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Abstract

In this paper we investigate the numerical solution of two dimensional Volterra integral equations
by two different methods, Chebyshev polynomial and Adomian decomposion method. Two numerical
examples are given to illustrate the methods. Acomparison between the two methods is given.
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1. Introduction

Many problems can be modeled by two dimensional integral equations from various sciences and
engineering applications. furthermore most problems can not be solved analytically , and hence finding
good approximate solution , using numerical method.

Recently , many works have been focusing on the development of more advanced and efficients methods
for two dimensional integral equations such as collocation method , Chebyshev polynomial method , Suc-
cessive approximation method , Galerkin method , Variational iteration method , Adomian decompostion
method and the Homotopy perturbation method and others see ([1-5], [8-10]).

In this paper we will apply Chebyshev polynomials method and Adomian decomposition method for
solving two dimensional Volterra integral equations of the second kind. For this aim we are concerned
with the numerical solution of the following two dimensional Volterra integral equation :

u(x, t) = f(x, t) +
∫ t

−1

∫ x

−1

k(x, t, y, z) u(y, z)dydz, x, t ∈ [0, 1], (1.1)

where u(x, t) is the unknown function, f(x, t) and k(x, t, y, z) are given continuous functions defined on
[−1, 1]2 and [−1, 1]4 respectively.

2.Solution of two dimensional integral equations by Chebyshev
polynomials method

In this section we introduce some properties of Chebyshev polynomial of first kind which will be help
us to construct our main results . This method is based on approximating the unknown function u(x, t)
as :
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u(x, t) =
∞∑

i=0

∞∑
j=0

aij Ti(x) Tj(t) , x, t ∈ [0, 1] , (2.1)

where aij , are constants to be determined,

Ti(x) is Chebyshev polynomial of the first kind which is defined as:

Ti(x) = cos iθ , x = cos θ,

and the following recurrence formulas :

Ti(x) = 2xTi−1(x)− Ti−2(x), i = 2, 3, . . . ,

with the initial conditions :

T0(x) = 1 , T1(x) = x.

If the infinite series in (2.1) is truncated, then (2.1) can be written as :

u(x, t) = uN (x, t) ≈
N∑

i=0

N∑
j=0

aijTi(x) Tj(t) . (2.2)

Substituting from equation (2.2) into equation (1.1) we obtain :

N∑
i=0

N∑
j=0

aij [Ti(x) Tj(t)−
∫ t

−1

∫ x

−1

k(x, t, y, z)
N∑

i=0

N∑
j=0

aij Ti(y) Tj(z)dy dz = f(x, t) . (2.3)

Hence the residual equation is defined as :

RN (xr, ts) =
N∑

i=0

N∑
j=0

aij [Ti(xr)Tj(ts)−
∫ ts

−1

∫ xr

−1

k(xr, ts, y, z) Ti(y) Tj(z)dydz]− f(xr, ts) = 0 , (2.4)

for Gauss - Chebyshev - lobatto collocation points [6]

xr = cos(
rπ

N
) , ts = cos(

sπ

N
) r, s = 0, 1, . . . , N. (2.5)

Equation (2.4)can be written as :

N∑
i=0

N∑
j=0

aij [Ti(xr) Tj(ts)−
∫ ts

−1

∫ xr

−1

k(xr, ts, y, z) Ti(y) Tj(z) dy dz ] = f(xr, ts). (2.6)

Clearly, the obtained system of linear algebraic equations contains (N +1)2 equations in the same number
as unknowns. Solving this sysyem we obtain the value of the constants aij such that i, j = 0, . . . , N.
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3. Solution of two dimensional integeral equations by Adomian
decomposition method

In this section will study the numerical solution of two dimensional Volterra integral equation (1.1)
by Adomian decomposition method.

Adomian decomposition method defines the solution by series [7]:

u(x, t) =
∞∑

i=0

ui(x, t) , (3.1)

where the components u0(x, t), u1(x, t), u2(x, t), . . . , ui(x, t), . . . are determined recursively by :

u0(x, t) = f(x, t),

u1(x, t) =
∫ t

−1

∫ x

−1

k(x, t, y, z)u0(y, z)dy dz,

...

ui+1(x, t) =
∫ t

−1

∫ x

−1

k(x, t, y, z)ui(y, z)dydz, (3.2)

decomposition method component u0(x, t) defined by the function f(x, t) as described above.
The other components namely u1(x, t), u2(x, t), . . . , etc, are derived recurrently.

4. Numerical Examples

In this section some numerical examples of two dimensional volterra integral equation are presented
to illustrate the methods. All results are obtained by using Maple 17 .

Example (1) :

consider the following two dimensional Volterra integral equation :

u(x, t) = x2t2 − 1
4
(
1
4
t4 − 1

4
) (x4 − 1)− 1

9
xt(x3 + 1) (t3 + 1) +

∫ t

−1

∫ x

−1

[xt + yz]u(y, z)dy dz ,

x, t ∈ [0, 1], (4.1)

with the exact solution is u(x, t) = x2t2.

