved. In (2009 Sachin S.Wani and Sarita Thakar) analysed 

stability of Mixed Euler Method for one Dimensional   nonlinear   Burger's equation. In (2009 K. Pandey and L 

Verma  and  A . K. Verma) wrote on difference scheme for Burger's equation. In (2011 Kanti Pandey and Lajja 

Verma) gave a note on Crank Nicolson scheme     for Burger's equation without Hopf -Cole transformation 

solutions are obtained by ignoring nonlinear term. In (2014[8], Saad N. and Muna Saleh) used Bernoulli 

equation to solve Burger's equation .   

2. Preliminaries 

In this section, we provide some basic definitions and properties of the fractional calculus theory which are used 

in this paper. 
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Definition 2.1[2] 

 A real function f(𝑥), 𝑥>0, is said to be in the space 𝐶𝜇, 𝜇∈ℝ, if there exists a real number p, p>𝜇, such that 

f(𝑥)=𝑥𝑝𝑓1(𝑥), where 𝑓1(𝑥)∈C[0,∞), and it is said to be in the space 𝐶𝜇
𝑛 if 𝑓(𝑛)(𝑥)∈𝐶𝜇, n∈ℕ0=ℕ⋃{0}. 

Definition 2.2 [2] 

The Riemann-Liouville fractional integral operator of order α≥0,of a function f(𝑥)∊𝐶𝜇, 𝜇≥−1is defined as  

                                   𝐽𝛼f(𝑥)= 
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−11

0
𝑓(𝑡)𝑑𝑡, 𝑥>0                                                (1) 

                                  𝐽0f(𝑥)= f(𝑥). 

Properties of the operator 𝐽𝛼can be found for f∈𝐶𝜇, 𝜇≥−1, α, 𝛽≥0 and 𝛾>−1, we have 

1. 𝐽𝛼𝐽𝛽f(𝑥)=𝐽𝛼+𝛽f(𝑥)=𝐽𝛽𝐽𝛼f(𝑥) 

2. 𝐽𝛼C= 
𝐶

𝛤(𝛼+1)
𝑥𝛼   

3. 𝐽𝛼𝑥𝛾=
𝛤(𝛾+1)

𝛤(𝛼+ 𝛾+1)
𝑥𝛼+ 𝛾 

Definition 2.3 [5] 

The Caputo definition of fractional derivative operator is given by 

                            𝐷𝛼f(𝑥)=𝐽𝑛−𝛼𝐷𝑛f(𝑥)=
1

𝛤(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑥

0
𝑓(𝑛)(𝑡)𝑑𝑡 ,α>0                     (2) 

For 𝑛−1<α≤𝑛, 𝑛∈ℕ, 𝑥>0and Γ(.) is the gamma function. 

Definition 2.4[5] 

For 𝑛 be the smallest integer that exceeds α, the Caputo fractional derivative of a function𝑢 (𝑥,) of order α>0 is 

defined by 

𝐷𝛼𝑢(𝑥,𝑡)=
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑥𝛼  ={

1

𝛤(𝑛−𝛼)
∫ (𝑥 − 𝜏)

𝑥

0

𝜕𝑛𝑢(𝑥,𝜏)

𝜕𝜏𝑛 𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛

𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑥𝑛 ,   𝛼 = 𝑛 ∈ ℕ                                        
                                        (3) 

and satisfies the following properties: 

1. 𝐷𝛼C=0, C constant 

2. 𝐷𝛼𝑥𝛾=
𝛤(𝛾 + 1)

𝛤(𝛾 − 𝛼+1)
𝑥𝛾− 𝛼 , 𝑥>0, 𝛾>−1 

3. 𝐷𝛼(∑ 𝑐𝑖
𝑚
𝑖=0 𝑓𝑖(𝑥 , 𝑡))=∑ 𝑐𝑖

𝑚
𝑖=0 𝐷𝛼𝑓𝑖(𝑥, 𝑡) ,where c0,c1, …,cm are constant. 

