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Abstract

This paper presents direct methods for obtaining the explicit general solution to a linear
sequential fractional differential equation (LSFDE), involving Jumarie’s modification of
Riemann-Liouville derivative, with constant coefficients. The general solution to a
homogenous LSFDE with constant coefficients is obtained by using the roots of the
characteristic polynomial of the corresponding homogeneous equation. For the
non-homogeneous case, two methods, undetermined coefficients and variation of parameter,
are investigated to find the particular solution. The method of undetermined coefficients is
independent of the integral transforms while the method of variation of parameter is not.
Moreover, several examples are illustrative for demonstrating the advantage of our approach.
Keywords: Fractional differential equations, Riemann—Liouville derivative, Caputo derivative,
undetermined coefficients, variation of parameter.

1. Introduction

Fractional Calculus is a field of applied mathematics that deals with derivatives and integrals
of any arbitrary real or complex order. The History of fractional derivatives were planted over
300 years ago. Since that time the fractional calculus has drawn the attention of many great
mathematicians (pure and applied) of their times, such as N. H. Abel, M. Caputo, L. Euler, J.
Fourier, A.K. Grunwald, J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren, P. S.
Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann, M. Riesz, and H. Weyl
(Sabatier et al, 2007). But during this last decades fractional calculus have been applied in
widespread fields of science and engineering (Machado et al, 2011).

Fractional differential equations arise in many complex systems in nature and society with
many dynamics, such as charge transport in amorphous semiconductors, the spread of
contaminants in underground water, relaxation in viscoelastic materials like polymers, the
diffusion of pollution in the atmosphere, and many more (Podlubny, 1999; Kilbas et al, 2006).
However, the problem of studying fractional differential equations has been dealt with by
numerous authors throughout history, particularly in recent years(Mophou,2010; Rajeev and
Kushwaha,2013, Khudair 2013, Khudair and Mahdi 2016. Eidelman and Kochubei, 2004;
Xue et al, 2008; Guo et al,2012; Molliq et al, 2009 ). A wide description of the existence and
uniqueness of solutions of initial value problem for fractional order differential equations
together with its applications can be found in the literature (Samko, et al, 1993; Delbosco,
1996; Podlubny, 1999, Dielhelm,2002).
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It is well known that the fractional derivative, in the sense of Riemann_Liouville
definition of fractional derivative , of a constant is not zero. This encourage Caputo to
introduce Caputo derivative such that the fractional derivative of a constant is zero (Podlubny;,
1999; Kilbas et al, 2006). With Caputo definition, a fractional derivative would be defined for
differentiable functions only. In order to deal with non-differentiable functions, Jumarie have
recently proposed a modification of the Riemann_Liouville definition (Jumarie, 1993, 2006,
2007, 2009, 2010). This fractional derivative provides a Taylor's series of fractional order for
non differentiable functions. He, et al, (He, et al, 2012) introduce the geometrical explanation
of fractional complex transform and derivative chain rule for fractional calculus in the sense
of Jumarie’s modification of Riemann-Liouville derivative. Motivated and inspired by the
on-going research in this field, we will consider the following non-homogeneous linear
fractional differential equation with constant coefficient

(DM +a, D"V +a,D" P +.--+a, D +a,)y(X) =f(X) (1)
where oazi is constant rational number, a,, k=12,...,n are real constant |,
q

D =D{Dy---D; and D; denotes Jumarie’s fractional derivation, which is a modified
S —

n—times

Riemann-Liouville derivative (Samko, et al, 1993; Podlubny, 1999, Kilbas et al, 2006)
defined as

o _ 1 i X _ -0 _

Dx‘r'(><)—r(1_m)dxj0 (x=8)*(f(O)-f(O)dE, O<ax<l ()
and

D (x) = dO:” (D“™f(x)), n<oa<n+l n>1 (3)

Eqg.(1) is called fractional linear differential equation with constant coefficients of order

(n,q), or more briefly, a fractional differential equation of order (n,q) (Podlubny, 1999). If

a =1, then Eq.(1) become n™ order ordinary differential equations.

