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ABSTRACT 

Often in survival analysis, response that is measured over time is not a continuous measure but is 

the occurrence of a particular event or the number of such event occurring in a particular 

interval. Events such as exacerbation or epileptic seizures during each month of follow-up are 

examples. In this situation it is very difficult to specify specific distribution for the data, but 

when distribution is not specified, maximum likelihood estimate cannot be used. To specify a 

functional form for the expectation and the marginal variance, generalized estimation model are  

used assuming that there is no repeated measurement. Asymptotically, censored distributions are 

not normal but to achieve consistency and sufficiency in estimate, the derivative of their 

distributions should be normal, chi-square, follow t-statistics or other well known functions. This 

is because the derivatives of these distributions are easier to understand and maximum likelihood 

estimates have minimum variance even if percentage of censored values increases. 

Keywords: hazard, censoring, generalize, normalize, Jacobian. 

 

1.0 INTRODUCTION 

In survival studies, patient’ survival time are subject to paucity of patients who report for 

treatment. For this reason, clinical data are mostly censored. Estimating mean, variance and 

standard deviation are different from those in uncensored data. There is a margin of estimation 

bias because of censored observations. A censored observation is generated by several factors. In 

the process of the study, some patients may be still alive at the time of analysis. For this reason, 

these patients are right censored. In addition to this, patients can be lost because of insufficient 

follow-up. Censored observations occur because patients may loss to follow-up; patients may 

either drop out of the study completely or stop coming to the study center or may move away to 
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a different community for treatment. Death caused by competing risk rather than the cause of the 

disease being treated for is also a major contributing factor that generate censored observations 

in clinical studies.  

The result of censored observation in clinical trial is estimation problem. An increase in 

proportion of censored observations in an entire clinical data equally increases the margin of bias 

in statistical estimates. As bias increases, precision decreases and this eventually affect validity 

of statistical estimates. Affected results in clinical estimates have an effect on statistical power 

leading to a questionable reliability of statistical inferences. In clinical trial, an already generated 

censored data are affected by estimation bias. This bias cannot be perfectly avoided but can be 

minimized. For this reason, statisticians have a duty to develop best models so as to reduce bias. 

Kaplan -Meier method is a nonparametric approach that does not depend on any assumption. 

Kaplan – Meier method in estimating parameters is the most widely used. This technique is 

popularly referred to as product limit. This method had been in use for many years before 

Kaplan- Meier gave a theoretical justification that , the method behaves as non-parametric 

maximum likelihood estimate that makes no distributional assumptions about the population. In 

the Kaplan –Meier (1958) approach, ordered observations are used instead of grouped data. This 

method has the advantage of yielding results that are not dependent on the choice of the event 

time interval. Even though this method behaves like maximum likelihood, it is not asymptotic 

under fairly general condition. Maximum likelihood has sufficient property in basic distributions 

and its asymptotic properties under general regularity conditions make its use very desirable. 

Maximum likelihood estimation affords a rather general method of estimation of parameters of 

survival distributions. This is applicable in censored observation if the distribution of the 

observations is specified. Censored data sometimes do not follow a specific distribution hence 

using parametric method in estimating parameters in censored data calls for specific 

assumptions. Sample statistics based on assumptions can be far from true reflection of the 

population parameters they are supposed to estimate, hence there is therefore the need for robust 

procedure in estimating parameters in censored data.  

A robust procedure is a procedure where the accuracy of the procedure does not depend too 

heavily on the distribution being true. This means that even under the edifice of inaccurate 

assumption, robust procedure can still draw the sample statistic to the true population parameter 

in censored values. 

2.0 NORMALIZED SPACING 

It is not possible to admit all patients to the study sample at the same time because of paucity of 

patients. It is therefore reasonable to accept the patients as they enter into the study for treatment. 

For this reason, a common time to access the patients survival become a problem.  

To make general observation, it is useful to put all observations at the same beginning time. At 

this point censored observations are assumed to be in any interval. 

To make an analysis at time 𝑡. It is appropriate to put the observations in normalized spacing. 

