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Abstract: In this paper, the technique of modified Sumudu decomposition method has been employed to solve a 

system of Fredholm integro-differential equations with initial conditions. Two examples are discussed to show 

applicability, reliability and the performance of the modified sumudu decomposition method. This study showed 
the capability, simplicity and effectiveness of the modified approach. 
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1. Introduction 

 Mathematical modeling of real-life phenomena usually results in functional equations like ordinary or partial 

differential equations, stochastic differential equations, and integral and integro-differential equations. Many 

mathematical formulations of physical phenomena contain integro-differential equations. The integro-differential 

equations play an important role in engineering, mechanics, physics, chemistry, biology, economics and 

electrostatic. Some important problems in science and engineering can usually be reduced to a system of integral 

and integro-differential equations. Integro-differential equations have attracted much attention and solving these 

equations has been one of the interesting tasks for mathematicians. In this research we try to introduce a solution 

of system of linear integro-differential equations the following form: 
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with initial conditions: 

 
  .1,...,1,0,,...,1,)(

0


iij

j

i
njpiUxU  

In literature, many researchers paid attention in solving such types of integro-differential equations and system. 

Recently, Biazar in [4] used the Adomian decomposition method for solving the system of integro-differential 

equations. Also Davari applied the some method for solving linear Fredholm integro-differential equations. 

Maleknejad in [9] used the Galerkin methods with Hybrid Functions for solving linear integro-differential 

equation system. Biazar et al. in [5] by He’s Homotopy perturbation method for systems of integro-differential 

equations, Arikoglu and Ozkol in [2], by using differential Transform method, Maleknejad et al. in [8] by using 

rationalized Haar functions method can be solved to integro-differential equations system. Pour-Mahmoud et al. 

in [10] presented the Tau method for the numerical solution of systems of Fredholm integro-differential 

equations. 

The integral transform has been used to solve many different types of differential and integro differential 

equations. For similar problems, Sumudu transform was introduced and further applied to several ODEs as well 

as PDEs. For example, in [1], this transform was applied to the one-dimensional neutron transport equation. In 

[3, 6] some properties were studied. Recently, Kılıc m̧an et al. applied this transform to solve the system of 

differential equations [7], since there are some interesting properties that Sumudu transform [12] satisfies such as 
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In this paper, we use Sumudu transform which is defined over the set of the following functions: 
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We introduce a sumudu transform with modified decomposition method for solving Eq. (1). The modified 

technique of Adomian decomposition method developed in [11, 14] will form a useful basis for studying the 

system of Fredholm integro-differential equations. The modified sumudu decomposition method has a 

constructive attraction in that it provides the exact solution by computing only two terms of the decomposition 

series. 

 

2. Modified Sumudu Decomposition Method 

Consider following PDE  
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Implementing Sumudu transform to both sides of Eq. (5), we have 
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By using the differentiation property of Sumudu transform, we obtain 
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According to ADM, the series solution )(xU  is  
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The nonlinear term is decomposed as 
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where
nA  is the Adomian’s polynomials which can be determined by following formula 
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Using (6), (7) and (8) we get 
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Recursive relations for the modified sumudu decomposition method are formulated as: 
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Where ),(
1

uxk  and ),(
2

uxk  are Sumudu transform of ),(
1

txk  and ),(
2

txk respectively. Inverse 

Sumudu transform to Eqs. (10)- (12) gives our required recursive relation as follows 
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3. Numerical Applications 

Two examples for testing the accuracy of the proposed technique are given. 

Example 3.1 We consider the following system [15] 
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With initial conditions 
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With the exact solution 
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Implementing the Sumudu transform on Eq. (16) and by using the initial conditions, we have 
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With inverse Sumudu transform, we get 
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Consequently, we obtain 
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and also we take 
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The solution of given system is 
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The graphical representation for the solution of given system (16) is  
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Example 3.2 We consider the following system [15] 
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with initial conditions 
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Taking the Sumudu transform on Eq.(24)  and by using the initial conditions we have 
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With the inverse Sumudu transform, we get 
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Following the above procedure, if we assume solution of the form (7) and using the modified recursive relation, 

we obtain 
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and also we take 
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The solution of given system is 
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The graphical representation for the solution of given system (24)  
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4. Conclusion  

In this paper, the modified Sumudu decomposition method is employed for solving system of Fredholm integro-

differential equations. The proposed technique produces numerical results which are of highly reasonable 

accuracy. This study showed that the modified approach reduces the volume of the computational work. A 

conclusion may be draw from the obtained results that the modified Sumudu decomposition method provides 

with accurate approximate solutions to exact solutions.  
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