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In the present paper we established some fixed point results in dislocated quasi metric spaces for random 

operator. Our results are generalized forms of various known results. 

Key words: Fixed point, common fixed point, Dislocated Metric spaces 

AMS classicification: 47 H10 

 Introduction & Preliminaries 

Probabilistic functional analysis has emerged as one of the important mathematical disciplines in view of its 

role in analyzing probabilistic models in the applied sciences. The study of fixed points of random operators 

forms a central topic in this area. The Prague school of probabilistic initiated its study in the 1950. However, the 

research in this area flourished after the publication of the survey article of Bharucha-Reid [5]. Since then many 

interesting random fixed point results and several applications have appeared in the literature; for example the 

work of Beg and Shahazad [2,3], Lin [13], O'Regan [14], Papageorgiou [15],  Xu [20]. 

In recent years, the study of random fixed points has attracted much attention. In particular random iteration 

schemes leading to random fixed point of random operators have been discussed in [6,7,8,10]. 

In 1922 Banach  proved Fixed Point Theorem for contraction mappings in complete metric space. It is well 

known as a Banach Fixed point Theorem. Das and Gupta {11} generalized Banach’s Contraction Principle in 

Metric space. Also Rhoads {1977} introduced a partial ordering for various definitions contractive mappings. 

This objective of the note is to prove some fixed point theorem for continuous contraction mapping defined by 

Dass and Gupta {11} and Rhoades {18} in Dislocated Quasi metric spaces.In the present paper we establish a 

fixed point theorem for random operator in Dislocated Quasi Metric Spaces 

Definition 1.1.1: Let X be a nonempty set and let d: X×X  [0, ∞] be a function satisfying following 

conditions: 

1.1.1(a) d(x, y) = d(y, x) =   0  ⟹   y =  x 

1.1.1(b)  d(x, y) ≤ d(x, z) +  d(z, y) ∀ x, y, z ∈ X 

Then d is called Dislocated Quasi Metric Space on X. If d satisfies d(x, y) = d(y, x) then it is called dislocated 

metric space.  

Definition1.1.2: A sequence { xn} in Dislocated Quasi Metric Spaces (X, d) is called Cauchy sequence if for a 

given ϵ > 0 there exists n0 ∈ N such that  

∀ m , n > n0  ⟹ d(xm, xn) < ϵ  

i.e. min{d(xm, xn), d(xn, xm)} <   ϵ 

Definition 3.1.3: A sequence {xn} Dislocated Quasi Convergence to x if limn→∞ d(xn, x)  =  limn→∞ d(x, xn)  =
  0 

   In this case x is called a dq limit of {xn} we write xn → x 

Definition 1.1.4: A Dislocated Quasi Metric Space (X, d) is called complete if every Cauchy sequence in it is a 

dq convergent. 
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Definition 1.1.5: Let (X, d) and (Y, d) be dq Metric Spaces and Let f ∶  X →  Y be a function then f is continuous 

to x0 ∈  X , if for each sequence {xn} which is d1 –  q convergent to x0 in X, the sequence {f(xn)} is d2 − q 

convergent to f(x0) in Y. 

Definition 1.1.6:Let (X, d) be a dq metric space. A map T: X →  X is called contraction if there exists 0 ≤  x ≤

 1 such than 

d(Tx, Ty) <   λ d(x, y)  ∀ x, y ∈ X  

 Throughout this paper, (Ω, Σ) denotes a measurable space H.  A Dislocated Quasi Metric Space, and C is non 

empty subset of H. 

Definition 1.1.7: A function Cf :   is said to be measurable if  )(1 CBf foe every Borel subset 

B of H. 

Definition 1.1.8: A function f: Ω × C → C
 
 is said to be random operator, if F(. , X): Ω → C is measurable for 

every X ∈ C. 

Definition 1.1.9: A random operator F: Ω × C → C
 
 is said to be continuous if for fixed t ∈ Ω, F(t, . ): C → C is 

continuous. 

Definition 1.2: A measurable function g: Ω → C is said to be random fixed point of the random operator F: Ω ×

C → C  if F(t, g(t)) = g(t), ∀ t ∈ Ω. 

1.3. FIXED POINT THEOREMS FOR INTEGRAL TYPE CONTRACTION CONDITION IN 

DISLOCATED QUASI METRIC SPACES 

Impact of fixed point theory in different branches of mathematics and its applications is immense. The 

first result on fixed points for contractive type mapping was the much celebrated Banach’s contraction principle 

by S. Banach [1] in 1922. In the general setting of complete metric space, this theorem runs as the follows, 

Theorem 1.3.1 (Banach’s contraction principle) 

Let (X, d) be a complete metric space, c ∈ (0,1) and f: X → X be a mapping such that for each x, y ∈ X, 

   d(fx, fy) ≤   cd(x, y)       1.3.1(a) 

Then f has a unique fixed point a ∈ X, such that for each x ∈ X, limn→∞ f nx = a. 