Let𝑡1, 𝑡2, 𝑡3, … 𝑡𝑟,  be the 𝑛 patients  time  with 𝑟 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑎𝑛𝑑 𝑙𝑒𝑡 𝑡1, ≤  𝑡2, ≤  𝑡3, ≤ ⋯  ≤ 𝑡𝑟 be 

the corresponding order statistics out of 𝑛 patients. The event time are put into normalize space 

with interval 𝐼𝑖 = (𝑡(𝑖−1), 𝑡𝑖]. This is an open ended interval of real numbers. 
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     ← 𝑰𝟏 → ← 𝑰𝟐 →     ← 𝑰𝟑 →                                   ← 𝑰𝒓 →   ← 𝑰𝒓+𝟏 → 

 0     𝒕𝟏                  𝒕𝟐                  𝒕𝟑          .       .           .          𝒕𝒓−𝟏                     𝒕𝒓                    𝒕𝒓+𝟏 

Suppose that the 𝑖𝑡ℎ interval contain 𝑚𝑖 censored observations. Denote the time observed for 

these censored observation to be 𝑡1
𝑖, 𝑡2

𝑖 , 𝑡3
𝑖 ,   .  .  .  , 𝑡𝑚𝑖

𝑖 with order values  𝑡1
𝑖 ≤ 𝑡2

𝑖 ≤ 𝑡3
𝑖  ≤

  .  .  .  , ≤ 𝑡𝑚𝑖
𝑖. from table 2. It is seen that failure time are 1 < 2 < 3 < 4 < 5  

 

Figure 3.13.3  

 ←A→                    ←C→               ←D→              ←B and E→ 

 1                        2                  3                      4                       5  

 

Let us define the total number of observations as N, the 𝑁1 = 𝑁 − 𝑚1, 𝑁2 = 𝑁 − 𝑚1 − 𝑚2, 𝑁3 = 𝑁 −

𝑚1 − 𝑚2, − 𝑚3,  

𝑁𝑖 = 𝑁 − ∑ 𝑚𝑖
𝑖
𝑗=1                                                                                                                                            (2.1)     

N = 𝑟 + ∑ 𝑚𝑗
𝑟+1
𝑗=1 .                                                                                                                                              (2.2) 

 Suppose the probability density function of an observation believe to be drawn at random from a 

population is 𝑞(𝑡) and its cumulative survival density function 𝑄(𝑡) = 𝑃{𝑇 > 𝑡}. In the 𝑖𝑡ℎ 

interval, there is a failure at the right hand side of the interval observations and point with 

probability 𝑞(𝑡𝑖)𝑑𝑡𝑖 and 𝑚𝑖 censored observations with probability∏ 𝑄(𝑡𝑗
(𝑖))

𝑚𝑖
𝑗−1 . The 

contribution of the 𝑖𝑡ℎ interval to the likelihood is 𝑞(𝑡𝑖)𝑑𝑡𝑖 ∏ 𝑄(𝑡𝑗
(𝑖))

𝑚𝑖
𝑗−1 . From figure 1, we have 

𝑟 such intervals with failures at the right hand end point and two infinite with failure. The 

likelihood function is  

∏ q(ti)dti
r
i=1 ∏ Q(tj

(i))
mi
j−1 ∏ Q(tj

(r+1)
)

mr+1
j−1                                                                           (2.3) 
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To derive the probability density function, it is useful to obtain the constant of proportionality. If 

all the censored observations are in the last interval, the constant of proportionality is 
𝑛!

(𝑛−𝑟)!
, 

since at the first failure any of  𝑛  can fail, at the second interval any of 𝑛 − 1 can fail, at the third 

interval any of 𝑛 − 2 can fail, and so on. The constant equals 𝑛(𝑛 − 1),  .  .  .  , 𝑛 − 𝑟 + 1. Using 

the same idea above, 𝑁 and 𝑚1 are censored in the first interval, so there are  𝑁 − 𝑚1 = 𝑁1 ways 

that the first failure can occur; 𝑚2 are censored in the interval and based on this second failure 

rate, there are 𝑁 − 𝑚1 − 𝑚2 − 1 = 𝑁2 − 1 ways it can occur. If there is to be a failure at 3 and 

