# On a Sub Branch of Element Related to an Element in a (BCC, gBCK)-algebras 

Assist.prof. Husein Hadi Abbass<br>Faculty of Education for Girls, University of Kufa<br>Assist. Lec. Hayder Abbas Dahham<br>Faculty of Dentistry, University of Kufa<br>Assist. Lec. Mohsin shaalan Abdulhussein<br>Faculty of physical planning, University of Kufa


#### Abstract

In this paper, we introduce a new notion that we call a sub branch of an element (a) related to an element (b), denoted by $S(a)_{b}$ in a BCC-algebra and gBCK-algebra, and we link this notion with another notions of BCC- algebra and gBCK-algebra. We give some properties of $S(a)_{b}$ in a (BCC, gBCK)-algebras.


Keywords: Sub branch of element related to an element, BCC-algebra, gBCK-algebra.

## INTRODUCTION

In 1966, Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebra and BCI-algebra, the notion of BCI-algebra was a generalization of a BCK-algebra[4]. In 1984, Y. Komori, introduced the notion of BCC-algebra[8]. In 1998, J. Hao. introduced the concept of ideals in a BCC-algebra[3]. In 2003, S. M. Hong, Y. B. Jun and M. A. Ozturk construct a new algebra, called a generalized BCK-algebra (gBCK-algebra for short), which is a generalization of a positive implicative BCK-algebra [5]. The aim of this paper is to construct a new subset of (BCC, gBCK)-algebras, called a sub branch of element related to an element. We study the properties of this subset in (BCC, gBCK)-algebras

## 1.Preliminaries

In this section, we review some basic definitions and notations of BCC-algebras, gBCK- algebras and some types of ideals, that we need in our work.
Definition (1.1) [8]:
By BCC-algebra we mean a non-empty set X , with a constant 0 and a binary operation"*" satisfying the following axioms: for all $x, y, z \in X$,
1- $((x * y) *(z * y)) *(x * z)=0$,
2- $0 * x=0$,
3- $x * 0=x$,
4- $\quad x^{*} y=0$ and $y^{*} x=0$ imply $x=y$.
in $X$ we can define a binary relation " $\leq$ " by $x \leq y$ if and only if $x * y=0$, is called a BCC-order on $X$.
A nonempty subset $S$ of $X$ is called a subalgebra of $X$ if $x * y \in S$ for all $x, y \in S$.

Example (1.2) [8] :
Let $\mathrm{X}=\{0,1,2,3,4\}$ be a set with the following table:

|  | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $*$ |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 | 0 | 0 |
| 3 | 3 | 3 | 1 | 0 | 0 |
| 4 | 4 | 3 | 4 | 3 | 0 |

Then ( $\mathrm{X} ; *, 0$ ) is a BCC-algebra.
proposition ( 1.3 ) [8]:
In a BCC-algebra, the following hold, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
$x * x=0$,
$(x * y) * x=0$,
3- $\quad x * y=0$ imply $(x * z) *(y * z)=0$.
4- $\quad x * y=0$ imply $\left(z^{*} y\right) *\left(z^{*} x\right)=0$.
Definition (1.4) [5]:
By a generalized BCK-algebra (gBCK-algebra, for short) we mean a triplet ( $\mathrm{X},{ }^{*}, 0$ ), where X is a nonempty set,

* is a binary operation on X and $0 \in \mathrm{X}$, such that

1 - $\mathrm{x} * 0=\mathrm{x}$,
2- $x * x=0$,
3- $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$,
4- $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})$.

## Example ( 1.5 ) [5] :

Let $\mathrm{X}=\{0,1,2,3\}$ be a set with the following table:

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 2 | 2 | 0 | 0 | 0 |
| 3 | 3 | 0 | 0 | 0 |

Then X is a gBCK-algebra

## Proposition ( 1.6 ) [5] :

Let $X$ be a gBCK-algebra. Then
1- $0 * x=0$,
2- $\quad(\mathrm{x} * \mathrm{y}) * \mathrm{x}=0$.
3- $\mathrm{x} * \mathrm{y}=0 \operatorname{implies}(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})=0$.
Definition (1.7) [3]:
A nonempty subset I is called an ideal of X if it satisfies:
1- $0 \in \mathrm{I}$.
2- $\quad x * y \in I$ and $y \in I$ imply $x \in I$.

## Definition (1.8) [2]:

An ideal $I$ is called a closed ideal of $X$ if: for every $x \in I$, we have $0 * x \in I$.