Lemma 2.1[5] 

If 𝑛−1< α ≤𝑛, f∈𝐶𝜇
𝑛, 𝑛∈ℕ and 𝜇≥−1, then 

𝐷𝛼𝐽𝛼f(𝑥)= f(𝑥) and 

𝐽𝛼𝐷𝛼f(𝑥)=f(𝑥)−∑ 𝑓𝑘(0+)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0   , where 𝑥>0                      

3. Fractional Power Series 

In this section, we will use the fractional power series of the form: 

                      𝑢(𝑥 , 𝑡) = ∑ ∑ 𝐴𝑚𝑛𝑥𝑚𝛼𝑡𝑛 ∞
𝑛=0

∞
𝑚=0                                                                      (4)  
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To solve the fractional Burger equation of the form: 

                   𝑢𝑥
(𝛼)

= 𝑢𝑢𝑥 + 𝑢𝑡                    0 < α ≤ 1,   𝑥 ∈ ℝ,   𝑡 ≥ 0                                         (5) 

Differentiate (4) to get 𝑢𝑥
(𝛼)

 , 𝑢𝑥  and ut and substituting them in (5) 

Equating the corresponding coefficients to get the following system:  

A00 A10 = 0                                                                                                                                (6) 

2A00 A20 + A10
2  = 0                                                                                                                    (7)  

3A00 A30 + 3A10 A20 = 0                                                                                                            (8) 

4A00 A40 + 4A10 A30 + 2A20
2  = 0                                                                                               (9)  

5A00 A50 + 5A10 A40 + 5A20 A30 = 0                                                                                        (10) 

6A00 A60 + 6A10 A50 + 6A20 A40 + 3A30
2  = 0                                                                           (11) 

7A00 A70 + 7A10 A60 + 7A20 A50 + 7A30 A40 = 0                                                                     (12)  

8A00 A80 + 8A10 A70 + 8A20 A60 + 8A30 A50 + 4A40
2  = 0                                                         (13)   

From the first equation of (6) A00 = 0 or A10 = 0  

 Or A00 = A10 = 0 then we get the trivial solution 

Therefore we consider (7)    

2A00 A20 + A10
2  = 0  

So          A20 = − 
A10

2

2A00
                                                                 

Similarly A30 = 
A10

3

2A00
2   , A40 = − 

5A10
4

8A00
3   A50 = 

7A10
5

8A00
4  , A60 = −

21A10
6

16A00
5  , A70 = 

33A10
7

16A00
6  ,  A80 = −

429A10
8

128A00
7   , and so on.                   