𝑚3 observations are censored in the third interval, then there are 𝑁 − 𝑚1 − 𝑚2 − 𝑚3 − 2 =

𝑁3 − 2 ways this can happen. At this point the constant term is 

 𝑁1(𝑁2 − 1)(𝑁3 − 2)(𝑁4 − 3),   .  .  . (𝑁𝑟 − 𝑟 + 1) = 𝐾                                                                            (2.4) 

Now the joint pdf of (𝑡𝑖) when the data assumes exponential and if 𝑞(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑄 (𝑡) = 𝑒−𝜆𝑡 

is 

[𝑞(𝑡𝑖)𝑑𝑡𝑖 ∏ 𝑄(𝑡𝑗
(𝑖))]

𝑚𝑖
𝑗−1 = 𝜆𝑒−𝜆𝑡𝑖 ∏ 𝑒−𝜆𝑡𝑗

𝑖

=
𝑚𝑖
𝑗−1  𝜆𝑒

−𝜆(𝑡𝑖+∑ 𝑡𝑗
(𝑖)

) 
𝑚𝑖
𝑗=1                                          (2.5)                                         

Define S to be ∑ 𝑡𝑗
(𝑖)) 

𝑚𝑖
𝑗=1  which is the sum of censored observations in the 𝑖𝑡ℎ interval, then 

𝑓(𝑡) = 𝐾 ∏ 𝜆𝑒−𝜆(𝑡𝑖+𝑆𝑖)𝜆𝑒−𝜆𝑆𝑟+1𝑟
𝑖=1  =𝐾𝜆𝑟𝑒−𝜆[∑ 𝑡𝑖+∑ 𝑆𝑖]

𝑟+1
𝑖=1

𝑟
𝑖=1 = 𝐾𝜆𝑟𝑒−𝜆𝑉                               (2.6) 

Where V=[∑ 𝑡𝑖 + ∑ 𝑆𝑖]
𝑟+1
𝑖=1

𝑟
𝑖=1 ,                                                                                                   (2.7) 

 is the total life observed. This is the same likelihood function in equation (2.3). Clearly, V is 

sufficient statistics for 𝜆.  Denote 𝜋1=  total life observed in the 𝑖𝑡ℎ interval. 

𝜋1 = (𝑁 − 𝑚1)𝑡1 + 𝑆1 = 𝑁1𝑡1 + 𝑆1                                                                                                               (2.8) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.3, 2016 

 

36 

𝜋2 = (𝑁 − 𝑚1 − 𝑚2 − 1)(𝑡2 − 𝑡1) + 𝑆2 − 𝑚2𝑡1 = (𝑁2 − 1)(𝑡2 − 𝑡1) + 𝑆2 − 𝑚2𝑡1                           (2.9) 

𝜋1 = (𝑁𝑖 − 𝑖 + 1)𝑡𝑖 − 𝑡(𝑖−1) + [𝑆𝑖 − 𝑚𝑖𝑡(𝑖−1)]                                                                                             (2.10) 

For I = 1, . . , 𝑟 where 𝑡0 = 𝐺 𝑜𝑟 0 

𝜋𝑟+1 = 𝑆𝑟+1 − 𝑚𝑟+1𝑡𝑟                                                                                                                                       (2.11) 

The sum of 𝜋𝑖 = 𝑉 ie ∑ 𝜋𝑖 = 𝑉𝑟+1
𝑖=1                                                                                                                     (2.12) 

At this point we will concentrate and estimate the joint distribution of the 𝜋𝑖. This is obvious 

because each 𝜋𝑖 is equal to the total up time observed in the 𝑖𝑡ℎ interval and V is the total up time 

observed in the 𝑖𝑡ℎ intervals.  

