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Abstract 

In this paper, we investigate the transient mixed convective heat and mass transfer flow of a viscous, 

electrically conducting fluid confined in a vertical channel with traveling thermal wave. The concentration on 

the walls is maintained constant. The non-linear coupled equations governing the flow, heat and mass transfer 

have been solved by employing a regular perturbation technique with the aspect ratio δ as a perturbation 

parameter. The effect of various governing parameters of the flow characteristics have been discussed 

graphically. The rate of heat and mass transfer are evaluated numerically for different variations.   
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e  
density of the fluid in the equilibrium state,  

eT   temperature in the equilibrium state,            eC    Concentration in the equilibrium state,  

u, v     velocity components along x and y directions respectively,  

p    pressure,                 T    fluid temperature,                   C    fluid Concentration,  

  density of the fluid,              coefficient of viscosity,       Cp     specific heat at constant pressure,    

   coefficient of thermal conductivity,          D1    molecular diffusivity,            k11     cross diffusivity,  

   coefficient of thermal expansion,               
*      

volumetric coefficient of expansion  

Q   strength of the heat source 

 

Introduction 

 The time dependent thermal convection flows have applications in chemical engineering, space 

technology, etc. These flows can be achieved by either time dependent movement of the boundary or unsteady 

temperature of the boundary.  The unsteady temperature may be attributed to the free stream oscillations or 

oscillatory flux or temperature oscillations.  The oscillatory convection problems are important from the 
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technological point of view as the effect of surface temperature oscillations on skin friction and heat transfer 

from surface to the surrounding fluid has special interest in heat transfer engineering.  

 Flows which arise due to the interaction of the gravitational force and density differences caused by the 

simultaneous diffusion of thermal energy have many applications in geophysics and engineering.  Such thermal 

and mass diffusion plays a dominant role in a number of technological and engineering systems.  Obviously, the 

understanding of this transport process is desirable in order to effectively control the overall transport 

characteristics. The combined effect of thermal and mass diffusion in channel flows has been studied by a few 

authors in recent times [5, 7, 10, 18]. The problem of combined buoyancy driven thermal and mass diffusion has 

been studied in parallel plate geometries by a few authors, notably, Chen and Moutsoglou [4], Trevisan [32] and 

Angirasa et al. [2].  

As the fluid flows through a tortuous path viz., the dilated – constricted geometry, there will be more 

intimate contact between them. The flow takes place both axially (primary) and transversely (secondary) with 

the secondary velocity being towards the axis in the fluid bulk rather than confining within a thin layer as in 

straight channels.  Hence it is advantageous to go for converging – diverging geometries for improving the 

design of heat transfer equipment. Vajravelu and Neyfeh [33] have investigated the influence of the wall 

waviness on friction and pressure drop of the generated coquette flow. Vajravelu and Sastri [35] have analyzed 

the free convection heat transfer in a viscous, incompressible fluid confined between long vertical wavy walls in 

the presence of constant heat source.  Later Vajravelu and Debnath [34] have extended this study to convective 

flow in a vertical wavy channel in four different geometrical configurations. This problem has been extended to 

the case of wavy walls by Deshikachar et al [6], Rao et al. [16] and Sree Ramachandra Murthy [29] have 

analyzed that the flow heat and mass transfer in a wavy duct with various corrugation angles in two dimensional 

flow regimes. Mahdy et al. [11] have studied the mixed convection heat and mass transfer on a vertical wavy 

plate embedded in a saturated porous media (PST/PSE). Jafarunnisa et al. [9] have discussed unsteady 

hydromagnetic mixed convection flow in a vertical channel on whose walls travelling thermal wave is imposed. 

Jer-Huan Jang et al. [10] have analyzed that the Mixed convection heat and mass transfer along a vertical wavy 

surface. 