After substituting these coefficients into (4) then the solution of (5) is 

𝑢(𝑥, t) = A₀₀ + A₁₀ 𝑥𝛼 – 
𝐴10

2

2𝐴00
𝑥2𝛼 +

𝐴10
3

2𝐴00
2 𝑥3𝛼 −  

5𝐴10
4

8𝐴00
3 𝑥4𝛼 + 

7𝐴10
5

8𝐴00
4 𝑥5𝛼   − 

21𝐴10
6

16𝐴00
5 𝑥6𝛼  

          + 
33𝐴10

7

16𝐴00
6 𝑥7𝛼 −

429𝐴10
8

128𝐴00
7 𝑥8𝛼  +… + 𝛤(𝛼 + 1)𝐴10𝑡 ‒ 

𝛤(2𝛼+1) 𝐴10
2

4𝐴00
𝑡2                                               

          + 
𝛤(3𝛼+1) 𝐴10

3

12𝐴00
2 𝑡3 −

5𝛤(4𝛼+1) 𝐴10
4

192𝐴00
3 𝑡4 + 

7𝛤(5𝛼+1) 𝐴10
5

960𝐴00
4 𝑡5 −

21𝛤(6𝛼+1) 𝐴10
6

11520𝐴00
5 𝑡6 

         +
33𝛤(7𝛼+1) 𝐴10

7

80640𝐴00
6 𝑡7  − 

429𝛤(8𝛼+1) 𝐴10
8

5160960𝐴00
7 𝑡8+…−

𝛤(2𝛼+1) 𝐴10
2

2𝛤(𝛼+1)𝐴00
𝑥𝛼𝑡 + 

𝛤(3𝛼+1) 𝐴10
3

4𝛤(𝛼+1)𝐴00
2 𝑥𝛼𝑡2 

        – 
5𝛤(4𝛼+1) 𝐴10

4

48𝛤(𝛼+1)𝐴00
3 𝑥𝛼𝑡3 +

7𝛤(5𝛼+1) 𝐴10
5

192𝛤(𝛼+1)𝐴00
4 𝑥𝛼𝑡4 −

21𝛤(6𝛼+1) 𝐴10
6

1920𝛤(𝛼+1)𝐴00
5 𝑥𝛼𝑡5  

        +
33𝛤(7𝛼+1) 𝐴10

7

11520𝛤(𝛼+1)𝐴00
6 𝑥𝛼𝑡6 −

429𝛤(8𝛼+1) 𝐴10
8

645120𝛤(𝛼+1)𝐴00
7 𝑥𝛼𝑡7 + …   + 

𝛤(3𝛼+1) 𝐴10
3

2𝛤(2𝛼+1)𝐴00
2 𝑥2𝛼𝑡 

         −
5𝛤(4𝛼+1) 𝐴10

4

16𝛤(2𝛼+1)𝐴00
3 𝑥2𝛼𝑡2 +

7𝛤(5𝛼+1) 𝐴10
5

48𝛤(2𝛼+1)𝐴00
4 𝑥2𝛼𝑡3  – 

21𝛤(6𝛼+1) 𝐴10
6

384𝛤(2𝛼+1)𝐴00
5 𝑥2𝛼𝑡4 

         + 
33𝛤(7𝛼+1) 𝐴10

7

1920𝛤(2𝛼+1)𝐴00
6 𝑥2𝛼𝑡5  – 

429𝛤(8𝛼+1) 𝐴10
8

92160𝛤(2𝛼+1)𝐴00
7 𝑥2𝛼𝑡6 + …−

5𝛤(4𝛼+1) 𝐴10
4

8𝛤(3𝛼+1)𝐴00
3 𝑥3𝛼𝑡 

        +
7𝛤(5𝛼+1) 𝐴10

5

16𝛤(3𝛼+1)𝐴00
4 𝑥3𝛼𝑡2 −

21𝛤(6𝛼+1) 𝐴10
6

96𝛤(3𝛼+1)𝐴00
5 𝑥3𝛼𝑡3  + 

33𝛤(7𝛼+1)𝐴10
7

384𝛤(3𝛼+1)𝐴00
6 𝑥3𝛼𝑡4 

        −
429𝛤(8𝛼+1) 𝐴10

8

15360𝛤(3𝛼+1)𝐴00
7 𝑥3𝛼𝑡5 +… + 

7𝛤(5𝛼+1) 𝐴10
5

8𝛤(4𝛼+1)𝐴00
4 𝑥4𝛼𝑡 −

21𝛤(6𝛼+1) 𝐴10
6

32𝛤(4𝛼+1)𝐴00
5 𝑥4𝛼𝑡2  

       + 
33𝛤(7𝛼+1) 𝐴10

7

96𝛤(4𝛼+1)𝐴00
6 𝑥4𝛼𝑡3 −  

429𝛤(8𝛼+1) 𝐴10
8

3072𝛤(4𝛼+1)𝐴00
7 𝑥4𝛼𝑡4 +…  + 

33𝛤(7𝛼+1) 𝐴10
7

32𝛤(5𝛼+1)𝐴00
6 𝑥5𝛼𝑡2 

        −
429𝛤(8𝛼+1) 𝐴10

8

768𝛤(5𝛼+1)𝐴00
7 𝑥5𝛼𝑡3 +…  + 

33𝛤(7𝛼+1) 𝐴10
7

16𝛤(6𝛼+1)𝐴00
6 𝑥6𝛼𝑡 −

429𝛤(8𝛼+1) 𝐴10
8

256𝛤(6𝛼+1)𝐴00
7 𝑥6𝛼𝑡2 +… 

 

