On Minimal Semi neat Subgroups

Hattem. M. A Abdullah, Atifa J. S Abdullah, Rasha Hassen Ibraheem
AL-Mustanserya University, College of Basic Education, Dept. of Mathematics, Baghdad-Iraq

Abstract

In [1] Abdulla Hattem gave some new results of minimal neat subgroups of Abelian G . "L. Fuchs " poses the problem of characterizing the subgroups of an Aealian group G which are intersections of finitely many pure subgroups of G (problem 13, p. 134) . This problem has been solved by "Khalid Benabdallah" and John Irwin (see[2]) .

In this paper we shall give the generalization of the problem solved by Khalid Benabdallah . Firstly we shall give the definition of such subgroups which are called almost almostdense in G .

Introduction:

We start with the following definitions:

Definition 1:

A subgroup H of G is said to be neat in G , if \forall prime number P . PG see[4]

Definition 2: A subgroup H of G is said to be pure in G, if \forall_{P} and $\forall_{\mathrm{k}}\left(\mathrm{k} \in \mathrm{Z}^{+}\right.$)
$\mathrm{P}^{\mathrm{k}} \mathrm{GH}=\mathrm{P}^{\mathrm{k}} \mathrm{H} \quad$ (see[4])
Definition 3: A subgroup H of G is said to be almost-dense in G (abbrevinated a.b)
If, for every pure subgroup K of G containing $\mathrm{H}, \mathrm{G} / \mathrm{K}$ is divisible (see[2])
We shall give an example of a.b. subgroup :
Example : Take $\mathrm{G}=\mathrm{c}_{2}{ }^{*} \mathrm{~A}=\{0,1 / 2\}$. Clearly A is a.d in G , because there is no near (pure) subgroup of G (except G), moreover G is divisible, so G/A is divisible. Hence A is a.b in G .

Now we shell give the following definition of almost-almost- dense subgroup :
Definition 4: A: subgroup H of G, we said to be almost-almost- dense (abbreviated ; a.a.d.) if, for every semi neat subgroup H of G containing
$\mathrm{H}, \mathrm{G} / \mathrm{K}$ is divisible .
Definition 5: A _subgroup H, is said to be semi neat subgroup of G ; if PG for some P.
Clearly, every neat is semi neat but the converse is not true. We can show that by the following example .
Example : Take $\mathrm{G}=\mathrm{Z}_{8}$ and $\mathrm{H}=\mathrm{c}\{5,4\}$ it's clear that $\left.3 \mathrm{G} 4^{-}\right\}=3 \mathrm{H}$

So H is semi near in G but H is not neat, because $\left.2 \mathrm{GH}=4^{-}\right\}$and $\left.4^{-}\right\} 2 \mathrm{H}=\{$
Remark: In this paper we denoted the following notations by:
P. Prime number
K. Positive integer
G. Abelian Group

Remark:

- Every group G is a.a.d. itself
- Every a.a.d. subgroup is a.d.
- In torsion-free groups or in divisible groups ,the subgroups are a.d. if there are a.a.d. subgroups

Notation : let G be any group. We denote by G_{k} the following
$\mathrm{G}_{\mathrm{k}}=\left\{\begin{array}{ll}\mathrm{x} & \mathrm{P}^{\mathrm{k}} \mathrm{G} / \mathrm{o}(\mathrm{x})=\mathrm{P} \text { for some } \mathrm{K} \quad \mathrm{Z}^{+}\end{array}\right\}=\mathrm{P}^{\mathrm{k}} \mathrm{G}[\mathrm{p}]$.
The following, shows some properties of a.a.d. subgroups
THEOREM 1: In a primary group G, if every neat subgroups $N H$ such a subgroups H if and only if H is a.a.d. NG_{k}.

Proof. Suppose H is a.a.d. in G^{\prime} and $\mathrm{N} \mathrm{G}_{\mathrm{k}}$, then every semi neat subgroups B of G contains H, contains also G_{k}. Claim $\mathrm{P}^{\mathrm{k}} \mathrm{G} \quad \mathrm{B}$

Let $\mathrm{x} \mathrm{P}^{\mathrm{k}} \mathrm{G}$. Then

(1) $\mathrm{x}=\mathrm{P}^{\mathrm{k}} \mathrm{g}$ for some g G .