The present trend in the field of chemical reaction analysis is to give a mathematical model for the 

system to predict the reactor performance. A large amount of research work has been reported in this field. In 

particular the study of heat and mass transfer with chemical reaction is of considerable importance in chemical 

and hydrometallurgical industries. Chemical reaction can be codified as either heterogeneous or homogeneous 

processes. This depends on whether they occur at an interface or as a single phase volume reaction. Frequently 

the transformations proceed in a moving fluid, a situation encountered in a number of technological fields. A 

common area of interest in the field of aerodynamics is the analysis of thermal boundary layer problems for two 

dimensional steady and incompressible laminar flow passing a wedge.  Simultaneous heat and mass transfer 

from different geometrics embedded in porous media has many engineering and geophysical application such as 

geothermal reservoirs, drying of porous solids thermal insulation, enhanced oil recovery, packed-bed catalytic 

reactors, cooling of nuclear reactors, and underground energy transport. A very significant area of research in 

radiative heat transfer, at the present time is the numerical simulation of combined radiation and 

convection/conduction transport processes. The effort has arisen largely due to the need to optimize industrial 

system such as furnaces, ovens and boilers and the interest in our environment and in no conventional energy 

sources, such as the use of salt-gradient solar ponds for energy collection and storage. 

      Unsteadiness in the flow can also be created by imposing traveling thermal waves on the boundaries.  

From a physical point of view, the motion induced by traveling thermal waves is quite interesting as a purely 

fluid dynamical problem and can be used as a possible explanation for the observed four-day retrograde zonal 

motion of the upper atmosphere of Venus. Keeping the above applications in view several authors [13, 17, 15, 

18, 22, 30] have investigated convective Heat and Mass transfer flow in wavy channels with traveling thermal 

waves on the walls. 

When heat and mass transfer occur simultaneously in a moving fluid, the relation between the fluxes 

and the driving potentials are of more intricate nature. Mass fluxes can be created by temperature gradients and 

this is the Soret effect or thermo-diffusion effect. Adrian Postelnicu[1], Emmanuel Osalusi et al. [7], Mohamed 

Abd-El-Aziz [12] have studied thermo-diffusion and diffusion thermo effects on combined heat and mass 

transfer through a porous medium under different conditions.  Sreevani et al. [31] have studied the unsteady free 

convective heat and mass transfer flow through porous medium dissipative effect in rotating channel. All the 

above mentioned studies are based on the hypothesis that the effect of dissipation is neglected. This is possible 
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in case of ordinary fluid flow like air and water under gravitational force.  But this effect is expected to be 

relevant for fluids with high values of the dynamic viscosity force. On the other hand, Barletta [3] and Zanchini 

[36] pointed out that relevant effects of viscous dissipation on the temperature profiles and the Nusselt number 

may occur in the fully developed convection in tubes.  In view of this, several authors, notably Soundalgekar 

and Pop [26], Barletta [3] and Zanchini [36], Sreevani [30] has studied the effect of viscous dissipation on the 

convective flows past an infinite vertical plate and through vertical channels and ducts. Sivaiah et al [24] have 

studied the Thermo-Diffusion effects on convective heat and mass transfer through a porous medium in Ducts. 

Indudhar et al. [8] have investigated the effect of thermo-diffusion and radiation on unsteady convective heat 

and mass transfer flow in a vertical channel with quadratic density –temperature relation. Rajasekhar et al. [19] 

have discussed the effect of chemical reaction and radiation absorption on unsteady convective heat and mass 

transfer flow of a viscous electrically conducting fluid in a vertical wavy channel with traveling thermal waves 

and Hall effects. Muthuraj et al. [13] have studied the mixed convective heat and mass transfer in a vertical 

wavy channel with traveling thermal waves and porous medium. Recently Sreeranga Vani et al. [28] analyzed 

the effect of chemical reaction and dissipation on unsteady convective heat and mass transfer flow in a vertical 

channel with traveling thermal waves imposed on the wall. 