 

 

 

 

       

 

 

(14) 
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       − 
429𝛤(8𝛼+1) 𝐴10

8

128𝛤(7𝛼+1)𝐴00
7 𝑥7𝛼𝑡  +… 

 

4. Statistical Tests for Reliability of the Solution 

Let the traveling wave solution (14) be a probability density function if:  

                                     ∫ ∫ u(x , t)dxdt
1

0

1

0
 = 1                                                                        (15)  

Because  of  the  uniform  convergence  few  terms  are enough  for  good accuracy [9]. So we consider   

∫ ∫ [
1

0

1

0
𝐴00 + 𝐴10𝑥𝛼 −

𝐴10
2

2𝐴00
𝑥2𝛼 +

𝐴10
3

2𝐴00
2 𝑥3𝛼 −

5𝐴10
4

8𝐴00
3 𝑥4𝛼 +

7𝐴10
5

8𝐴00
4 𝑥5𝛼 −

21𝐴10
6

16𝐴00
5 𝑥6𝛼]dxdt =1 

  That is  

 A00 + 
A10

(α + 1)
−

A10
2

2(2α+1)
 +

 A10
3

2(3α+1)A00
2  −

5A10
4

8(4α+1)A00
3 + 

7A10
5

8(5α+1)A00
4   –

21A10
6

16(6α+1)A00
5  =1            (16)                                                                                                      

In which there are three degrees of freedom A00, A10 and 𝛼. 

Let A₀₀= 1and 𝛼 = 
3

4
 then one of the values of A10 is zero and the solution is    𝑢(𝑥 ,t ) = 1 but we want non 

constant solution ,therefor  by using numerical analysis such as (Newton –Raphson method[4]) to find  another 

value of A₁₀ from (16) which has one solution                                 

A₁₀ = 1.2389    

Substituting these values into equation (14) then the probability density function is: 

𝑢(𝑥 , 𝑡) =1+1.2389 𝑥3/4 −0.7674 𝑥3/2 + 0.9508 𝑥9/4 – 1.4724 𝑥3  

              + 2.5538 𝑥15/4 – 4.7459 𝑥9/2 + 1.1385t– 0.5099t2   + 0.4039t3  

              – 0.3681 t4 + 0.3529t5 – 0.3450t6  + 0.3389t7 – 0.3322𝑡8
  

              – 1.1098 𝑥3/4t +1.3186𝑥3/4𝑡2 –1.3531𝑥3/4𝑡3 +1.9205𝑥3/4𝑡4  

             –2.2526𝑥3/4𝑡5+2.1801𝑥3/4𝑡6+3.2209𝑥3/2𝑡 –5.8704𝑥3/2𝑡2 

             +9.3822𝑥3/2𝑡3–13.7559𝑥3/2𝑡4      

(I) the moments  

 To evaluate the expected values E(𝑥), E(t), E(𝑥𝑡) and the second moments E(𝑥²), E(t²) we need 𝑢∗(𝑥) and 𝑢∗∗(t) 

.we find them as follows: 