## Definition (1.9) [2]:

An ideal $I$ is called a closed ideal with respect to an element $b \in X$ (denoted $b$-closed ideal) if $b^{*}\left(0^{*} x\right) \in I$, for all $\mathrm{x} \in \mathrm{I}$.

Definition ( 1.10 ) [1] :
An ideal $I$ of $X$ is called a completely closed ideal of $X$ if: for every $x, y \in I$, we have $x * y \in I$.

Definition ( 1.11 ) [1] :
An ideal $I$ is called a completely closed ideal with respect to an element $b \in X$ (denoted $b$-completely closed ideal) if $b^{*}\left(x^{*} y\right) \in I$, for all $x, y \in I$.
Definition (1.12) [2] :
An ideal I satisfies the condition: $\mathrm{x} \in \mathrm{I}$ and $\mathrm{a} \in \mathrm{X} \backslash \mathrm{I}$ imply $\mathrm{x} * \mathrm{a} \in \mathrm{I}$, is called a *-ideal of X .

## Definition (1.13) [7] :

A nonempty subset $I$ of a BCC-algebra $X$ is called a BCC-ideal of $X$, if
1- $0 \in \mathrm{I}$,
2- $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I ; \forall x ; y ; z \in X$.

## Definition (1.14) [6] :

Let X be a gBCK-algebra. A nonempty subset I of X is called a generalized BCK-ideal (gBCK-ideal, for short) of X if it satisfies the following conditions:
1- $x \in X$ and $a \in I$ imply $a^{*} x \in I$,
2- $x \in X$ and $a, b \in I$ imply $x *(x * a)^{*} b \in I$.

## 2.The Main Results:

In this section, we define the notion of a sub branch of element related to an element of (BCC, gBCK)algebras, and link this notion with another notions in BCC-algebra and gBCK-algebra.
Definition (2.1.1):
Let $X$ be a (BCC, gBCK)-algebra, we define a sub branch of element $a \in X$ related to an element $\quad b \in X$ is the set $S(a)_{b}=\{x \in X:(x * a) * b=0\}$
Now, we study this notion in BCC-algebra and gBCK-algebra.

### 2.1 The Main Results in BCC-algebra:

To explain Definition(2.1.1) in BCC-algebra we give the following example.

## Example (2.1.1):

Let X be a BCC-algebras in example (1.2). Then
$S(1)_{2}=\{0,1,2\}, S(3)_{1}=\{0,1,2,3\}, S(1)_{0}=\{0,1\}$.

## Proposition (2.1.2):

Let $X$ be a BCC-algebra. Then
1- $0 \in S(a)_{b} \forall a, b \in X$.
2- $a \in S(a)_{b} \forall a, b \in X$.
3- $S(0)_{0}=\{0\}$.
Proof :
1- Let $a, b \in X$
Then $(0 * a) * b=0 * b=0 \quad$ [definition (1.1)(2)]
$\Rightarrow 0 \in \mathrm{~S}(\mathrm{a})_{\mathrm{b}} \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
2- Let $a, b \in X$
Then $(a * a) * b=0 * b=0 \quad$ [definition (1.1)(2)]
$\Rightarrow \mathrm{a} \in \mathrm{S}(\mathrm{a})_{\mathrm{b}} \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
3- Let $x \in S(0)_{0}$. Then $(x * 0) * 0=0$
Now, $(x * 0) * 0=x * 0=x \Rightarrow x=0$
$\Rightarrow S(0)_{0}=\{0\}$.

## Remark (2.1.4):

Let X be a BCC-algebra. The $\mathrm{U}_{\mathrm{b} \in \mathrm{X}} S(a)_{b}=X$.

## Proposition (2.1.5 ):

Let $X$ be a BCC-algebra. Then
1- If $x \in S(a)_{0} \Rightarrow x^{*} z \in S\left(a^{*} z\right)_{0}, \forall z \in X$.
2- If $x \in S(a)_{0} \Rightarrow z^{*} a \in S\left(z^{*} x\right)_{0}, \forall z \in X$.
3- $\quad x * y \in S\left(z^{*} y\right)_{x^{*}}, \forall y, z \in X$.
Proof :
1- let $\mathrm{z} \in \mathrm{X}$ and $\mathrm{x} \in \mathrm{S}(\mathrm{a})_{0} \Rightarrow(\mathrm{x} * \mathrm{a}) * 0=0 \Rightarrow \mathrm{x} * \mathrm{a}=0 \Rightarrow(\mathrm{x} * \mathrm{z}) *(\mathrm{a} * \mathrm{z})=0$ [proposition (1.3)(3)]
$\Rightarrow((\mathrm{x} * \mathrm{z}) *(\mathrm{a} * \mathrm{z})) * 0=0$
$\Rightarrow \mathrm{x}^{*} \mathrm{z} \in \mathrm{S}\left(\mathrm{a}^{*} \mathrm{z}\right)_{0}$
2- let $z \in X$ and $x \in S(a)_{0} \Rightarrow(x * a)^{*} 0=0 \Rightarrow x^{*} a=0 \Rightarrow\left(z^{*} a\right)^{*}\left(z^{*} x\right)=0$ [proposition (1.1)(4)]
$\Rightarrow\left(\left(\mathrm{z}^{*} \mathrm{a}\right) *\left(\mathrm{z}^{*} \mathrm{x}\right)\right)^{*} 0=0$
$\Rightarrow \mathrm{z}^{*} \mathrm{a} \in \mathrm{S}\left(\mathrm{z}^{*} \mathrm{x}\right)_{0}$
3- $\quad$ Since $\left(\left(x^{*} y\right) *\left(z^{*} y\right)\right)^{*}\left(x^{*} z\right)=0$ [definition (1.1)(1)]
$\Rightarrow x^{*} y \in S\left(z^{*} y\right)_{x^{*} z}$

## Proposition (2.1.6):

Let $X, Y$ be a BCC-algebras, $x, a, b \in X$ such that $x \in S(a)_{b}$, and $f$ be a homomorphism from $X$ to $Y$. Then $f(x)$ $\in S(f(a))_{f(b)}$
Proof :
Since $x \in S(a)_{b} \Rightarrow(x * a) * b=0$
Now,
$(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{a})) * \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{x} * \mathrm{a}) * \mathrm{f}(\mathrm{b})=\mathrm{f}((\mathrm{x} * \mathrm{a}) * \mathrm{~b})=\mathrm{f}(0)=0$
$\Rightarrow f(x) \in S(f(a))_{f(b)}$

### 2.2 The Main Results in gBCK-algebra:

We now give some properties of $S(a) b$ in generalized BCk-algebra
Example (2.2.1):
Let $X$ be a gBCK-algebras in example (1.5). Then
$S(2)_{1}=\{0,1,2,3\}, S(3)_{2}=\{0,2,3\}$,
Theorem (2.2.2):
Let $X$ be a gBCK-algebra, Then $S(a)_{b}$ is a subalgebra $\forall a, b \in X$.
Proof :
Let $\mathrm{a}, \mathrm{b} \in \mathrm{X} x, \mathrm{y} \in \mathrm{S}(\mathrm{a})_{\mathrm{b}}$
Then $(x * a) * b=0$. and $(y * a) * b=0$
Now, $((\mathrm{x} * \mathrm{y}) * \mathrm{a}) * \mathrm{~b}=((\mathrm{x} * \mathrm{a}) * \mathrm{y}) * \mathrm{~b} \quad$ [definition (1.4)(3)]
$=((x * a) * b) * y \quad[$ definition (1.4)(3)]
$=0 * y=0 \quad$ [proposition (1.6)(1)]
$\Rightarrow S(a)_{\mathrm{b}}$ is a subalgebra

## Theorem (2.2.3):

Let $X$ be a gBCK-algebra. Then $S(a)_{b}$ is an ideal $\forall a, b \in X$.
Proof :
1- Let $a, b \in X$
Then $(0 * \mathrm{a}) * \mathrm{~b}=0 * \mathrm{~b}=0 \quad$ [proposition (1.6)(1)]
$\Rightarrow 0 \in S(a){ }_{b}$.
2- Let $a, b \in X, x * y \in S(a)_{b}$ and $y \in S(a)_{b}$
Then $((x * y) * a) * b=0$ and $(y * a) * b=0$
Now, $\left(\left(x^{*} y\right) * a\right)^{*} b=0$
$\Rightarrow((x * a) *(y * a)) * b=0 \quad[$ definition $(1.4)(4)]$
$\Rightarrow((\mathrm{x} * \mathrm{a}) * \mathrm{~b}) *((\mathrm{y} * \mathrm{a}) * \mathrm{~b})=0 \quad[$ definition $(1.4)(4)]$
$\Rightarrow((x * a) * b) * 0=0 \quad\left[\right.$ since $\left.y \in S(a)_{b}\right]$
$\Rightarrow(x * a) * b=0$
$\Rightarrow \mathrm{x} \in \mathrm{S}(\mathrm{a})_{\mathrm{b}}$
$\Rightarrow S(a)_{\mathrm{b}}$ is an ideal.
Proposition (2.2.4):
Let X be a gBCK-algebra. Then $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a ${ }^{\text {-ideal }} \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
Proof :
1- $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is an ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X} \quad$ [theorem(2.2.3)]
2- Let $a, b \in X, x \in S(a)_{b}$ and $y \in X / I$

$$
\Rightarrow\left(x^{*} \mathrm{a}\right)^{*} \mathrm{~b}=0
$$

Now,
$((x * y) * a) * b=((x * a) * y) * b \quad$ [definition (1.4)(3)]
$=((x * a) * b) * y \quad[$ definition (1.4)(3)]
$=0 * y=0 \quad$ [propisition (1.6)(1)]
$\Rightarrow x^{*} y \in S(a)_{b}$
$\Rightarrow S(\mathrm{a})_{\mathrm{b}}$ is a ${ }^{*}$ - ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.

## Proposition (2.2.5):

Let $X$ be a gBCK-algebra. Then
1- $b \in S(a)_{b} \forall a, b \in X$.
2- if $x \in S(a)_{b} \Rightarrow x \in S(b)_{a}$
3- if $x \in S(a)_{b} \Rightarrow x * c \in S(a)_{b * c} \forall a, b, c \in X$.
Proof:
1- $\forall a, b \in X$
Then $\left(b^{*} a\right)^{*} b=\left(b^{*} b\right)^{*}$ [definition (1.4)(3)]
$=0 * \mathrm{~b}=0 \quad$ [proposition (1.6)(1)]
$\Rightarrow \mathrm{b} \in \mathrm{S}(\mathrm{a})_{\mathrm{b}} \forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
2- Let $a, b \in X$ and $x \in S(a)_{b} \Rightarrow(x * a) * b=0$
$\Rightarrow(\mathrm{x} * \mathrm{~b})^{*} \mathrm{a}=0 \quad$ [definition (1.4)(3)]

$$
\Rightarrow \mathrm{x} \in \mathrm{~S}(\mathrm{~b})_{\mathrm{a}} .
$$

3- Let $a, b, c \in X$ and $x \in S(a)_{b} \Rightarrow(x * a)^{*} b=0$
Now,

$$
\begin{array}{ll}
((\mathrm{x} * \mathrm{a}) * \mathrm{c}) *(\mathrm{~b} * \mathrm{c})=0 & {[\text { proposition }(1.6)(3)]} \\
\Rightarrow((\mathrm{x} * \mathrm{c}) * \mathrm{a}) *(\mathrm{~b} * \mathrm{c})=0 & {[\text { definition }(1.4)(3)]} \\
\Rightarrow \mathrm{x}^{*} \mathrm{c} \in \mathrm{~S}(\mathrm{a})_{b^{*} \mathrm{c}} . &
\end{array}
$$

## Proposition (2.2.6):

Let $X$ be a gBCK-algebra, If $x \in S(a)_{0}$ Then $x \in S(a)_{b} \quad \forall a, b \in X$.
Proof :
1- Let $\mathrm{a}, \mathrm{b} \in \mathrm{X}$ and $\mathrm{x} \in \mathrm{S}(\mathrm{a})_{0} \Rightarrow\left(\mathrm{x}^{*} \mathrm{a}\right) * 0=0 \Rightarrow \mathrm{x}^{*} \mathrm{a}=0 \Rightarrow(\mathrm{x} * \mathrm{~b})^{*}(\mathrm{a} * \mathrm{~b})=0$ [proposition (1.6)(3)] $\Rightarrow(\mathrm{x} * \mathrm{a}) * \mathrm{~b}=0 \quad$ [definition (1.4)(4)]

$$
\Rightarrow \quad x \in S(a)_{b}
$$

## Proposition (2.2.7):

Let X be a gBCK-algebra. Then $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a closed ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.

Proof :
1- $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is an ideal [ theorem (2.2.3)]
2- Let $x \in S(a)_{b}$
Now,
$((0 * x) * a) * b=(0 * a) * b=0 * b=0$
$0 * x \in S(a)_{b}$
$\Rightarrow S(a)_{\mathrm{b}}$ is a closed ideal.
Proposition (2.2.8):
Let $X$ be a gBCK-algebra. Then $S(a)_{b}$ is a $x$-closed ideal $\forall x \in S(a)_{b}, \forall a, b \in X$.
Proof :
1- $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is an ideal [theorem (2.2.3)]
2- Let $x, y \in S(a)_{b} \Rightarrow(x * a) * b=0$
Now,
$((x *(0 * y)) * a) * b=((x * 0) * a) * b=(x * a) * b=0$
$\Rightarrow x^{*}(0 * y) \in S(a)_{b}$
$\Rightarrow \mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is x -closed ideal.
Proposition (2.2.9):
Let X be a gBCK-algebra. Then $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a completely closed ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
Proof:
1- $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is an ideal [theorem (2.2.3)]
2- Let $x, y \in S(a)_{b} \Rightarrow(x * a)^{*} b=0,(y * a) * b=0$
Now, $((\mathrm{x} * \mathrm{y}) * \mathrm{a}) * \mathrm{~b}=((\mathrm{x} * \mathrm{a}) * \mathrm{y}) * \mathrm{~b} \quad$ [definition (1.4)(3)]
$=\left(\left(x^{*} a\right) * b\right) * y \quad$ [definition (1.4)(3)]
$=0 * y=0 \quad\left[\right.$ since $\left.x \in S(a)_{b}\right]$
$x^{*} y \in S(a)_{b}$
$\Rightarrow \mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a completely closed ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$
Proposition (2.2.10):
Let $X$ be a gBCK-algebra. Then $S(a)_{b}$ is a c-completely closed ideal $\forall a, b \in X, c \in S(a)_{b}$.
Proof :
1- $S(a)_{b}$ is an ideal [theorem (2.2.3)]
2- Let $c, x, y \in S(a)_{b} \Rightarrow(c * a) * b=0,(x * a) * b=0,(y * a)^{*} b=0$
Now, $\left(\left(c^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)\right) * \mathrm{a}\right) * \mathrm{~b}=((\mathrm{c} * \mathrm{a}) *(\mathrm{x} * \mathrm{y})) * \mathrm{~b}$ [definition (1.4)(3)]
$=\left(\left(c^{*} \mathrm{a}\right) * \mathrm{~b}\right) *(\mathrm{x} * \mathrm{y}) \quad$ [definition (1.4)(3)]
$=0 *(x * y) \quad\left[\right.$ since $\left.\mathrm{c} \in \mathrm{S}(\mathrm{a})_{\mathrm{b}}\right]$
$=0$
$c^{*}\left(x^{*} y\right) \in S(a)_{b}$
$\Rightarrow S(a)_{b}$ is an $c$ - completely closed ideal $\forall a, b \in X, c \in S(a)_{b}$.

## Theorem (2.2.11):

Let X be a gBCK-algebra. Then $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a BCC-ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
Proof :
$1-\quad 0 \in S(a)_{b} \quad$ [theorem $\left.(2.2 .3)(1)\right]$
2- Let $a, b, x, y, z \in X,(x * y) * z \in S(a)_{b}, y \in S(a)_{b}$ $\Rightarrow\left(((x * y) * z)^{*}\right) * b=0,(y * a) * b=0$
Now, $(((\mathrm{x} * \mathrm{y}) * \mathrm{z}) * \mathrm{a}) * \mathrm{~b}=0$
$\Rightarrow(((\mathrm{x} * \mathrm{z}) * \mathrm{y}) * \mathrm{a}) * \mathrm{~b}=0 \quad$ [definition $(1.4)(3)]$
$\Rightarrow\left(((\mathrm{x} * \mathrm{z}) * \mathrm{a})^{*}((\mathrm{y} * \mathrm{z}) * \mathrm{a})\right) * \mathrm{~b}=0 \quad[$ definition (1.4)(4)]
$\Rightarrow\left(\left(\left(\mathrm{x}^{*} \mathrm{z}\right) * \mathrm{a}\right) * \mathrm{~b}\right) *\left(\left(\left(\mathrm{y}^{*} \mathrm{z}\right) * \mathrm{a}\right) * \mathrm{~b}\right)=0 \quad[$ definition $(1.4)(4)]$
$\Rightarrow\left(\left(\left(x^{*} \mathrm{z}\right) * \mathrm{a}\right) * \mathrm{~b}\right) *(((\mathrm{y} * \mathrm{a}) * \mathrm{z}) * \mathrm{~b})=0 \quad[$ definition (1.4)(3)]
$\Rightarrow(((\mathrm{x} * \mathrm{z}) * \mathrm{a}) * \mathrm{~b}) *(((\mathrm{y} * \mathrm{a}) * \mathrm{~b}) * \mathrm{z})=0 \quad[$ definition (1.4)(3)]
$\Rightarrow(((\mathrm{x} * \mathrm{z}) * \mathrm{a}) * \mathrm{~b}) *(0 * \mathrm{z})=0 \quad[$ since $\mathrm{y} \in \mathrm{S}(\mathrm{a}) \mathrm{b}]$
$\Rightarrow(((\mathrm{x} * \mathrm{z}) * \mathrm{a}) * \mathrm{~b}) * 0=0 \quad$ [proposition (1.6)(1)]
$\Rightarrow(((\mathrm{x} * \mathrm{z}) * \mathrm{a}) * \mathrm{~b})=0$
$\Rightarrow x^{*} z \in S(a)_{b}$
$\Rightarrow \mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a BCC- ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$