Since G is a p-group, then $o(x)=p^{m}\left(m \quad Z^{+}\right)$.So by (1) we have $p^{m} x=0$ if $m=1$ then we get the result . if $m \quad 1$ then
$p^{m} x=p\left(p^{m-1} x\right)=0$, but $p^{m-1} x p^{k} G$, so $p^{m-1} x \quad G_{k}$. Hence $p^{m-1} x \quad$ by assumption we have, $P B$ is pure, thus p^{m-1} x G PB $=p^{m-1}(P B)$. So $p^{m-1} x=p^{m-1} b(P b)$ for sonic $b B$
hence $P\left(P^{m-2} x-P^{m} b\right)=0$ but $P^{m} b \quad P^{k} B \quad P^{k} G$ then
$P^{m-2} x-P^{m} b \quad G_{k} \quad H \quad B$
So $P^{m-2} x-B$. but this way we get $P^{m-(m-1)} x-P x \quad B$ So Px $\quad B P G=P B$, hence

$$
\text { Px } \quad \mathrm{pB} \quad \mathrm{PG}=\mathrm{p}(\mathrm{pG})
$$

Thus $\mathrm{px}=\mathrm{p}^{2} \mathrm{~b}_{0}$ some $\mathrm{b}_{0} \quad B$ Then we get $\mathrm{p}(\mathrm{x}-\mathrm{pbo})=0$ since pbo $\quad \mathrm{pB} \quad \mathrm{P}^{k} \mathrm{G}$. therefore x -pbo $G_{k} \quad B$. consequently x B.

Thus it proves that . $\mathrm{p}^{\mathrm{k}} \mathrm{G} \quad \mathrm{B} . \mathrm{So}_{\mathrm{G}} \mathrm{G} / \mathrm{B}$ is at the same time divisible and bounded.

$$
\mathrm{G} / \mathrm{B}=\mathrm{B}, \text { i.e. } \mathrm{G}=\mathrm{B} .
$$

Conversely, if no proper semi neat subgroup of G containing H and GIG $=\{0\}$ is divisible . Therefore H is a.a.d. in G. Now ,

Since no proper semi neat subgroup of G contains H, so no peoper pure subgroup of G contains H, thus by Lemma 4.1 and theorem 3.7 in [2] , HG_{k} for some $\mathrm{K} \mathrm{Z}^{+}$.

In view of the preceding theorem, we need only characterize an subgroup of G. For this purpose we need the following lemmas:

LEMMA 1: In a primary group G if S is a subgroup of $G[p]$ such that $S p^{n} G=0$ for some it Z^{+}, then there exists a neat subgroup K of G such that $K[p]=S$. Furthermore $\left(K p^{n} G\right) / p^{n} G$ is neat in $G / p^{n} G$.

Proof. By Lemma 1.4 of [1] , there exists a pure subgroup K of G such that $K[P]=S$, also we have $\left(K^{n} G\right) p^{n} G$ is neat in $\mathrm{G} / \mathrm{P}^{\mathrm{n}} \mathrm{G}$.

LEMMA 2: Let N be a subgroup of a primary group G such that for some $n P^{n} G_{n-1}$. Then Mere exists a proper subgroup of G such theft $R p^{a} G$ and $N+p^{n} R_{n-1}$ (see semi neat [1])

LEMMA 3 :In a primary group G (for every semi neat subgroup Acontaining $G[p], A=G$
Proof . Let A be a semi subgroup of G and let $x \quad$ since G is a p group, so $p^{k} x=0$ for some $K \quad Z^{+}$. (If $k=1$ we get the result.

Assume K 1)
So $p^{k} x=p\left(p^{k-1} x\right)=0$ thus $p^{k-1} x \quad[p] \quad A$ and $p\left(p^{k-2} x\right) \quad A \quad p$ then $p^{k-2} x$ must belong to $G[p] \quad A$.
Again, we have $p\left(p^{k-3} x\right) \quad p G \quad$, and $\operatorname{so}\left(p^{k-3} x\right) p a_{0}$ for some, a_{0} thus

$$
\mathrm{P}\left(\mathrm{p}^{\mathrm{k}-3} \mathrm{x}-\mathrm{a}_{0}\right)=0 \text { and } \mathrm{p}^{\mathrm{k}-3} \mathrm{x}-\mathrm{a}_{0}
$$

By this way we obtain $\mathrm{px} \quad \mathrm{A}$ so $\mathrm{P}\left(\mathrm{x}-\mathrm{a}_{1}\right)=0 \mathrm{x}-\mathrm{a}_{1}$, which implies that x
We are ready to show that the following :
THEOREM 2 : n a group G a subgroup N of G is a.a.d. if mid only if
(*) $\mathrm{N}+\mathrm{p}^{\mathrm{n}} \mathrm{G}^{\left(\mathrm{G}_{\mathrm{n}-1}\right.}$
Holds for all n
Proof. Suppose N satisfies (*) and K is any semi neat subgroup containing N . to show G/K divtalbh , it not (on proof will be by showing the contradiction).So G/K must ave cyclic summand R/K (see [4] , Theorem 9).

Now $G / K=H / K$ and G / H is finite (say $p^{n}(R / K)=K$ for some $n \quad Z^{+}$. claim $p^{n} G$.
Let $\mathrm{x}=\mathrm{p}^{\mathrm{n}} \mathrm{g} \quad \mathrm{p}^{\mathrm{n}} \mathrm{G}$ for some $\mathrm{n} \quad \mathrm{Z}^{+}$.

$$
\begin{equation*}
\mathrm{X}+\mathrm{K}=(\mathrm{h}+\mathrm{K}) \quad(\mathrm{r}+\mathrm{K}) \tag{2}
\end{equation*}
$$

For some $h+k$ and $r+k \quad R / k$. since p^{n} / x in G so $p^{n} / x+k$ in G / k and hence $p^{n} / r+k$ in R / k. So $p^{n}(r o+k)=r+k$ therefore r. By (2) we get $x+k=h+k$ which implies $x-h$, hence x.

So $\mathrm{p}^{\mathrm{n}} \mathrm{G}$ for some $\mathrm{n} \mathrm{Z}^{+}$. Thus $\mathrm{H} \quad \mathrm{N}+\mathrm{p}^{\mathrm{n}} \mathrm{G} \quad \mathrm{G}_{\mathrm{n}-1}$, after a finite number of steps we see that .
H .
Since K is semi neat in G, and H / K, so H is neat in G. (Because, in $g=p g$ so $p g+k=p h o+k$ and hence $p g-p h o$ k . But K is neat, thus $\mathrm{p}(\mathrm{g}-\mathrm{ho})=\mathrm{pL}$ for some L and $\quad \mathrm{h}=\mathrm{pL}+\mathrm{pho}=\mathrm{p}(\mathrm{L}+\mathrm{ho})$.) Thus by Lemma 3, $\mathrm{H}=\mathrm{G}$. Then $R / K=0$ and this is in contradiction for the fact that R / K. Hence g / k is divisible and thus N is a.a. dense .

Conversely, let N is an a.a.d, if $\left({ }^{*}\right)$ is not satisfied, then we are in the situation of Lemma 2 , there exists a proper neat R in G with

$$
\mathrm{R} \quad \mathrm{~N}+\mathrm{p}^{\mathrm{n}} \mathrm{G}
$$

Since N is a.a.d, then G / R is divisible, but $p^{n}(G / R)=R$ This is a concretion, consequently (+) is satisfied . combining theorem 1 and theorem 2 we obtain :

THEOREM 3 : In a p-group G if every semi neat subgroup K containing H, with $p k$ is pure in G, then K is minimal semi neat in G containing N if and only if $N \quad k_{n}$ for some $n \quad Z^{+}$and $\quad N+r^{n} K \quad k_{r-1}, V r$.

Proof. Let $N \quad K_{n}$ and $N+r^{n} K \quad K_{r-1}$ so by Theorem 2, N is a.a.d. in k. Then by the theorem 1 , there is no proper neat subgroup in K which contains N , so K is minimal semi neat subgroup containing N .

Cinversely, if k is a minimal semi neat subgroup in G K then ther is no proper neat subgroup in K which contains N. By theorem 1, we get $\mathrm{N} \mathrm{K}_{\mathrm{n}}$ for some $\mathrm{n} \mathrm{Z}^{+}$and N is a.a.d. in K . By using theorem 2, we obtain .

$$
\mathrm{N}+\mathrm{r}^{\mathrm{n}} \mathrm{~K} \quad \mathrm{~K}_{\mathrm{r}-1}(\mathrm{r}) .
$$

References

[1]- Hattem . M . A. Abdula, on minimal neat subgroups. PUMA ser A Vol 3 . No . 3-4 pp 141-145 . (ITAIY) , (2008).
[2]- K. Benabdallah. Irwin, On minimal pure subgroups of G publ. Math. Debrecen, 23 (2004), 111-114.
[3]- K.BENABDALLAH and J. M. IRWIN , On quasi-essental subgroups of primary groups, Canad. J. Math., 12(1970), 11761184.
[4]- L.FUCHS , Infininte Abelian Croups, Vol . 1. Academic press, New York Londmi , (2000) .
[5]- KAPLANSKY, Infinite Abelian Croups, University of Michigan, Alin Arbor , Michigan, (1954).