 In this paper, we deal with the transient mixed convective heat and mass transfer flow of a viscous, 

electrically conducting fluid confined in a vertical channel with traveling thermal wave. The concentration on 

the walls is maintained constant. The coupled equations governing the flow, heat and mass transfer are solved 

by using the perturbation technique with , the aspect ratio as a perturbation parameter. The combined influence 

of Soret and dissipation effects on the velocity, temperature, concentration and rate of heat and mass transfer are 

discussed in detail. 

FORMULATION OF THE PROBLEM  

 

        We consider the motion of viscous, 

incompressible, electrically conducting fluid in a 

vertical channel bounded by flat walls. The 

thermal buoyancy in the flow field is created by a 

traveling thermal wave imposed on the boundary 

wall at y=L while the boundary at y = -L is 

maintained at constant temperature T1. The walls 

are maintained at constant concentrations. The 

Boussinesq approximation is used so that the 

density variation will be considered only in the 

buoyancy force. The viscous and Darcy 

dissipations are taken into account to the transport 

of heat by conduction and convection in the 

energy equation.  We take Soret effect into 

account in the diffusion equation. Also the 

kinematic viscosity , the thermal  conductivity  k  

are  treated  as constants. We choose a rectangular 

Cartesian system 0 ( x  ,y )  with x-axis in the 

vertical direction and y-axis normal to the walls. 

The walls of the channel are at Ly  . 

The equations governing the unsteady flow, heat 

and mass transfer are Equation of linear 
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Equation of continuity     

      0









y

v

x

u
                       (3)     

 

  Configuration of the Problem   

               x   

  

  

  

  T = T 1             T=T 2 +  T Sin(mx+nt)     

  C  =  C 1             C = C 2   

  

                y   

  

  

  y  =   - L              g           y=+L              

  

      

                  

  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.3, 2016 

 

64 

Equation of energy 
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Equation of Diffusion 
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Equation of state 
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where DDe pppp ,  being the hydrodynamic pressure. 

      The flow is maintained by a constant volume flux for which a characteristic velocity is defined as 

                      




L

L

ydu
L

Q
2

1
.                                                                 (8) 

The boundary conditions for the velocity and temperature fields are  

             u = 0, v = 0,   T=T1,        C = C1                         on y = -L  

             22 ,)(,0,0 CCntmxSinTTTvu e     on y = L              (9)           

where 21 TTTe   and )( ntmxSin   is the imposed traveling thermal wave 

In view of the continuity equation we define the stream function  as 
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Eliminating pressure p from equations (2) & (3) and using the equations governing the flow in terms of  are 
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Introducing the non-dimensional variables in (11 )- (13) as   
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The energy equation in the non-dimensional form is  
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The Diffusion equation is 
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The corresponding boundary conditions are  
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The value of  on the boundary assumes the constant volumetric flow in consistent with the hypothesis (8). 

Also the wall temperature varies in the axial direction in accordance with the prescribed arbitrary function t. 

 

ANALYSIS OF THE FLOW 

 

    The main aim of the analysis is to discuss the perturbations created over a combined free and forced 

convection flow due to traveling thermal wave imposed on the boundaries. The perturbation analysis is carried 

out by assuming that the aspect ratio    to be small. 

We adopt the perturbation scheme and write  
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Nusselt Number and Sherwood Number  

The local rate of heat transfer coefficient (Nusselt number) on the walls has been calculated using the formula  
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The local rate of mass transfer coefficient (Sherwood number) on the walls has been calculated using the 

formula  
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RESULTS AND DISCUSSIONS  

In this analysis we investigate the effect of dissipation, chemical reaction and thermo-diffusion on 

unsteady convective heat and mass transfer flow of a viscous, electrically conducting fluid in a vertical channel 

on whose wall is travelling thermal wave is imposed. The non-linear coupled equations governing the flow heat 

and mass transfer have been solved by employing a regular perturbation technique with the aspect ratio δ as a 

perturbation parameter. Here we take Prandtl number P=0.71 and δ=0.01. 

The axial velocity (u) is shown in figures 1-5 for different values of G, R, Sc, N, S0, K and Ec. It is 

found that the actual axial flow is in the vertically upward direction and hence u<0 represents a reversal flow. 

Figure 1 represents the variation of u with Grashof number G. It is found from the profiles that the axial velocity 

reduces with increase in G>0 and enhances with G<0 which maximum attained at y=0. Figure 2 represents u 

with Sc and N. It is found that lesser the molecular diffusivity smaller u in the flow region. The variation of u 

with buoyancy ratio N shows that when the molecular buoyancy force dominates over the thermal buoyancy 

force the axial velocity enhances when the buoyancy forces are in the same direction and for the forces acting in 

opposite direction the velocity reduces. Figure 3 represents u with Reynolds number R and S0. It is found that an 

increase in R and S0>0 enhances the velocity u while it reduces with S0<0. Figure 4 represents u with chemical 

reaction parameter K. it is found that the axial velocity reduces in the degenerating chemical reaction case. The 

effect of dissipation of u can be observed from fig.5 higher the dissipative heat smaller the velocity in the flow 

region. 

The secondary velocity (v) is representing in figures 6-10 for different parametric values. It is found 

that the secondary velocity is towards zero in the mid region and it is towards boundary in the left half in all 

variations. Figure 6 represents v with Grashof number G. it is found that the magnitude of |v| reduces with 

increase in G>0 while it enhances in the region (-0.8, -0.2) and in the remaining region |v| reduces with |G|≤15. 
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Fig. 1 : Variation of u with G      
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Fig.  3   : Variation of  u   with  R   , S 0           Fig.  4 : Variation of  u   with   K 

  
G = 5, M=2, D - 1 =2,   =2, Sc=1.3,N=1 ,          G = 5, M=2, D - 1 =2,   =2, Sc=1.3,N=1,   
K=0.5, Ec=0.01               R=35, S 0 =0.5, Ec=0.01   
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With respect to Sc we notice depreciation in |v| with increase in Sc. The variation of v with buoyancy ratio N 

shows that |v| enhances in the left half and reduces in the right half with increase in N>0 while for an increase in 

|N|, |v| reduces in the left half and enhances in the right half (Fig.7). Figure 8 represents v with R and S0. An 

increase in the Reynolds number R enhances |v| in the entire flow region. With respect to Soret parameter S0 we 

notice an enhancement in |v| in the left half and depreciation in the right half while S0 <0, a reversed effect is 

noticed in the behavior of |v|. Figure 9 represents v with chemical reaction parameter K. |v| reduces with 

increase in K. Figure 10 represents v with Eckert number Ec. It is found that higher the dissipative heat smaller 

|v| in the region. 
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Fig. 8 : Variation of v with R, S0     Fig. 9 : Variation of v with  k
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Fig.  5   : Variation of  u   with  Ec 

  
G = 5, M=2, D - 1 =2,   =2, Sc=1.3,N=1,    
R=35, S 0 =0.5, K=0.5   

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

y 

v 
G = 5,10,15 

G = -5,-10,-15 

    
Fig.  6   : Variation of  v   with G               
M=2, D - 1 =2,   =2, Sc=1.3,N=1,              
R=35, S 0 =0.5, K=0.5, Ec=0.01             

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.3, 2016 

 

70 

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

v

R  = 35,  70,140, 35, 35, 35

S0 = 0.5,0.5, 0.5, 1, -0.5, -1

R

S0

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

v

k = 0.5,2.15,2.5,3.5

 
Fig. 8 : Variation of v with R, S0     Fig. 9 : Variation of v with  k
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The non-dimensional temperature (θ) is exhibited in figures 11-14 for different parametric values. It is found 

that the non-dimensional temperature (θ) is positive for all variations. This implies that the actual temperature is 

greater than  , the equilibrium temperature. Figure 11 represents θ with Grashof number G. it is found that the 

actual temperature reduces with increase in G>0 and enhances with increase in G<0 which maximum attained at 

y=0. Figure 12 represents θ with Sc and N. Lesser the molecular diffusivity smaller the actual temperature. With 

respect to buoyancy ratio N we find that when the molecular buoyancy force dominates over the thermal 

buoyancy force the actual temperature enhances when the buoyancy forces are in the same direction and for the 

forces acting in opposite direction it reduces in the flow region. Figure 13 represents θ with Soret parameter S0. 

It can be seen from the profile that the actual temperature enhances with S0 >0 and reduces with S0<0. Figure 14 

represents θ with Ec. Higher the dissipative heat larger the actual temperature in the entire flow region. 
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Fig. 11 : Variation of   with G     

 

M=2, D
-1

=2, =2, Sc=1.3,N=1,       

S0=0.5, x+t=/4, Ec=0.01       

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y



Sc = 0.24,0.6,1.3,2.01,1.3,1.3,   1.3

N  =   1,     1,   1,   1,    2, -0.5, -0.5

Sc

N

 
     Fig. 12 : Variation of  with  Sc, N 
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Fig. 13 : Variation of  with S0     
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Fig. 14 : Variation of  with Ec
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The non dimensional concentration (C) is shown in figures 15-18 for different parametric values. We follow the 

convention that the non-dimensional concentration positive or negative according as the actual concentration is 

greater or lesser than the equilibrium concentration. Figure 15 represents the concentration with G. it is found 

that the actual concentration reduces with increase in |G|. From fig.16 we notice that lesser the molecular 

diffusivity larger the actual concentration. Also the actual concentration reduces with increase in |N| irrespective 

of the directions of the buoyancy forces. The actual concentration reduces with increase in S0>0 and enhances 

with S0<0 (Fig.17). Figure 18 represents C with Ec. It can be seen from the profiles that higher the dissipative 

heat larger the actual concentration 
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Fig. 15 : Variation of C with G     

 

M=2, D
-1

=2, =2, Sc=1.3,N=1,       

S0=0.5, Ec=0.01        

-3

-2

-1

0

1

2

3

4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

C

Sc = 0.24,0.6,1.3,2.01,1.3,1.3,   1.3

N  =   1,     1,   1,   1,    2, -0.5, -0.5

Sc

N

 
     Fig. 16 : Variation of C with  Sc, N 

     G = 5, M=2, D
-1

=2, =2,  

     S0=0.5, Ec=0.01  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                 www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.3, 2016 

 

72 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

C

S0 = -0.5, 1,-1, 0.5 

  

0

2

4

6

8

10

12

14

16

18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

C

Ec = 0.01,0.03,0.05,0.07,0.09

 
Fig. 17 : Variation of C with S0     Fig. 18 : Variation of C with  Ec
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The rate of heat transfer (Nusselt number) is exhibited in tables 1-6 for different values of Sc, N, S0, K 

and Ec. It is found that an increase in |G| enhances |Nu| at y=+1 and reduces at y=-1. The variation of Nu with 

Sc shows that lesser the molecular diffusivity smaller |Nu| at y=+1 while at y=-1, |Nu| reduces with Sc≤0.6 and 

enhances with higher Sc≥1.3. When the molecular buoyancy force dominates over the thermal buoyancy force 

|Nu| enhances at y=+1 and reduces at y=-1 when the forces are in the same direction and for the forces acting in 

opposite direction a reversed effect is observed in the behavior of |Nu| at y±1 (Tables 1 & 4). With respect to 

Soret parameter S0 we find that |Nu| enhances for G>0 and reduces for G<0 with increase in S0>0 and reversed 

effect is observed with S0<0 at y=+1. At y=-1 |Nu| reduces with S0 >0 and enhances with S0<0 (Table 2 & 4).  

With respect to Ec we find that higher the dissipative heat larger |Nu| at y=+1 and smaller at y=-1 (Tables 3 & 

6). 

    Table-1 :  Nusselt Number at y=+1 

G I II III IV V VI VII 

5 -3.6820 -3.6740 -3.6515 -3.6277 -3.6743 -3.6167 -3.6096 

10 -3.6551 -3.6540 -3.6435 -3.6283 -3.6896 -3.5720 -3.5573 

-5 -3.7373 -3.7154 -3.6690 -3.6278 -3.6468 -3.7021 -3.7087 

-10 -3.7652 -3.7365 -3.6785 -3.6287 -3.6347 -3.7430 -3.7557 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 

N 1 1 1 1 2 -0.5 -0.8 

 

 

Table-2 : Nusselt Number at y=+1 

G I II III IV 

5 -3.6515 -3.6690 -3.6162 -3.5985 

10 -3.6435 -3.6787 -3.5717 -3.5360 

-5 -3.6690 -3.6520 -3.7029 -3.7197 

-10 -3.6785 -3.6451 -3.7448 -3.7776 

 
0.5 1 -0.5 -1 

 

Table-3 : Nusselt Number at y=+1 

G I II III IV V 

5 -3.6515 -3.6518 -3.6519 -3.6522 -3.6529 

10 -3.6435 -3.6441 -3.6445 -3.6450 -3.6460 

-5 -3.6690 -3.6706 -3.6710 -3.6711 -3.6716 

-10 -3.6785 -3.6807 -3.6811 -3.6813 -3.6816 

Ec 0.01 0.03 0.05 0.07 0.09 
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Table-4 : Nusselt Number at y=-1 

G I II III IV V VI VII 

5 0.8163 0.6864 0.7046 0.7629 0.6599 0.7858 0.8046 

10 0.9023 0.7445 0.7346 0.7711 0.6439 0.9398 0.9969 

-5 0.6890 0.5943 0.6513 0.7470 0.6952 0.5959 0.5860 

-10 0.6405 0.5571 0.6276 0.7392 0.7147 0.5331 0.5178 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 

N 1 1 1 1 2 -0.5 -0.8 

 

Table-5 : Nusselt Number at y=-1 

G I II III IV 

5 0.7046 0.6666 0.7964 0.8524 

10 0.7346 0.6565 0.9693 0.1158 

-5 0.6513 0.6878 0.5895 0.5629 

-10 0.6276 0.6990 0.5226 0.4828 

 
0.5 1 -0.5 -1 

Table-6 : Nusselt Number at y=-1 

G I II III IV V 

5 0.7046 0.2900 0.2070 0.1714 0.1516 

10 0.7346 0.3011 0.2143 0.1771 0.1565 

-5 0.6513 0.2702 0.1939 0.1611 0.1429 

-10 0.6276 0.2613 0.1880 0.1565 0.1391 

Ec 0.01 0.03 0.05 0.07 0.09 

The rate of mass transfer (Sherwood number) at y=±1 is exhibited in tables 7-12 for different 

parametric values. It is found that an increase in |G| reduces |Sh| at y=+1 and enhances y=-1. An increase in 

Sc≤0.6 enhances |Sh| and reduces with higher Sc≥1.3 at y=+1 while at y=-1, it reduces for all G. When 

molecular buoyancy force dominates over the thermal buoyancy force the rate of mass transfer at y=+1 

enhances for G>0 and reduces for G<0 irrespective of the directions of the buoyancy forces. At y=-1, |Sh| 

reduces with N>0 and enhances with |N| for all G (Tables 7 & 10).  With respect to S0 we find that |Sh| reduces 

with S0>0 and enhances with S0<0 at both the walls (Tables 8 & 11). The variation of Sh with Ec indicates that 

the rate of mass transfer experiences depreciation with Ec for all G at both the walls (Tables 9 & 12).  