𝜋𝑖 = 𝑁1(𝑁2 − 1)(𝑁3 − 2)(𝑁4 − 3),   .  .  . (𝑁𝑟 − 𝑟 + 1)𝜆𝑟𝑒−𝜆∑ .𝜋𝑖
𝑟+1
𝑖=1 ǀ

𝜕𝑡

𝜕𝜋
ǀ.                                             (2.13) 

To get the Jacobean, it is appropriate to get reciprocal ǀ
𝜕𝜋

𝜕𝑡
ǀ and reciprocate that. The matrix of 

ǀ
𝜕𝜋

𝜕𝑡
ǀ whose (𝑖, 𝑗)𝑡ℎ element is     

 

[
 
 
 
 

𝑡1 𝑡2   .   .   . 𝑡𝑟
𝑁1 0   .   .   . 0

−(𝑁2 − 1) − 𝑚2.
⋮

𝑁2 − 1   .   .   .
.
⋮

0
⋮

𝑁𝑟 − 𝑟 + 1]
 
 
 
 

  

𝜕𝜋

𝜕𝑡
  is a triangular matrix so its determinant equals the product of the  diagonal terms  

 𝑁1(𝑁2 − 1)..  (𝑁𝑟 − 𝑟 + 1) = 𝑁𝑖 − 𝑖 + 1.                                                                                          (2.14) 

Thus 

  ǀ
𝜕𝜋

𝜕𝑡
ǀ = 𝑁1(𝑁2 − 1)(𝑁3 − 2)(𝑁4 − 3),   .  .  . (𝑁𝑟 − 𝑟 + 1) = 𝐾,                                                    (2.15) 

where 𝐾 =
𝑁𝑖!

(𝑁𝑖 − 𝑟)!⁄    

So 
𝜕𝑡

𝜕𝜋
= 1

𝐾⁄ .                                                                                                                                               (2.16) 

𝑓(𝜋) = 𝐾𝜆𝑟𝑒−𝜆∑ .𝜋𝑖
𝑟+1
𝑖=1 1

𝐾⁄ .                                                                                                                     (2.17) 

𝑓(𝜋) =
𝑁𝑖!

(𝑁𝑖 − 𝑟)!⁄ 𝜆𝑟𝑒−𝜆∑ .𝜋𝑖
𝑟+1
𝑖=1

(𝑁𝑖 − 𝑟)!
𝑁𝑖!

⁄                                                                                  (2.18) 
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𝑓(𝜋)=𝜆𝑟𝑒−𝜆∑ .𝜋𝑖
𝑟+1
𝑖=1                                                                                                                                      (2.19) 

𝑓(𝜋) = ∏ 𝜆𝑒−𝜆𝜋𝑖𝑟+1
𝑖=1                                                                                                                                  (2.20) 

 

It is obvious to see that 𝜋𝑖 are independent identically distributed following an exponential 

distribution. ∑ . 𝜋𝑖
𝑟+1
𝑖=1 = 𝑉. in this case  𝑉 follows a gamma distribution with parameters 𝑟 and 𝜆 

For the gamma distribution 

𝑓(𝑡) =
(𝜆𝑡)𝑘−1𝜆𝑒−𝜆𝑡

𝛤(𝑘)
 ,                                                                                                                                  (2.21) 

The kernel of the likelihood for the gamma distribution with parameters 𝑟 and 𝜆 is the same for 

that of 𝑉 distribution 

𝑓(𝑣) =
(𝜆𝑉)𝑟−1𝜆𝑒−𝜆𝑉

𝛤(𝑟)
                                                                                                                                  (2.22) 

The aim is to estimate 𝜆. To do this, first, it is useful to get the distribution of V 

Let 𝜃 =
1

λ
, 𝜃 =

𝑣

𝑟
, then 𝐸 ∑ . 𝜋𝑖)

𝑟+1
𝑖=1 = 𝑉 = 𝑟𝜃, so 𝐸(𝜃) = 𝜃. This is to say that 𝜃 is an unbiased 

estimate of 𝜃 based on the sufficient statistics 𝑉 provided λ is constant. By using Rao-Blackwell 

Theorem, 𝜃 is the minimum variance unbiased estimator of 𝜃. 

From  equation (3.13.19)  

log 𝑓(𝜋) = 𝑟𝑙𝑜𝑔𝜆 − 𝜆𝑉 + 𝐶                                                                                                                         (2.23) 

𝑑𝐿

𝑑𝜆
=

𝑟

𝜆
− 𝑉. At  

𝑑𝐿

𝑑𝜆
= 0, �̂� =

𝑟

𝑉
                                                                                                                       (2.24) 

 �̂� =
𝑟

𝑣
 is also a function of v alone. If �̂� is not constant, we may get into trouble, this is because 

an average of 𝜆 should be accounted for.  In this situation, a robust procedure should be set up to 

address this issue. 

3.0 ROBUST ALGORITHM 

 A robust procedure is a procedure where the accuracy of the procedure does not depend too 

heavily on the distribution assumptions being true. To ascertain whether �̂� is also minimum 

variance unbiased estimator, it is useful to estimate E(�̂�) under the procedure of logarithm of �̂�. 

This is because, �̂� has a normal distribution with mean log(�̂�) and variance 
𝜎2

𝑟
. If the data follow 

exponential distribution, then  
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𝑋2 = 2𝜆𝑣 = 2𝑟𝜆
𝑣

𝑟
= 2𝑟 𝜆

�̂�
⁄  . in terms of �̂�,  �̂� =

2𝑟𝜆

𝑋2                                                                     (2.25)       

Where 𝑋2 has a chi-square distribution with 2r degrees of freedom. This is because, most text 

tabulate the chi-square distribution but not the gamma distribution. In this situation, 𝑋2 table is 

useful to find probability for gamma variates. If V follows a gamma distribution with parameters 

𝜆 and r, then, it follows that 

 𝑃[𝑉 ≤ 𝑣] = 𝑃[𝑋2 ≤ 2𝜆𝑣].                                                                                                                            (2.26) 

In application 

log(�̂�) = 𝑙𝑜𝑔2𝑟 + log 𝜆 − log𝑋2.                                                                                                                 (2.27) 

Following from equation (2.27), it is useful to find the moment of log �̂� because the mean and 

variance of log �̂� largely depend on the moment of  log 𝑋2. In the theory of moment statistics, if 

a variate 𝑋2 with chi-square distribution has 𝑣 degrees of freedom, then the expected expectation 

of the variate 𝐸(𝑋2) = 𝑣 , the variance 𝑣(𝑋2) = 2𝑣 . 𝐸(𝑋2 − 𝑣)3 = 8𝑣  and 𝐸(𝑋2 − 𝑣)4 =

48𝑣 + 12𝑣2. The bases of this is because, chi-square distribution is a special case of the gamma 

distribution where𝛼 =
𝑣

2
, 𝛽 = 2. In relating chi-square to standardized normal distribution 

∅ =
(𝑋2−𝑣)

√2𝑣
 .                                                                                                                         (2.27) 

It follows immediately that   

𝑋2 = 𝑣 + ∅√2𝑣  hence 𝑋2 = 𝑣(1 + ∅√
2

𝑣
)                                                                        (2.28) 

From standard normal theory, expectation of 

 𝐸 (
(𝑋2−𝑣)

√2𝑣
) = 0 and 𝑉 (

(𝑋2−𝑣)

√2𝑣
) = 1                                                                                    (2.29) 

This implies that 𝐸(∅) = 0 and 𝑉(∅) = 1. 

 E(∅3) =
8𝑣

(√2𝑣)3
 ⇒ E(∅3) =

√2
3

√𝑣
                                                                                             (2.30) 

E(∅4) =
48𝑣+12𝑣2

4𝑣2
=

12

𝑣
+ 3. In this case, as 𝑣 → ∞, 𝐸(∅) = 0. This is an evidence that, any non 

normal data with chi-square distribution tend to normal as 𝑣 → ∞ under the influence of 

sufficient statistics. From equation (2.28) 

 log (1+x)= x− -
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+   .   .   .                                                                                (2.31) 
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Log 𝑋2 = 𝑙𝑜𝑔𝑣 + log (1 + ∅√
2

𝑣
) = log𝑣 + ∅√

2

𝑣
−

∅2

2

2

𝑣
+

∅3

3

√2
3

√𝑣
3 +   .   .   .                          (2.32) 

𝐸(Log 𝑋2) = log 𝑣 −
1

𝑣
+

√2
3

√𝑣
3 (

√2
3

√𝑣
)  .   .   .                                                                              (2.33) 

𝐸(Log 𝑋2) = log 𝑣 + 𝜔 (
1

𝑣
).                                                                                                 (2.34) 

Where 𝜔 is [−1 +
2

2
3⁄

𝑣
]                                                                                                          (2.35) 

𝐸(Log 𝑋2 − log 𝑣)2 = 𝐸[
∅2

2

2

𝑣
− 2∅3 1

𝑣
√

2

𝑣
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 ∅]                             (2.36) 

𝐸(Log
X2

v
)2 =

2

𝑣
−

√2
3

√𝑣

√2
3

√𝑣
3 + 𝑝𝑜𝑤𝑒𝑟𝑠 𝑜𝑓 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙𝑠 𝑜𝑓 𝑣                                                     (2.37) 

𝑉(log𝑋2) = 
2

𝑣
+ 𝜔 (

1

𝑣
)                                                                                                             (2.38) 

Where 𝜔 is [−1 +
2

2
3⁄

𝑣
] 

Let us come back to the estimation of �̂�. �̂� = 𝑋2 has 2r degrees of freedom. This is to say that 

𝑣 = 2𝑟. For this reason   

𝐸(Log�̂�) = log 2r +log𝜆− log2𝑟 +  𝜔 (
1

𝑟
)                                                                          (2.39) 

𝐸(Log�̂�) = log𝜆+ 𝜔 (
1

𝑟
)                                                                                                        (2.40) 

𝑉(log �̂�) =
2

2𝑟
+  𝜔 (

1

𝑟
)                                                                                                           (2.41) 

𝑉(log �̂�) =  
1

𝑟
+ 𝜔 (

1

𝑟
)                                                                                                             (2.42) 

𝜎(�̂�) = √
𝟏

𝒓
+ 𝝎(

𝟏

𝒓
)   

 

3.0 Confidence interval for �̂� 

Relating gamma distribution with parameter 𝜆  and 𝑟 to chi-square  

P[V≤ 𝑣] = 𝑃[𝑋2 ≤ 2λV]                                                                                                               (3.1) 
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Since 𝑋2 = 2λV = 2r
λ

λ̂
                                                                                                                        (3.2) 

λ̂ = 2λr
𝑋2⁄                                                                                                                                              (3.3) 

Noting that 2�̂�𝑉 has a chi-square distribution with 2r degrees of freedom, an exact (1- 𝛼)100 

Confidence interval for the �̂� is given by 𝑃[𝑋1−𝛼
2 < 𝑋2 < 𝑋𝛼

2] = 1 − 2𝛼. Replacing 2𝜆𝑉 for 𝑋2 

𝑃[𝑋1−𝛼
2 < 2𝜆𝑉 < 𝑋𝛼

2] = 𝑃 [
𝑋1−𝛼

2

2𝑉
< 𝜆 <

𝑋𝛼
2

2𝑉
] = 1 − 2𝛼                                                                                 (3.4) 

For this reason, 1 − 2𝛼 for 𝜆 have the end points at 
𝑋1−𝛼

2

2𝑉
  lower point and 

𝑋𝛼
2

2𝑉
 upper point. 

At 𝑣 large, 𝑣 → ∞, 𝑋𝛼,𝑣
2  tend to normal function hence  

𝑋𝛼,𝑣
2 = 𝑣[1 −

2

9𝑣
+ 𝑍𝛼√

2

9𝑣
]3                                                                                                      (3.5)                                                                                       

APPLICATRION 

A sample of 1011 consisting 807 censored observation and 204 event were to validate the model. 

The hazard rate is given  by 0.007616 as seen in equation. This means that the death rate among 

the patients who reported for cancer treatment  is 0.007616 per month. This death rate has been 

influenced by 80% censored observations. This affects the reliability and unbiased estimates of 

the hazard rate. Looking at the data, the probability mass associated with censored values in 

between the observed failure times have been redistributed out each of the failure observations. 