This paper is organised as follows. Sections 2 presents Jumarie’s Modification of
Riemann-Liouville Derivative and their main properties. In section 3, we develop a direct
method for solving the homogeneous LSFDE with constant coefficients, using the roots of the
characteristic polynomial and Mittag-Leffler functions. In section 4, the method of
undetermined coefficients will be used to find the particular solution to non-homogeneous
LSFDE with constant coefficients. In section 5, the method of variation of parameter will be
used to find the particular solution to non-homogeneous LSFDE with constant coefficients,
while in section 6, several examples are given to illustrative the advantage of our approach.
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2. Jumarie’s Modification of Riemann—Liouville Derivative
The first definition of fractional derivative which has been proposed in the literature is the
so-called Riemann—Liouville definition which reads as follows

Definition 2.1 (Riemann_Liouville) Let f(x):=R — R be a continuous function then the

fractional
derivative of order ais defined by

Dif (x) = ﬁ [ x=0 (e @)
and
D3f (x) = m j (x-Q)“f(Q)dg, 0<a<l (5)
and
Djf(x)=ddxnn n<a<n+l nx>1 (6)

Definition 2.2 (Jumarie’s modification of Riemann—Liouville derivative): Let

f(x) =R — R be a continuous function then the fractional derivative of order . is defined by

D“f(X)—ﬁf (x=&) " (f(C)-f(0)dC,a <0 (7
and
Di‘f(X)—F(1 I( -0 (f(O)-f(0)dg, O<a<l 8
and
D“f(x)_ n<a<n+l nx>1 9)

Remark the main difference between definition (2.1) and definition (2.2). The second one

involves the constant  f(0) while the first one does not. Also, the fractional

Riemann—Liouville derivative of a constant is not zero while the fractional Jumarie derivative

of a constant is zero. In the rest of the paper , Dj will be used to refer to Jumarie’s

modification of Riemann—Liouville derivative.
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Definition 2.3 (Principle of Derivative increasing orders) : The functional derivative of

fractional D¢**expressed in terms of D¢ and DP is definded by the equality
D;:"*f (x) = D= P (D" f (x)).

Proposition 2.4: Assume that the continuous function f(x):=R —R has a fractional

derivative of order ok for any positive integer k and 0<a <1, then the following equality
holds (Jumarie,2009),

f(x+h)=ir( a0, 0<ast (10)

where f(x) is the fractional Jumarie derivative of order akof f(x). Formally, Eq.(10)

can be written f(x+h)=E_(h“D)f(x), 0<a<1,where E_(u)= 3
(x+h) =E, (h"D)f(x) a o (U) ;r(akﬂ)

Corollary 2.5:The following equalities hold (Jumarie,2009), which are

D' =(y+DIr Yy +1—-o)x" ™, y>0 (11)

or, what amounts to the same (we set aa=n+0)

D™x" = T(y + )} (y+1-n—0)x' ", 0<O<1 (12)
D (UGOV(X)) = DEUG) V(X) + U(X) DEV(X) (13)
D3 (F(u60N) = T2 D) (14)
D3 (F(u() = D () D () (15)

Lemma 2.6: The following various formulae are hold (Jumarie,2009)

1, jdux —In, (%), x=E,(In x), xc>0 (16)
X C

2. In,(x*)=y*In_x 17)

3. E,(x*y*)=(E,(Y*)) (18)

4. (In, @)* =(In, ()" +(in, (V)* (19)

5. E,(Mx+Yy)*)=E,(AX")+E,(Ay") (20)
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6. DZE, (Ax*)=AE_ (AX*) (21)

7. E_(ix)=cos, x+isin, X (22)

8. E_(x)=cosh, x+sinh X (23)
9.D; cos, x* =—sin x*, Dj;sin x“=cos_ X" (24)

10. Dj cosh, x* =—sinh_ x*, