On Minimal Semi neat Subgroups

Hattem . M . A Abdullah, Atifa J. S Abdullah, Rasha Hassen Ibraheem

AL-Mustanserya University, College of Basic Education, Dept. of Mathematics, Baghdad-Iraq

Abstract

In [1] Abdulla Hattem gave some new results of minimal neat subgroups of Abelian G.

"L. Fuchs " poses the problem of characterizing the subgroups of an Aealian group G which are intersections of finitely many pure subgroups of G (problem 13, p. 134). This problem has been solved by "Khalid Benabdallah" and John Irwin (see[2]).

In this paper we shall give the generalization of the problem solved by Khalid Benabdallah . Firstly we shall give the definition of such subgroups which are called almost almostdense in G .

Introduction:

We start with the following definitions:

Definition 1:

A subgroup H of G is said to be neat in G, if \forall prime number P. PG see[4]

<u>Definition 2</u>: A subgroup H of G is said to be pure in G, if $\forall_{P \text{ and }} \forall_{k} (k \in Z^+)$

 $P^{k}GH=P^{k}H$ (see[4])

Definition 3: A subgroup H of G is said to be almost-dense in G (abbrevinated a.b)

If, for every pure subgroup K of G containing H, G/K is divisible (see[2])

We shall give an example of a.b. subgroup :

Example : Take $G = c_2^* A = \{0, 1/2\}$. Clearly A is a.d in G, because there is no near (pure) subgroup of G (except G), moreover G is divisible, so G/A is divisible. Hence A is a.b in G.

Now we shell give the following definition of almost-almost- dense subgroup :

Definition 4:A: subgroup H of G, we said to be almost-almost- dense (abbreviated ; a.a.d.) if , for every semi neat subgroup H of G containing

H, G/K is divisible.

Definition 5: A subgroup H, is said to be semi neat subgroup of G; if PG for some P.

Clearly, every neat is semi neat but the converse is not true. We can show that by the following example.

Example : Take $G = Z_8$ and $H = c\{5,4\}$ it's clear that $3G4^{-}\}=3H$

So H is semi near in G but H is not neat, because $2G H = 4^{-}$ and 4^{-} $2H = {$

<u>Remark</u>: In this paper we denoted the following notations by:

- P. Prime number
- K. Positive integer
- G. Abelian Group

Remark:

- Every group G is a.a.d. itself
- Every a.a.d. subgroup is a.d.
- In torsion-free groups or in divisible groups , the subgroups are a.d. if there are a.a.d. subgroups

Notation : let G be any group . We denote by G_k the following

 $G_k = \{x \mid P^k G / o(x) = P \text{ for some } K \mid Z^+ \} = P^k G [p].$

The following , shows some properties of a.a.d. subgroups

THEOREM 1: In a primary group G , if every neat subgroups N H such a subgroups H if and only if H is a.a.d. N G_k .

Proof . Suppose H is a.a.d. in G' and N G_k , then every semi neat subgroups B of G contains H, contains also G_k . Claim P^kG_B

Let x P^kG. Then

 $(1)x = P^k g$ for some g G.

Since G is a p-group, then $o(x) = p^m (m Z^+)$. So by (1) we have $p^m x = 0$ if m = 1 then we get the result. if m 1 then

 $p^m x = p (p^{m-1} x) = 0$, but $p^{m-1} x p^k G$, so $p^{m-1} x G_k$. Hence $p^{m-1} x$ by assumption we have, PB is pure, thus $p^{m-1} x G PB = p^{m-1} (PB)$. So $p^{m-1} x = p^{m-1} b(Pb)$ for sonic b B

hence $P(P^{m-2} x - P^m b) = 0$ but $P^m b P^k B P^k G$ then

$$P^{m-2} x - P^m b G_k H B$$

So $P^{m-2} x - B$. but this way we get $P^{m-(m-1)} x - Px B$ So Px BPG = PB, hence

Px pB PG = p(pG)

Thus $px = p^2b_0$ some b_0 B Then we get p(x-pbo) = 0 since pbo pB P^k G . therefore x-pbo G_k B . consequently x B.

Thus it proves that $p^k G = B.So G/B$ is at the same time divisible and bounded.

G/B = B, i.e. G = B.

Conversely, if no proper semi neat subgroup of G containing H and $GIG = \{0\}$ is divisible. Therefore H is a.a.d. in G. Now,

Since no proper semi neat subgroup of G contains H, so no peoper pure subgroup of G contains H, thus by Lemma 4.1 and theorem 3.7 in [2], HG_k for some K Z^+ .

In view of the preceding theorem , we need only characterize an subgroup of G . For this purpose we need the following lemmas:

LEMMA 1: In a primary group G if S is a subgroup of G[p] such that S $p^n G = 0$ for some it Z^+ , then there exists a neat subgroup K of G such that K[p] = S. Furthermore (Kpⁿ G)/pⁿG is neat in G/pⁿG.

Proof. By Lemma 1.4 of [1], there exists a pure subgroup K of G such that K[P] = S, also we have $(Kp^n G) p^n G$ is neat in $G/P^n G$.

LEMMA 2 : Let N be a subgroup of a primary group G such that for some n $P^n G_{n-1}$. Then Mere exists a proper subgroup of G such theft R p^a G and N + $p^n R_{n-1}$ (see semi neat [1])

LEMMA 3 : In a primary group G (for every semi neat subgroup Acontaining G[p], A = G

Proof . Let A be a semi subgroup of G and let x since G is a p group , so $p^k x = 0$ for some K Z^+ . (If k = 1 we get the result.

Assume K 1)

So $p^k x = p(p^{k-1}x) = 0$ thus $p^{k-1}x$ [p] A and $p(p^{k-2}x)$ A p then $p^{k-2}x$ must belong to G[p] A.

Again , we have $p(p^{k-3}x) \ pG$, and so($p^{k-3}x$) pa_0 for some , a_0 thus

 $P(p^{k-3} x-a_0) = 0$ and $p^{k-3} x-a_0$

By this way we obtain px A so $P(x-a_1) = 0x-a_1$, which implies that x

We are ready to show that the following :

THEOREM 2 : n a group G a subgroup N of G is a.a.d. if mid only if

$$(*) N+p^n G G_{n-1}$$

Holds for all n

Proof . Suppose N satisfies (*) and K is any semi neat *sub*group containing N. to show G/K divtalbh, it not (on proof will be by showing the contradiction). So G/K must ave cyclic summand R/K (see [4], Theorem 9).

Now G/K = H/K and G/H is finite (say $p^n(R/K) = K$ for some $n Z^+$. claim p^nG .

Let $x = p^n g p^n G$ for some $n Z^+$.

(2) X+K = (h+K) (r+K)

For some h+k and r+k R/k. since p^n/x in G so $p^n/x+k$ in G/k and hence $p^n/r+k$ in R/k. So $p^n(ro+k)=r+k$ therefore r. By (2) we get x+k=h+k which implies x-h, hence x.

So p^nG for some $n = Z^+$. Thus $H = N + p^nG = G_{n-1}$, after a finite number of steps we see that .

Η.

Since K is semi neat in G, and H/K, so H is neat in G. (Because, in g = pg so pg + k = pho + k and hence pg - pho k. But K is neat, thus p(g - ho) = pL for some L and h = pL + pho = p(L + ho).) Thus by Lemma 3, H = G. Then R/K =0 and this is in contradiction for the fact that R/K . Hence g/k is divisible and thus N is a.a. dense.

Conversely, let N is an a.a.d, if (*) is not satisfied, then we are in the situation of Lemma 2, there exists a proper neat R in G with

$$\begin{array}{cc} R & N+p^n \ G \\ & 34 \end{array}$$

Since N is a.a.d , then G/R is divisible , but $p^n(G/R) = R$ This is a concretion , consequently (+) is satisfied . combining theorem 1 and theorem 2 we obtain :

<u>THEOREM 3</u>: In a p-group G if every semi neat subgroup K containing H, with pk is pure in G, then K is minimal semi neat in G containing N if and only if N k_n for some n Z^+ and $N + r^n K k_{r-1}$, Vr.

 $\begin{array}{ll} Proof. \ Let \ N & K_n \ and \ N+r^n \ K & K_{r-1} \ so \ by \ Theorem \ 2 \ , \ N \ is \ a.a.d. \ in \ k \ . \ Then \ by \ the \ theorem \ 1 \ , \ there \ is \ no \ proper \ neat \ subgroup \ in \ K \ which \ contains \ N \ , \ so \ K \ is \ minimal \ semi \ neat \ subgroup \ containing \ N \ . \end{array}$

Cinversely, if k is a minimal semi neat subgroup in G K then ther is no proper neat subgroup in K which contains N. By theorem 1, we get N K_n for some n Z^+ and N is a.a.d. in K. By using theorem 2, we obtain.

$$N+r^n\,K\quad K_{r\text{-}1}\,(\ r\)\ .$$

References

[1]- Hattem . M. A. Abdula, on minimal neat subgroups. PUMA ser A Vol 3. No. 3-4 pp 141-145. (ITAlY), (2008).

- [2]- K. Benabdallah. Irwin, On minimal pure subgroups of G publ. Math. Debrecen, 23 (2004), 111-114.
- [3]- K.BENABDALLAH and J. M. IRWIN, On quasi-essental subgroups of primary groups, Canad. J. Math., 12(1970), 1176 1184.
- [4]- L.FUCHS, Infininte Abelian Croups, Vol. 1. Academic press, New York Londmi, (2000).
- [5]- KAPLANSKY, Infinite Abelian Croups, University of Michigan, Alin Arbor, Michigan, (1954).