The effect contributes to unequal interval hazard rate. As a result of this, there is an interval non 

constant variation. This shows in a large variance of 3,517,035 as shown in equation (4.1.10b). 

The estimate for this natural parameter (𝜆) may not be the one that makes inner product work 

nicely; there is therefore the need for an estimate of sufficient statistics. �̂� = (0.007616)−1  

= 131.730  given by equation (4.11) is the sum of the times to death of patients who die on the 

study. At constant hazard rate, Halperin estimated the expected hazard as 𝐸(�̂�) =
𝑟𝜆

𝑟−1
 and its 

variance as𝑉𝑎𝑟(�̂�) =
𝜆2

𝑟−1
. These cannot work for non constant 𝜆. It was against this discrepancy 

that Epstein and Sobel used the mean time to death �̂�  vis-a vis the exponential survival 

distribution to obtain �̂� = �̂�−1. This confirms our model in equation(4.1.10c). 

We obtained 𝐸(�̂�) = 𝐸[𝑙𝑜𝑔(�̂�)] = 2.12  in equation (4.22) which a minimum variance of 

7.33 × 10−03 (4.23). Equation (4.22) is the gradient of the log partition function which is the 

expectation of the sufficient statistics for the natural parameter 𝜆. 

 Comparing our expectation model to one proposed by Welling (2006) (4.24) E[log �̂�)] =

log(𝐸ǀ𝜇ǀ) −
𝑉(ǀ𝜇ǀ)

2𝐸(ǀ𝜇ǀ)2
= 2.119684 − 0.049678 = 2.19.  
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E[log(�̂�)] ≈ E[log�̂�)] . This means that our model confirms that of Welling. Helsel (2012) 

indicated that for large amount of censoring greater or equal to 80%, mean, variance and 

standard deviation estimates are extremely biased. There is therefore the need to indicate 

appropriate distribution before  maximum likelihood is used. The model proposed in equation 

(4.15) is a robust algorithm which can used to estimate 𝐸(�̂�) in exponential distribution from 

both non constant 𝜆 and non exponential distribution. Equation (4.22) allows the estimation of 

data which does not follow exponential distribution.  

 

6.0  SIMULASTION STUDIES 

In this section, we present simulation results from simulation of 1011 independent individuals of 

cancer patients used in the study. For each individual, the data consist of two parts 𝑡𝑖, 𝑎𝑛𝑑 𝛿𝑖, 

where 𝑡𝑖 is the event time or censoring time, 𝛿𝑖 is the indicator variable with a value of 1 if 𝑡𝑖 is 

uncensored or a value 0 if 𝑡𝑖 is censored (status). We take the hazard function 𝐸(𝑙𝑜𝑔𝜆) = 2.11  

and considered censorship of 80%. The censoring times were generated from log normal 

distribution with a parameter selected to give 80% censorship in model.  

7.0 DISCUSSION 

From the simulation table, a sample size of 4000 patients at risk of cancer who report for 

treatment,760 of these patients are expected to die at a follow-up of 78 weeks which represent a 

proportion of 0.1905. Comparing this event proportion to the original data from korlebu with an 

event proportion of 0.20273, the simulated data differ from the original data by a margin of 0.01. 

This difference is observed because of interval hazard variations in the data. From the simulated 

data as shown in table, an increase in  sample size maintains constant event proportions in the 

data.From figure 6, the shaded portion represents observations that were covered by follow-up 

period of 78 weeks. Observations sparsely spaced above the shaded region beyond follow-up 

period signify those patients who survived at the end of the clinical trial as seen from the original 

data. For this reason, the simulated data is a true reflection of the original data drawn from the 

study area. 
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 APPENDIX 

Table 1. table od model 

MODEL 

 

HAZARD MEAN VARIANCE STANDARD 

DEVIATION 

COEFFICIENT 

OF 

VARIATION 

 

CONFIDENCE 

INTERVAL 

 

EXPONENTIAL 0.007616 131.73 3517035 1875.37 14.23 -0.00693<

𝜆 < 0.02215 

ROBUST 

 

