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Abstract 

            This work modelled road traffic accidents that exhibit seasonal behaviour and non-statioarity in variance. 

The modelling procedure was demonstrated using monthly road traffic accident data (1999-2014) obtained from 

federal road safety commission in Port Harcourt, Nigeria. Seasonality and non-stationarity in variance were 

detected from the series raw plot, autocorrelation and partial autocorrelation functions. To obtain stability in 

variance and level of the series, some transformation techniques were applied. Seasonal component was 

incorporated into the Box and Jenkins (1970) ARIMA model to cater for the periodic nature of the series. The 

resulting estimated seasonal-ARIMA model was subjected to different diagnostic checks, and was found to be 

adequate. The proposed model was then used to generate forecasts of road traffic accidents for the next thirty 

months. 

Keywords:  Stationarity, Seasonality, Transformation, Autocorrelation and Partial autocorrelation. 

 

INTRODUCTION/REVIEW 

             Globally, road traffic accidents (RTA) constitute one of the leading causes of deaths in human race. 

According to world health organisation (WHO), RTA are an emerging global epidemic (WHO, 2004). Statistics 

shows that approximately  1.2 million deaths occur yearly worldwide as a result of road traffic crashes 

(WHO,2004). A break down of the figure indicate, however, that about 70% of the deaths occur in developing 

countries of which Nigeria is one. Recent studies have shown that the proportion of deaths from RTA in Nigeria 

increased from 38.2% to 60.2% between 1991 and 2001 (Atubi, 2012). A publication of the Nigerian federal 

road safety commission (FRSC) revealed that Nigeria records the highest rate of deaths from motor accidents in 

Africa; leading 43 other nations in the number of deaths per 10,000 vehicle crashes (FRSC, 2006; Obinna, 

2007). This is followed by Ethopia, Malawi and Ghana with 219, 183 and 178 deaths per 10,000 vehicles 

respectively (Daramola, 2004).  

               Despite the observed dramatic increase in road traffic deaths, little attention has been paid to its 

prevention in most developing countries. In developed countries, however, serious effort has been made to 

reduce the menace of RTA to a considerable level. For instance, the United State and United Kingdom records 

an average of 1.6 and 1.4 traffic deaths per 1000 people (Trinca et al, 1988). Far in excess, Nigeria records 32 

traffic deaths per 1000 people (Filani and Gbadamosi, 2007). 

               Road traffic accidents are not common to Nigeria alone but a universal hazard. Downing et al (1991) 

noted that road crashes impact on the economy of developing countries at an estimated cost of 1.2% of the 

country’s  gross national product (GDP) per annum as a result of mobidity, mortality and property. It is a well 

known fact that no country is completely independent in terms of economy. The economic growth of one 

country is a function of the economic growth of others. Because of its economic importance and the resulting 

impacts on human lives, road traffic researches should not be over-emphasized. Many researchers have 

suggested ways of combating the road traffic accidents and some sensitive governments have implemented them. 

Few of the remedies are construction of good roads and establishment of government agencies in charge of 

traffic responsibilities.  

          However, this work differs a bit. In Nigeria, road traffic crashes seem to be seasonal. It appears to be 

rampant in most month of the year than others. This work therefore seeks to model the road traffic accidents 

using time series technique, taking seasons into consideration with the aim of generating forecasts for the future. 

Of course, if the future can be predicted, measures can be taken to avert the situation. The study area of this work 

is the Port-Harcourt city of Nigeria. Port-Harcourt is the Nigeria’s major traffic centre in the south-south region 

and is considered most suitable for this study. 

             The ability to model complex seasonal time series greatly increases the applicability and usefulness of 

autoregressive integrated moving average (ARIMA) model building proposed by Box and Jenkins (1970).  
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                Many time series such as climate, economic, accident etc. are observed to exhibit some periodic and 

recurrent nature. In such cases, the popular ARIMA models cannot provide good approximations for the true 

underlying process. Hence the need for a component in ARIMA model that caters for the periodic influences 

called seasonal ARIMA (SARIMA) model. Series that results from events that are periodic and recurrent are 

called seasonal. 

                 However, in practice, it may not be reasonable to assume that the seasonality component repeats itself 

precisely in the same way cycle after cycle (Brockwell, 1986). Seasonal ARIMA models do allow for 

randomness in the seasonal pattern from one cycle to the next. 

               In general, we say that a series exhibits periodic behaviour with period  𝑠, when similarities in the 

series occur after 𝑠 basic intervals. 