After the classical result, Kannan [5] gave a subsequently  new contractive mapping to prove the fixed 

point theorem. Since then a number of mathematicians have been worked on fixed point theory dealing with 

mappings satisfying various type of contractive conditions. 

In 2002, A. Branciari [2] analyzed the existence of fixed point for mapping f defined on a complete 

metric space (X, d) satisfying a general contractive condition of integral type. 

Theorem 1.3.2 (Branciari) 

Let (X, d) be a complete metric space, c ∈ (0,1) and  let f: X → X be a mapping such that for each 

x, y ∈ X, 

   ∫ ξ(t)
d(fx,fy)

0
 dt ≤ c ∫ ξ(t)

d(x,y)

0
 dt     1.3.2(a)  

Where ξ: [0, +∞) →  [0, +∞)  is a  Lesbesgue integrable mapping which is  summable on each compact 

subset of [0, +∞), non negative, and such that for each ϵ > o, ∫ ξ(t)
ϵ

0
 dt  , then f has  a unique fixed point a ∈ X 

such that for each x ∈ X, limn→∞ f nx  =   a. 

After the paper of Branciari, a lot of a research works have been carried out on generalizing contractive 

conditions of integral type for different contractive mappings satisfying various known properties. A fine work 

has been done by Rhoades [6] extending the result of Brianciari by replacing the condition [1.2] by the following  
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 ∫ ξ(t)
d(fx,fy)

0
 dt ≤  ∫ ξ(t)

max{d(x,y),d(x,fx),d(y,fy),
d(x,fy)+d(y,fx)

2
}

0
 dt   

Now we prove our next result infect we prove the following theorem, 

Theorem 1.3.3 Let  (X, d)  be a dq metric space and let  T ∶  X →  X  be continuous mapping satisfying the 

following condition. 

∫ u(t)dt
d(Tx,Ty)

0
≤  α ∫ u(t)dt

d(y,Ty)[1+d(x,Tx)] 

1+d(x,y)

0
+   β ∫ u(t)dt

d(y,Ty)[1+d(y,Tx)] 

1+d(x,y)

0
  

+  γ ∫ u(t)dt

d(y,Tx)[1+d(x,Tx)] 

1+d(x,y)

0
 +   δ ∫ u(t)dt

d2(y,Ty)+ d2(x,Tx) 

d(y,Ty)+d(x,Tx)

0
   

+  η ∫ u(t)dt

d2(y,Tx)+ d2(x,Ty) 

d(y,Tx)+d(x,Ty)

0
       1.3.3(a) 

For each x, y ∈ X with non negative reals α, β, γ, δ  such that  0 <  2α + 2β + 2γ + δ <  1, where u ∶ ℛ+ →  ℛ+ 

is a lesbesgue- integrable mapping which is summable on each compact subset of ℛ+, non negative, and such 

that 

  for each  ϵ > 0, ∫ u(t)
ϵ

0
 dt        1.3.3(b) 

Then T has a unique fixed point z ∈ X and for each x ∈ X, limn→∞ Tnx = z.  

Proof Let {xn} be a sequence of function in X defined as follows 

T(ξ, xn(ξ)) =   xn+1(ξ), consider 

d(xn(ξ), xn+1(ξ))  =   d (T(ξ, xn−1(ξ)), T(ξ, xn(ξ)))  

Implies that  

   ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt    =   ∫ u(t)

d(T(ξ,xn−1(ξ)),T(ξ,xn(ξ)))

0
 dt    

From 3.3.3(a)  we have, 

∫ u(t)
d(T(ξ,xn−1(ξ)),T(ξ,xn(ξ)))

0
 dt ≤  α ∫ u(t)

d(xn(ξ),T(ξ,xn(ξ)))[1+d(xn−1(ξ),T(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt   

+  β ∫ u(t)

d(xn(ξ),T(ξ,xn(ξ)))[1+d(y,T(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt  

+  γ ∫ u(t)

d(xn(ξ),T(ξ,xn−1(ξ)))[1+d(xn−1(ξ),T(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt   

+  δ ∫ u(t)

d2(xn(ξ),T(ξ,xn(ξ)))+ d2(xn−1(ξ),T(ξ,xn−1(ξ))) 

d(xn(ξ),T(ξ,xn(ξ)))+d(xn−1(ξ),T(ξ,xn−1(ξ)))