 

2.119684 

 

0.471768 0.00733 0.005615 0.0026  
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Table 4.2. Plotting position 

𝑡𝑖 value (1 − 𝑖
𝑛 + 1⁄ ) Value 

−log (1 − 𝑖
𝑛 + 1⁄ ) 

1 0 0.000 0.0000 

2 2 0.975 0.0109 

3 3 0.962 0.0168 

4 4 0.949 0.0227 

5 5 0.937 0.0282 

6 6 0.925 0.0338 

7 7 0.924 0.0343 

8 8 0.898 0.0467 

9 9 0.886 0.0526 

10 10 0.873 0.0589 

11 11 0.861 0.0649 

12 12 0.848 0.0716 

13 13 0.835. 0.0783 

14 14 0.823 0.0846 

15 15 0.810 0.0915 

16 16 0.797 0.0985 

17 17 0.785 0.1051 

18 18 0.772 0.1124 

19 19 0.759 0.1197 

20 20 0.747 0.1266 
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21 21 0.734 0.1343 

22 22 0.721 0.1421 

23 23 0.708 0.1499 

24 24 0.696 0.1574 

25 25 0.683 0.1655 

26 26 0.670 0.1739 

27 27 0.658 0.1817 

28 28 0.645 0.1904 

29 29 0.633 0.1985 

30 30 0.620 0.2076 

31 31 0.607 0.2168 

32 32 0.595 0.2254 

33 33 0.582 0.2350 

34 34 0.569 0.2448 

35 35 0.557 0.2541 

36 36 0.544 0.2644 

37 37 0.532 0.2740 

38 38 0.518 0.2856 

39 39 0.506 0.2958 

40 40 0.494 0.3062 

41 41 0.481 0.3178 

42 42 0.468 0.3297 

43 43 0.455 0.3419 

44 44 0.443 0.3535 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.3, 2016 

 

45 

45 45 0.430 0.3665 

46 46 0.417 0.3798 

47 47 0.405 0.3925 

48 48 0.392 0.4067 

49 49 0.379 0.4213 

50 50 0.367 0.4353 

51 51 0.354 0.4509 

52 52 0.342 0.4659 

53 53 0.329 0.4828 

54 54 0.316 0.5003 

55 55 0.304 0.5171 

56 56 0.291 0.5361 

57 57 0.278 0.5559 

58 58 0.265 0.5767 

59 59 0.253 0.5968 

60 60 0.240 0.6197 

61 61 0.227 0.6439 

62 62 0.215 0.6675 

63 63 0.202 0.6946 

64 64 0.189 0.7235 

65 65 0.177 0.7520 

66 66 0.164 0.7851 

67 67 0.152 0.8181 

68 68 0.139 0.8569 
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69 69 0.126 0.8996 

70 70 0.114 0.9430 

71 71 0.101 0.9956 

72 72 0.088 1.0555 

73 73 0.076 1.1191 

74 74 0.063 1.2006 

75 75 0.050 1.3010 

76 76 0.037 1.4317 

77 77 0.025 1.6020 

78 78 0.012 1.9208 
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Table 3.13.2 

  

A 

 

B 

C 

D 

 

 

 

 

 

 

 

E 

 1 2 3 4 5 
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TABLE 4.5    : SIMULATED PARAMETERS 

NO. OF  

PATIENTS 

NO. OF 

EVENT 

MEAN EP. 

OF EVENT 

TOTAL TIME 

OF FOLLOW-

UP 

MEDIAN 

FOLLOW-UP 

TIME 

DENSITY OF 

INCIDENCE 

4000 760 0.1905 17982.13 4.015501 0.04237541 

10000 1980 0.198 45364.27 4.069318 0.04364669 

50000 9799 0.19598 225603.3 4.056644 0.04343465 

80000 15655 0.1956875 361085 4.059307 0.04335545 

100000 19181 0.19181 449228.4 4.039394 0.04269765 

150000 28982 0.1932133 674962.8 4.040854 0.04293866 

200000 38533 0.192665 899924.4 4.044289 0.04281804 
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