                In most cases, the magnitude of a seasonal swing in the series depends on the level of the time series  

𝑋𝑡 and thus exhibit an increasing seasonal variation. Time series of this form are said to be non-stationary in 

variance and requires some transformation techniques in order to produce a transformed series that displays 

constant seasonal variation, before being modelled. Non-stationarity problems often occur in two forms: either in 

level or variance. While level stationarity can be achieved by differencing, variance stationarity can be obtained 

by square root, quartic or logarithmic transformation of the series. 

 

 METHODS OF ESTIMATION 

                   Let  the time series under consideration be  𝑋𝑡 . 

 (i)  ARIMA Model 

              If  𝑑 is a non-negative integer, then the  {𝑋𝑡} is said to be an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process if  

             𝑌𝑡 = 𝛻𝑑𝑋𝑡 is a causal autoregressive moving average (ARMA) process. 

            𝑋𝑡 satisfies a difference equation of the form: 

             𝜙∗(𝐵)𝑋𝑡 ≡ 𝜙(𝐵)∇𝑑𝑋𝑡 = 𝜃(𝐵)𝜀𝑡 

           where 𝐵 is the backward shift operator,  ∇= 1 − 𝐵, 𝐵𝑚𝑋𝑡 = 𝑋𝑡−𝑚 , {𝜀𝑡}~𝑁𝐼𝐼𝐷(0, 𝜎2),  𝜙(𝐵)    

             and  𝜃(𝐵) are polynomials of degree  𝑝 and 𝑞 respectively,  𝜙(𝐵) ≠ 0 for  |𝐵| ≤ 1. 

              The polynomial  𝜙∗(𝐵) has a zero of order 𝑑 at  𝐵 = 1. 

            The process  {𝑋𝑡} is stationary if and only if  𝑑 = 0, in which case the  𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)   

            reduces to an  𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

   (ii) The SARIMA model 

              If  𝑑 and 𝐷 are non-negative integers, then  {𝑋𝑡} is said to be a 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)𝑠    

              process with period 𝑠 if the differenced process  𝑌𝑡 = ∇𝑑∇𝑠
𝐷𝑋𝑡  is a causal 𝐴𝑅𝑀𝐴 process 

               𝜙(𝐵)Φ(𝐵𝑠)𝑌𝑡 = 𝜃(𝐵)Θ(𝐵𝑠)𝜀𝑡                                          (1)  

               where  ∇𝑠= 1 − 𝐵𝑠, 

              Φ(𝐵) = 1 − Φ1𝐵 − Φ2𝐵2 − ⋯ − Φ𝑃𝐵𝑃   and  Θ(𝐵) = 1 + Θ1𝐵 + Θ2𝐵2 + ⋯ + Θ𝑄𝐵𝑄    

              are the seasonal autoregressive operator of order 𝑃 and seasonal moving average operator of     

            order 𝑄 added to the  𝐴𝑅𝐼𝑀𝐴 model  𝜙∗(𝐵)𝑋𝑡 to cater for the seasonal influence. 
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 Because of the involvement of the seasonal component in the SARIMA model, the covariance structure for a 

SARIMA process seems to be quite complicated. However, to identify SARIMA models from the sample 

correlation function, we first find 𝑑 and  𝐷 so as to make the differenced observations   𝑌𝑡 = (1 − 𝐵)𝑑(1 −
𝐵𝑠)𝐷𝑋𝑡  stationary in appearance. 

            If the variability of the time series increases as time advances, then we stabilize the variance of the series 

by using a pre-differencing transformation such as logarithm, quartic root etc. Next, we examine the sample 

autocorrelation and partial autocorrelation function of  {𝑌𝑡}  at lags which are multiples of  𝑠 in order to identify 

the orders  𝑃 and 𝑄. If  �̂�(. ) is the sample autocorrelation function of  {𝑌𝑡}, then 𝑃 and  𝑄 should be chosen so 

that  �̂�(𝑘𝑠), 𝑘 = 1,2, … is compatible with the autocorrelation function of an  𝐴𝑅𝑀𝐴(𝑃, 𝑄) process. The orders 

𝑝 and 𝑞 are then selected by attempting to match  �̂�(1), … , �̂�(𝑠 − 1) with the autocorrelation function of an  

𝐴𝑅𝑀𝐴(𝑝, 𝑞) process. 

RESULTS 

  (i)  Detection of Seasonality 

        Figure 1 (see appendix) shows the raw plot of the accident data  𝑋𝑡  . As observed in the figure, the series 

appears to be seasonal and non-stationary especially in variance. In figures 2 and 3, the spikes at seasonal lags 

(12, 24, 36, …) in autocorrelation function (ACF) plot and partial autocorrelation (PACF) plot confirms the 

presence of seasonality. 