1. Applying Chebyshev polynomial of the first kind for equation (4.1) when N = 2, and by using
the collocation points (2.5) we obtain

x0 = 1, x1 = 0, x2 = −1, t0 = 1, t1 = 0, t2 = −1.
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Substituting into (2.2) when N = 2 we obtain:

u(x, t) =
2∑

i=0

2∑
j=0

aijTi(x)Tj(t). (4.2)

Substituting from equation (4.2) into (4.1) we have

2∑
i=0

2∑
j=0

aij [Ti(xr)Tj(ts)−
∫ ts

−1

∫ xr

−1

(xrts + yz)Ti(y) Tj(z)dydz] = x2
rt

2
s −

1
4

(
1
4
t4s −

1
4
) (x4

r − 1)−

1
9

xrts(x3
r + 1) (t3s + 1). (4.3)

Applying the collocation points to equation (4.3) we obtain a system of linear algebraic equations con-
tains 9 equations with the same number of constants by solving this system we obtain the values of the
constans as follows :

a00 =
1
4
, a01 = 0, a02 =

1
4
, a10 = 0, a11 = 0, a12 = 0, a20 =

1
4
, a21 = 0, a22 =

1
4
.

Substituting from these values into equation (4.2) we obtain the approxmiate solution which is the exact
solution.

2. Applying Adomian decomposition method for equation (4.1) when N = 6,

u0(x, t) = x2t2 − (
1
16

t4 − 1
16

) (x4 − 1)− 1
9

xt(x3 + 1) (t3 + 1)

u1(x, t) = [
−25
5184

x6− 17
2592

+
1

192
x2− 1

162
x3](t6−1)+[

−1
90

xt(x2−1)− 1
144

xt(x5 +1)+
1
80

xt(x+1)](t5 +1)

+[
1
16

x4 − 1
16

](t4 − 1) + [
−1
162

x6 +
1

162
+

1
3
(
1
3
xt− 1

27
)(x3 + 1)] (t3 + 1) + [

1
2
(
−1
18

xt−

1
32

)(x2 − 1) +
1

192
x6 − 1

192
− 1

90
xt(x5 + 1)](t2 − 1)− 1

16
xt(x + 1)(t + 1) +

1
80

xt(x5 + 1)(t + 1)

...

absolute error of Adomian decomposition method is shown in Table 1 and figure 1

Table 1: Numerical results of example 1 by Adomian decomposition method N = 6
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(x, t) Exact Sol Approximate sol Abs.error

(0, 0) 0 −4.6450× 10−9 4.6× 10−9

(0, 0.4) 0 −4.197029172× 10−9 4.19× 10−9

(0.2, 0.6) 0.0144 0.0143999826 1.4× 10−8

(0.2, 0.8) 0.0256 0.02559995022 4.9× 10−8

(0.4, 0.4) 0.0256 0.0255999548 4.5× 10−8

(0.4, 1) 0.1600 0.1599994338 5.6× 10−7

(0.6, 0.6) 0.1296 0.1295996192 3.8× 10−7

(0.6, 1) 0.3600 0.3599969649 3.03× 10−6

(0.8, 0.2) 0.0256 0.02559995025 4.9× 10−8

(0.8, 0.8) 0.4096 0.409595887 4.1× 10−6

(1, 1) 1.000 0.999950693 4.9× 10−5

Figure 1: absolute error of example 1 by Adomian decomposition method

Example (2)

consider the following two dimensional Volterra integral equation :

u(x, t) = xet +
1
4
e−1x4− 1

4
e−1 +

1
2
− 1

2
x2− 1

4
x4et +

1
4
et− 1

2
x2t +

1
2
t +

∫ t

−1

∫ x

−1

[y2 + e−z] u(y, z) dy dz,

x, t ∈ [0, 1], (4.4)

with the exact solution u(x, t) = xet.
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1. Applying Chebyshev polynomial of the first kind for equation (4.4) when N = 3 , we obtain the
collocation points as:

x0 = 1, x1 =
1
2
, x2 =

−1
2

, x3 = −1,

t0 = 1, t1 =
1
2
, t2 =

−1
2

, t3 = −1,

we obtain the approximate solution as :

u(x, t) =
3∑

i=0

3∑
j=0

aij Ti(x)Tj(t) (4.5)

substituting from equation (4.5) into (4.4) we have

3∑
i=0

3∑
j=0

aij [Ti (xr)Tj(ts)−
∫ ts

−1

∫ xr

−1

(y2 + e−z)Ti(y)Tj(z) dy dz] = xre
ts+

1
4
e−1x4

r −
1
4
e−1 +

1
2
− 1

2
x2

r −
1
4
x4

re
ts +

1
4
ets − 1

2
x2

rts +
1
2
ts. (4.6)

Applying the collocation points to equation (4.6) we obtain a system of linear algebraic equations con-
tains 16 equations with the same number of constants by solving this system we obtain the values of the
constans as follows :

a00 = −0.003236383773, a01 = −0.002104093053, a02 = −3.741978941×10−8, a03 = −0.001132328140,

a10 = 1.261005104, a11 = 1.125451518, a12 = 0.2759499335, a13 = 0.04362407872,

a20 = −0.002543934384, a21 = −0.004543675630, a22 = −0.001999741245, a23 = 0,

a30 = −0.0006745672043, a31 = −0.001234953683, a32 = −0.0009799326411, a33 = −0.0004195461626.