Table-7 : Sherwood Number at y=+1 

 

 

 

 

 

 

 

 

 

Table-8 : Sherwood Number at y=+1 

G I II III IV 

5 -11.5863 -7.4479 -3.3905 -3.9599 

10 -13.6880 -8.1117 -3.1442 -3.5482 

-5 -8.8781 -6.2919 -3.7169 -4.4169 

-10 -7.9672 -5.7998 -3.8195 -4.5349 

 
0.5 1 -0.5 -1 

Table-9 : Sherwood Number at y=+1 

G I II III IV V 

5 -11.5863 -5.9096 -5.4000 -5.2091 -5.1092 

10 -13.6880 -6.2341 -5.6432 -5.4248 -5.3111 

-5 -8.8781 -5.3424 -4.9605 -4.8142 -4.7369 

-10 -7.9672 -5.0977 -4.7654 -4.6368 -4.5686 

Ec 0.01 0.03 0.05 0.07 0.09 

 

G I II III IV V VI VII 

5 3.7728 17.4696 -11.5863 -6.1787 -11.3793 -11.9800 -12.0743 

10 2.4222 10.2283 -13.6880 -6.3854 -12.9066 -15.8187 -16.5198 

-5 9.9239 -17.5510 -8.8781 -5.7125 -8.8950 -8.8579 -8.8545 

-10 20.0005 -32.3687 -7.9672 -5.4700 -7.9068 -8.0400 -8.0027 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 

N 1 1 1 1 2 -0.5 -0.8 
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Table-10 : Sherwood Number at y=-1 

G I II III IV V VI VII 

5 42.1115 20.2298 8.1316 5.7718 8.1741 8.0603 8.0448 

10 54.3783 35.3593 8.8011 5.9174 8.8425 8.7251 8.7071 

-5 12.3623 11.7606 7.0325 5.4331 6.9618 7.1286 7.1466 

-10 9.8623 9.9765 6.5838 5.2507 6.4259 6.7807 6.8155 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 

N 1 1 1 1 2 -0.5 -0.8 

Table-11 : Sherwood Number at y=-1 

G I II III IV 

5 8.1316 7.0960 4.6450 5.1165 

10 8.8011 7.6097 4.5073 4.8778 

-5 7.0325 6.1645 4.7607 5.2984 

-10 6.5838 5.7520 4.7686 5.3102 

 
0.5 1 -0.5 -1 

                                                  Table-12:  Sherwood Number at y=-1 

G I II III IV V 

5 8.1316 5.6353 5.2738 5.1288 5.0506 

10 8.8011 5.8962 5.4895 5.3274 5.2403 

-5 7.0325 5.1635 4.8768 4.7606 4.6977 

-10 6.5838 4.9537 4.6976 4.5933 4.5368 

Ec 0.01 0.03 0.05 0.07 0.09 

 

CONCLUSIONS: 

The conclusions of the study are as follows: 

1. Grashof number (G) has the effect of accelerating the primary velocity (u), the magnitude of the 

secondary velocity (v) profile and temperature for G<0 and decreases the velocity components u, v and 

temperature  for G>0. An increase in |G| enhances |Nu|, reduces |Sh| at y=+1 and reduces |Nu|, 

enhances |Sh| at y=-1. 

2. An increase in the Reynolds number (R) reduces both the velocity components u and v in the entire 

flow region. 

3. The Schmidt number (Sc) decreases u, magnitude of v, while it enhances the temperature and 

concentration. 

4. Increasing values of chemical reaction parameter (K) enhances the magnitude of the velocity 

components u and v in the flow region. 

5. Increase in the Eckert number (Ec) enhances the temperature, concentration and the magnitude of the 

secondary velocity and reduces the primary velocity. 

6. The maginitude of the velocity components u, v and concentration C enhances with increase in S0, 

temperature  enhances and |Sh| reduces with S0>0 and for S0<0. 
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