0
 dt   

+  η ∫ u(t)

d2(xn(ξ),T(ξ,xn−1(ξ)))+ d2(xn−1(ξ),T(ξ,xn(ξ))) 

d(xn(ξ),T(ξ,xn−1(ξ)))+d(xn−1(ξ),T(ξ,xn(ξ)))

0
 dt  

  ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤  α ∫ u(t)

dt
d(xn(ξ),xn+1(ξ))[1+d(xn−1(ξ),xn(ξ))] 

1+d(xn−1(ξ),xn(ξ))

0
    

     +  β ∫ u(t)

d(xn(ξ),xn+1(ξ))[1+d(xn+1(ξ),xn(ξ))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt  
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 +    δ ∫ u(t)

d2(xn(ξ),xn+1(ξ))+ d2(xn−1(ξ),xn(ξ)) 

d(xn(ξ),xn+1(ξ))+d(xn−1(ξ),xn(ξ))

0
 dt    

 +  η ∫ u(t)

d2(xn(ξ),T(ξ,xn−1(ξ)))+ d2(xn−1(ξ),T(ξ,xn(ξ))) 

d(xn(ξ),T(ξ,xn−1(ξ)))+d(xn−1(ξ),T(ξ,xn(ξ)))

0
 dt  

  ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤  α ∫ u(t)

d(xn(ξ),xn+1(ξ))

0
 dt   

     +  β ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt  

 +    δ ∫ u(t)
(d(xn(ξ),xn+1(ξ))+ d(xn(ξ),xn−1(ξ)))

0
 dt  

     +  η ∫ u(t)
(d(xn(ξ),xn+1(ξ))+ d(xn(ξ),xn−1(ξ)))

0
 dt   

(1 − α − β − δ − η) ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ (δ + η) ∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤

δ+η

1−α−β−δ−η
∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

Let 
δ+η

1−α−β−δ−η
  =   q  since 0 <  α + β + γ + 2δ + 2η < 1  implies that  0 ≤ q < 1  and that 

∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ q ∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

Similarly we can write, 

∫ u(t)
d(xn(ξ),xn−1(ξ))

0
 dt ≤ q ∫ u(t)

d(xn−1(ξ),xn−2(ξ))

0
 dt  

That is  

∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ q2 ∫ u(t)

d(xn−1(ξ),xn−2(ξ))

0
 dt  

Processing the same way we can write 

∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ qn ∫ u(t)

d(x0(ξ),x1(ξ))

0
 dt  

Since  0 ≤ q < 1  and as n → ∞  we have 

∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt →   0  

This gives that 

{xn(ξ)}  is a dislocated Quasi sequence in the complete dislocated Quasi metric space X. Thus {xn(ξ)}  

dislocated quasi sequence converges to some x(ξ) since T is continuous we have 

T(ξ, x(ξ))  =  limn→ ∞ T(ξ, xn(ξ))  =   limn→ ∞ xn(ξ)  =   x(ξ)  

Thus  

T(ξ, x(ξ))  =  x(ξ)  

Thus T has a fixed point. 

The uniqueness is trivial. 

Theorem 1.3.4 Let (X, d)  be a dq metric space and let  S, T: X → X  be continuous mapping satisfying the 

following condition. 
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 ∫ u(t)dt
d(Sx,Ty)

0
≤  α ∫ u(t)dt

d(y,Ty)[1+d(x,Sx)] 

1+d(x,y)

0
+   β ∫ u(t)dt

d(y,Ty)[1+d(y,Sx)] 

1+d(x,y)

0
  

    +  γ ∫ u(t)dt

d(y,Sx)[1+d(x,Sx)] 

1+d(x,y)

0
 +   δ ∫ u(t)dt

d2(y,Ty)+ d2(x,Sx) 

d(y,Ty)+d(x,Sx)

0
   

   +  η ∫ u(t)dt

d2(y,Sx)+ d2(x,Ty) 

d(y,Sx)+d(x,Ty)

0
     1.3.4(a) 

For each x, y ∈ X with non negative reals α, β, γ, δ  such that  0 <  2α + 2β + 2γ + δ <  1, where u ∶ ℛ+ →  ℛ+ 

is a lesbesgue- integrable mapping which is summable on each compact subset of ℛ+, non negative, and such 

that 

  for each  ϵ > 0, ∫ u(t)
ϵ

0
 dt         1.3.3.4(b) 

Then S and T has a unique fixed point z ∈ X and for each x ∈ X, limn→∞ Tnx = z.  