when N = 4 ,we obtain the collocation points as follows:

x0 = 1, x1 =
1√
2
, x2 = 0, x3 =

−1√
2
, x4 = −1,

t0 = 1, t1 =
1√
2
, t2 = 0, t3 =

−1√
2
, t4 = −1,

we obtain the approximate solution as :

u(x, t) =
4∑

i=0

4∑
j=0

aij Ti(x)Tj(t), (4.7)
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substituting from equation (4.7) into (4.4) we have

4∑
i=0

4∑
j=0

aij [Ti(xr)Tj(ts)−
∫ ts

−1

∫ xr

−1

(y2 + e−z)Ti(y) Tj(z) dy dz] = xre
ts +

1
4
e−1x4

r −
1
4
e−1+

+
1
2
− 1

2
x2

r −
1
4
x4

re
ts +

1
4
ets − 1

2
x2

rts +
1
2
ts. (4.8)

Applying the collocation points to equation (4.8) we obtain a system of linear algebraic equations contains
25 equations with the same number of constants by solving this system we obtain the values of the constans
as follows:

a00 = −0.00002742778578, a01 = −0.00009688327429, a02 = 0.00003065836526, a03 = 0.00004261011838,

a04 = −0.0000570373539, a10 = 1.266088925, a11 = 1.130262372, a12 = 0.2714859747, a13 = 0.04490932725,

a14 = 0.005476240223, a20 = 0.00005840645027, a21 = 0.00005218918826, a22 = −0.00007920261201,

a23 = −0.00001691334898, a24 = 0.000056072000102, a30 = 0.00001164612589, a31 = 0.00001643440591,

a32 = 3.805361185×10−8, a33 = −0.000003881730473, a34 = 8.685404949×10−7, a40 = 0.000003516182088,

a41 = 0.000002083285025, a42 = −0.000005760308908, a43 = −2.743862176×10−8, a44 = 0.000004299973224.

Substituting from these constants into (4.7) we obtain the approximate solution.

2. Applying Adomian decomposition method for equation (4.4) when N = 5 we obtain:

u0(x, t) = xet +
1
4
e−1x4 − 1

4
e−1 +

1
2
− 1

2
x2 − 1

4
x4et +

1
4
et − 1

2
x2t +

1
2

t

u1(x, t) = −[x +
2
3

+
1
20

x5t2et − 1
4
xtet − 1

28
e−1+tx7t− 1

12
x3t2et − 1

2
tx2et − 1

6
x3tet+

3
20

x5tet +
1
12

e−1+tx3t− 13
84

e−1+t − 1
3
e1+t +

17
84

e2t − 1
3
x3 +

1
28

x7e2t − 1
4
e2tx4

− 1
12

x3e2t − 1
14

e−1+tx7 +
1
4
x4e−1+t +

1
6
x3e1+t +

1
6
e−1+tx3 − 1

2
xe1+t +

1
21

te−1+t−

1
4
xe−1 +

1
20

x5e−1 − 1
6
x3t +

1
2
xt +

7
30

tet − 1
30

t2et +
1
20

x5et − 1
12

x3et−

1
2
x2et +

1
3
t− 1

5
e−1 +

7
15

et]e−t

...

absolute error example 2 is shown in Table 2 and figures 2, 3 .
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Table 2.Numerical results of example 2 by Chebyshev polynomials method and Adomian
decomposition method for different values of N

(x, t) Abs.error of Chebyshev N = 3 Abs. error of Chebyshev N = 4 Abs.error of Adomian N = 5

(0, 0) 2.6× 10−3 2.9× 10−4 4.5× 10−5

(0, 0.8) 2.2× 10−3 9.9× 10−5 3.02× 10−4

(0.2, 0.6) 5.3× 10−4 2.7× 10−4 5.2× 10−4

(0.2, 0.8) 2.2× 10−3 4.1× 10−5 7.1× 10−4

(0.4, 0.4) 4.6× 10−3 6.6× 10−4 8.1× 10−4

(0.4, 0.8) 8.4× 10−4 2.7× 10−5 1.6× 10−3

(0.6, 0) 1.2× 10−2 1.4× 10−4 5.7× 10−4

(0.8, 0) 1.3× 10−5 1.3× 10−5 1.2× 10−3

(0.8, 0.8) 7.5× 10−3 2.1× 10−4 9.2× 10−3

(1, 1) 3.1× 10−2 6.7× 10−5 3.1× 10−2

(1, 0.2) 1.8× 10−2 6.6× 10−4 5.7× 10−3

Figure 2: absolute error of example 2 by chebyshev polynomial method
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Figure 3: absolute error of example 2 by Adomian decomposition method

Conclusion
This paper concerns the numerical solutions of two dimensional volterra integral equations by using

Chebyshev polynomial method and Adomian decomposition method, by comparing the results we find
that Chebyshev polynomial method is better than the results of Adomian decomposition method.
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