## Proposition ( 2.2.12):

Let X be a gBCK-algebra. Then $\mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a gBCK-ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.
Proof :
1- Let $x \in X$ and $y \in S(a)_{b} \Rightarrow(y * a) * b=0$
Now,
$\left(\left(y^{*} x\right) * a\right) * b=((y * a) *(x * a)) * b=((y * a) * b) *((x * a) * b)=0 *((x * a) * b)=0$
$\Rightarrow y^{*} x \in S(a)_{b}$
2- Let $x \in X$ and $y, z \in S(a)_{b} \Rightarrow(y * a) * b=0,\left(z^{*} a\right)^{*} b=0$
Now,
$\left(\left(\mathrm{x}^{*}((\mathrm{x} * \mathrm{y}) * \mathrm{z})\right) * \mathrm{a}\right) * \mathrm{~b}=((\mathrm{x} * \mathrm{a}) *(((\mathrm{x} * \mathrm{y}) * \mathrm{z}) * \mathrm{a}))^{*} \mathrm{~b}$
$=\left(\left(\mathrm{x}^{*} \mathrm{a}\right) *\left(((\mathrm{x} * \mathrm{y}) * \mathrm{a}) *\left(\mathrm{z}^{*} \mathrm{a}\right)\right)\right) * \mathrm{~b}$
$=\left(\left(x^{*} a\right)^{*}\left(((x * a) *(y * a)) *\left(z^{*} a\right)\right)\right) * b$
$=[(x * a) * b] *\left[\left(((x * a) *(y * a)) *\left(z^{*} a\right)\right) * b\right]$
$\left.=\left[\left(x^{*} a\right) * b\right] *\left[\left(\left(x^{*} a\right) *(y * a)\right) * b\right)^{*}\left(\left(z^{*} a\right) * b\right)\right]$
$\left.=[(x * a) * b] *[((x * a) * b) *(y * a) * b) *\left(\left(z^{*} a\right) * b\right)\right]$
$=[(\mathrm{x} * \mathrm{a}) * \mathrm{~b}] *((\mathrm{x} * \mathrm{a}) * \mathrm{~b}) * 0) * 0$
$=((x * a) * b) *((x * a) * b)=0$
$\Rightarrow x^{*}\left(x^{*} y\right) * z \in S(a)_{b}$.
$\Rightarrow \mathrm{S}(\mathrm{a})_{\mathrm{b}}$ is a gBCK-ideal $\forall \mathrm{a}, \mathrm{b} \in \mathrm{X}$.

## References

1- H. H. Abass and H. A. Dahham, On Completely Closed Ideal With Respect To an Element Of a BHAlgebra, J. Kerbala university, Vol. 10, No. 3. Scientific 2012.

2- H. H. Abass and H. M. A. Saeed, The Fuzzy Closed Ideal With Respect To an Element Of a BH-Algebra, Msc. Thesis Kufa university ,2011.
3- J. Hao, Ideal Theory of BCC-algebras, Sci. Math. Japo. 3, 373-381, (1998).
4- K. Is'eki, On BCI-algebras, Math. Seminar Notes 8, 125-130, (1980).
5- S. M. hong, Y. B. jun and M. A.Ozturk, generalizations of BCK-algebras, Scientiae Mathematicae Japonicae Online, Vol. 8, (2003), 549-557.
6- W. Dudeck and X. Zhang, On ideals and congruences in BCC-algebras, Czecho Math. J. 48(123)(1998), 2129.

7- Y Imai and K. Iseki, On axiom system of propositional caiculi XIV, Proc. Japan Academy 42 (1966), 19-22.
8- Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.