   (ii)  Stationarity in Level and Variance 

        As clearly seen in figure 1, the variance of  𝑋𝑡  is unstable and thus requires some transformation to get 

stabilized. This was achieved by taking natural logarithm of  𝑋𝑡  (𝑙𝑛𝑋𝑡 = 𝑋𝑡
∗) and the result plotted in figure 4. 

Close examination of figure 4 shows that the series is only near stationarity, thus demanding for another 

stabilizing technique. Finally, differencing of  𝑋𝑡
∗(= 𝐷𝑋𝑡

∗) was applied and stationarity was obtained both in 

variance and in level (see figure 5). 

   (iii)  The SARIMA model 

        The ACF plot of the  𝐷𝑋𝑡
∗ shows an exponential decline at seasonal lags while at non-seasonal lags, it is 

inconclusive (see figure 6). 

        Also, the PACF plot of  𝐷𝑋𝑡
∗ cut off after the first seasonal lag, while at the non-seasonal lags, it is 

inconclusive (see figure 7). Thus, a seasonal model with non-seasonal differencing is obvious. 

        Combining the behaviours of ACF and PACF plots at both seasonal and non-seasonal lags, the 

multiplicative form of the seasonal model is obtained as:  𝑆𝐴𝑅𝐼𝑀𝐴(0,1,0) × (1,0,0)12. 

Writing the model more explicitly, we take cognizance that  𝐷𝑋𝑡
∗ = (1 − 𝐵)𝑋𝑡

∗ ,  𝑑 = 1 and  𝑠 = 12. 

Thus from (1), we have 

                          Φ𝑝(𝐵𝑠)∇𝑑𝑋𝑡
∗ = 𝜀𝑡 

                   ⇒ (1 − Φ1,12𝐵12)(1 − 𝐵)𝑋𝑡
∗ = 𝜀𝑡 

which on expansion gives 

                     𝑋𝑡
∗ = 𝑋𝑡−1

∗ + Φ1,12𝑋𝑡−12
∗ − Φ1,12𝑋𝑡−13

∗ + 𝜀𝑡. 

Minitab software was used in the analysis and the result (see table 1) provides the following estimates of the 

SARIMA model: 

                 �̂�𝑡
∗ = 𝑋𝑡−1

∗ + 0.4988(𝑋𝑡−12
∗ − 𝑋𝑡−13

∗ ) 

It should be recalled here that the series 𝑋𝑡
∗ was obtained from the original series 𝑋𝑡 by applying natural 

logarithmic transformation (𝑙𝑛𝑋𝑡). Hence the resulting estimated SARIMA model for generating forecast is 

obtained by: 
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                              �̂�𝑡 = 𝑒 �̂�𝑡
∗
   

The above model was used to generate forecasts presented in table 2. 

DIAGNOSTIC CHECKS 

 (i)  Raw and Estimate Plot 

         This is obtained by overlaying the plots of the original data on the plots of the values estimated by the 

SARIMA model as shown in figure 8. As can be seen clearly, the two plots closely agree with each other 

indicating a good fit of the model. 

  (ii)   Residual Analysis 

         Variance and White noise 

                One of the conditions of model adequacy is that the residuals must follow the white noise process. In 

other words  𝜀𝑡~𝑁𝐼𝐼𝐷(0, 𝜎2). The SARIMA model was fitted to the data and the calculated residual mean and 

variance are  0.0001 ≈ 0.00 and  0.2311. The small variance obtained is an indication of a good fit of the 

model. The plot of the residual is shown in figure 9. A mere inspection of the plot convinces that the residual 

follows a white noise process. Thus, the fitted model is adequate. 

       Residual autocorrelation checks 

                Figure 10 and table 2 illustrate the autocorrelation function pattern of the residuals. As shown, there 

are no patterns or statistically significant coefficients in the table and the figure. Again this is a confirmation of 

white noise residuals, indicating the adequacy of the SARIMA model. 

    Ljung-Box Staistic 

              Here, the first  𝑀 = 20 autocorrelations of the 𝜀𝑡’s are being considered together for the adequacy of 

the overall model. Using the Minitab software, the Ljung-Box statistic (LBQ) given by 

                                          𝑄∗ = 𝑛′(𝑛′ + 2) ∑ (𝑛′ − 𝑙)−1𝑟𝑙
2(𝜀𝑡)𝑀

𝑙=1   

provides the LBQ values (see table 2). It should be noted that if the fitted model is appropriate, then  

  𝑄∗~𝜒𝛼
2(𝑀 − 𝑛𝑝), where  𝑛𝑝 is the number of parameters in the model (Box and Jenkins,1970). On the other 

hand, if the fitted model is inappropriate, the average values of 𝑄∗ will be inflated. 

From table 2, the first 20 autocorrelations gives  𝑄∗ = LBQ = 29.32. 