𝑢∗(𝑥) = ∫ 𝑢(𝑥 ,
1

0
 𝑡)dt  

          =1+1.2389 𝑥3/4− 0.7674 𝑥3/2+ 0.9508 𝑥9/4−1.4724 𝑥3 

          +2.5538 𝑥15/4 −4.7459 𝑥9/2+0.5693−0.1699+0.1009−0.0736 

          +0.0588−0.0493+0.0424 −0.0369−0.5549 𝑥3/4 +0.4395 𝑥3/4  

          −0.3383 𝑥3/4+ 0.3841 𝑥3/4−0.3754 𝑥3/4 +0.3114 𝑥3/4 

          +1.6105 𝑥3/2−1.9568 𝑥3/2 +2.3456𝑥3/2−2.7512𝑥3/2   

𝑢∗∗(t) = ∫ 𝑢(𝑥 , 𝑡)d𝑥
1

0
       

           =1+0.7079−0.3069+0.2926−0.3681+0.5376−0.8629+1.1385𝑡 
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             −0.5099t 2+0.4039 t 3−0.3681t4+0.3529 t5−0.3450t6  

           +0.3389𝑡7 +0.3322 t8−0.6342𝑡+0.7535t2−0.7732𝑡3+1.0974𝑡 4 

           −1.2872𝑡5+1.2458𝑡6+1.2884t−2.3482𝑡2+3.7529𝑡3−5.5024𝑡4                        

(1) Expected Value of 𝑥                           (2) Expected Value of 𝑡  

  E(𝑥) = ∫ 𝑥𝑢∗1

0
(𝑥) d𝑥                                 E(t) = ∫ tu∗∗1

0
(𝑡) d𝑡  

                 = 0.2418                                                    = 0.4361 

 It means that the first expected length of the wave is concentrated at value (power point) 0.2418, which is the 

middle of the wave which agrees with nature.  

Also  the  first  expected  time  of  wave  is  concentrated  at 0.4361, which means that the wave takes long time 

which agree with nature. 

(3) The second moment of 𝑥                    (4) The second moment of 𝑡     

E(𝑥2) = ∫ 𝑥21

0
𝑢∗(𝑥)d𝑥                               E(t2) = ∫ 𝑡21

0
𝑢∗∗(𝑡)dt  

          = 0.1190                                                    = 0.2296 

 E(𝑥)>E (𝑥2) which shows that the first wave is stronger than the second 

The second expected length of the wave is concentrated at the power point 0.1190, which means that the length 

begins to disperse (scatter). 

The second expected time of the wave is concentrated at 0.2296, which means that the wave stay for short time 

which agree with nature.     

(5) The Expected Value of 𝑥𝑡 

E(𝑥𝑡) = ∫ ∫ 𝑥𝑡
1

0
𝑢(𝑥 , 𝑡)𝑑𝑥𝑑𝑡

1

0
   

         = 0.0831 

This joint expected value for length and time of the wave is 0.0831, which means moderate which agree with 

nature.                    

(II) The Variance  

 (1) Variance of 𝑥                                             (2) Variance of 𝑡                

𝜎𝑥
2 = E (𝑥2) – [E (𝑥)]2                                        σt

2 = E (t2) – [E (t)]2                                              = 0.0605                                                               

= 0.0394 

The variation for length of wave is 0.0605, so that the separation is very small. This means that the power of 

wave is focused in the middle of the wave and separated begins from first wave which agrees with nature. 

 The variation for time of wave is 0.0394, so that the separation is very small. This means that the time of 

separated wave begins from first wave and so on which agree with nature. 

(III) The Covariance  

𝐶𝑜𝑣(𝑥 , 𝑡) = E (𝑥𝑡) − E (𝑥) E (t)  

     = − 0.0223 

The range of deviation of the length and time of the wave from its expected values is very small which agrees 

with nature. 

(IV) The Correlation Coefficients 

𝜌 = 
𝑐𝑜𝑣(𝑥 ,𝑡)

√𝑣𝑎𝑟(𝑥)√𝑣𝑎𝑟(𝑡)
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  = − 0.4569  

  This means that the relation between the amplitude of the wave and time is strong (high amplitude 

corresponding to the beginning of the wave in terms of length and time) and vice versa which agree with nature. 

 

               

            Figure 1. represents the traveling wave solution when 0<𝑥<1, 0<𝑡<1 and −90<𝑢<0.  
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