Proof:  Let {xn} be a sequence of function in X defined as follows 

  S(ξ, xn(ξ)) =   xn+1(ξ) and T(ξ, xn+1(ξ)) =   xn+2(ξ) consider 

  d(xn(ξ), xn+1(ξ))  =   d (S(ξ, xn−1(ξ)), T(ξ, xn(ξ)))  

Implies that  

     ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt    =   ∫ u(t)

d(S(ξ,xn−1(ξ)),T(ξ,xn(ξ)))

0
 dt    

From 3.3.3(a)  we have, 

∫ u(t)
d(S(ξ,xn−1(ξ)),T(ξ,xn(ξ)))

0
 dt ≤  α ∫ u(t)

d(xn(ξ),T(ξ,xn(ξ)))[1+d(xn−1(ξ),S(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt   

     +  β ∫ u(t)

d(xn(ξ),T(ξ,xn(ξ)))[1+d(y,S(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt  

     +  γ ∫ u(t)

d(xn(ξ),S(ξ,xn−1(ξ)))[1+d(xn−1(ξ),S(ξ,xn−1(ξ)))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt   

     +  δ ∫ u(t)

d2(xn(ξ),T(ξ,xn(ξ)))+ d2(xn−1(ξ),S(ξ,xn−1(ξ))) 

d(xn(ξ),T(ξ,xn(ξ)))+d(xn−1(ξ),S(ξ,xn−1(ξ)))

0
 dt   

    +  η ∫ u(t)

d2(xn(ξ),S(ξ,xn−1(ξ)))+ d2(xn−1(ξ),T(ξ,xn(ξ))) 

d(xn(ξ),S(ξ,xn−1(ξ)))+d(xn−1(ξ),T(ξ,xn(ξ)))

0
 dt  

  ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤  α ∫ u(t)

dt
d(xn(ξ),xn+1(ξ))[1+d(xn−1(ξ),xn(ξ))] 

1+d(xn−1(ξ),xn(ξ))

0
    

     +  β ∫ u(t)

d(xn(ξ),xn+1(ξ))[1+d(xn+1(ξ),xn(ξ))] 

1+d(xn−1(ξ),xn(ξ))

0
 dt  

 +    δ ∫ u(t)

d2(xn(ξ),xn+1(ξ))+ d2(xn−1(ξ),xn(ξ)) 

d(xn(ξ),xn+1(ξ))+d(xn−1(ξ),xn(ξ))

0
 dt    

 +  η ∫ u(t)

d2(xn(ξ),xn(ξ))+ d2(xn−1(ξ),xn+1(ξ)) 

d(xn(ξ),xn(ξ))+d(xn−1(ξ),xn+1(ξ))

0
 dt  

  ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤  α ∫ u(t)

d(xn(ξ),xn+1(ξ))

0
 dt   
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     +  β ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt  

 +    δ ∫ u(t)
(d(xn(ξ),xn+1(ξ))+ d(xn(ξ),xn−1(ξ)))

0
 dt  

     +  η ∫ u(t)
(d(xn(ξ),xn+1(ξ))+ d(xn(ξ),xn−1(ξ)))

0
 dt   

(1 − α − β − δ − η) ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ (δ + η) ∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤

δ+η

1−α−β−δ−η
∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

Let 
δ+η

1−α−β−δ−η
  =   q  since 0 <  α + β + γ + 2δ + 2η < 1  implies that  0 ≤ q < 1  and that 

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ q ∫ u(t)

d(xn(ξ),xn−1(ξ))

0
 dt  

Similarly we can write, 

 ∫ u(t)
d(xn(ξ),xn−1(ξ))

0
 dt ≤ q ∫ u(t)

d(xn−1(ξ),xn−2(ξ))

0
 dt  

That is  

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ q2 ∫ u(t)

d(xn−1(ξ),xn−2(ξ))

0
 dt  

Processing the same way we can write 

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt ≤ qn ∫ u(t)

d(x0(ξ),x1(ξ))

0
 dt  

Since  0 ≤ q < 1  and as n → ∞  we have 

 ∫ u(t)
d(xn(ξ),xn+1(ξ))

0
 dt →   0  

This gives that 

{xn(ξ)}  is a dislocated Quasi sequence in the complete dislocated Quasi metric space X. Thus {xn(ξ)}  

dislocated quasi sequence converges to some x(ξ) since T is continuous we have 

S(ξ, x(ξ))  =  limn→ ∞ S(ξ, xn(ξ))  =   limn→ ∞ xn(ξ)  =   x(ξ)  

and 

 T(ξ, x(ξ))  =  limn→ ∞ T(ξ, xn(ξ))  =   limn→ ∞ xn(ξ)  =   x(ξ)  

Thus  

  S(ξ, x(ξ))  =  T(ξ, x(ξ))  =  x(ξ)  

Thus S,T have a common fixed point. 

The uniqueness is trivial. 
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