 Setting  𝛼 = 0.01,  𝜒0.01(19)
2 = 36.19. Then, under the null hypothesis that the model is adequate, there is no 

evidence to query the SARIMA model, since 𝑄∗ < 𝜒𝛼
2(𝑀 − 𝑛𝑝). Hence, the model is adequate. 
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 APPENDIX 
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                                                             figure 9 
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                         Table 1 

Iteration      SSE  Parameters 

        0  248.406       0.100 

        1  224.659       0.250 

        2  211.912       0.400 

        3  209.553       0.488 

        4  209.525       0.498 

        5  209.525       0.499 

        6  209.525       0.499 

 

Relative change in each estimate less than 0.0010 

 

 

Final Estimates of Parameters 

 

Type       Coef  SE Coef     T      P 

SAR  12  0.4988   0.0660  7.56  0.000 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 191, after differencing 190 

Residuals:    SS =  208.254 (backforecasts excluded) 

              MS =  1.102  DF = 189 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

 

                     Table 2 

Autocorrelation Function: RESXt  
 
Lag        ACF      T    LBQ 

  1  -0.048036  -0.66   0.45 

  2  -0.191180  -2.63   7.54 

  3  -0.164337  -2.18  12.81 

  4  -0.049013  -0.64  13.28 

  5  -0.010587  -0.14  13.30 

  6   0.022771   0.29  13.40 

  7   0.064038   0.83  14.22 

  8  -0.067178  -0.86  15.12 

  9  -0.053421  -0.69  15.70 

 10   0.033477   0.43  15.93 

 11   0.112804   1.44  18.52 

 12  -0.145155  -1.84  22.84 

 13   0.053170   0.66  23.42 

 14  -0.018487  -0.23  23.49 

 15  -0.099228  -1.23  25.54 

 16   0.020185   0.25  25.63 

 17   0.113426   1.39  28.34 

 18  -0.066490  -0.81  29.28 

 19  -0.002855  -0.03  29.28 

 20   0.013550   0.16  29.32 

 21  -0.053328  -0.65  29.93 

 22  -0.124536  -1.51  33.30 

 23   0.033742   0.40  33.55 

 24   0.072177   0.86  34.70 
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 25   0.040599   0.48  35.06 

 26   0.059871   0.71  35.86 

 27   0.074002   0.88  37.08 

 28   0.027447   0.32  37.25 

 29  -0.119213  -1.41  40.47 

 30   0.029582   0.35  40.67 

 31  -0.086941  -1.01  42.41 

 32   0.004826   0.06  42.41 

 33   0.022675   0.26  42.53 

 34  -0.016126  -0.19  42.59 

 35  -0.014989  -0.17  42.65 

 36   0.087718   1.02  44.47 

 37   0.034421   0.40  44.75 

 38  -0.039431  -0.45  45.12 

 39  -0.077872  -0.90  46.59 

 40  -0.012693  -0.15  46.63 

 41   0.011833   0.14  46.66 

 42  -0.028051  -0.32  46.86 

 43   0.135558   1.55  51.42 

 44  -0.017523  -0.20  51.49 

 45  -0.128425  -1.45  55.64 

 46  -0.051766  -0.58  56.32 

 47   0.084255   0.94  58.13 

 48   0.100451   1.12  60.72 

 

Table 3 

Forecasts from period 192 

 

                     95 Percent 

                       Limits 

Period  Forecast    Lower    Upper   

   193   254.537  198.249  310.825 

   194    52.450   -7.320  112.220 

   195    20.076  -40.123   80.276 

   196    23.633  -36.621   83.888 

   197    71.550   11.288  131.811 

   198    49.916  -10.346  110.178 

   199    23.300  -36.962   83.562 

   200    26.972  -33.291   87.234 

   201    15.714  -44.548   75.977 

   202    53.099   -7.164  113.361 

   203    68.240    7.977  128.502 

   204   291.144  230.882  351.406 

   205   265.733  195.083  336.382 

   206    55.744  -16.123  127.610 

   207    22.119  -49.901   94.140 

   208    23.760  -48.280   95.800 

   209    69.980   -2.062  142.023 

   210    48.565  -23.478  120.608 

   211    22.852  -49.191   94.895 

   212    26.981  -45.062   99.024 

   213    15.123  -56.920   87.166 

   214    55.479  -16.564  127.522 

   215    69.192   -2.851  141.235 

   216   275.920  203.877  347.963 

   217   261.871  177.678  346.065 

   218    54.608  -31.012  140.227 

   219    21.415  -64.385  107.215 

   220    23.716  -62.107  109.539 

   221    70.522  -15.304  156.347 
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   222    49.031  -36.795  134.857 
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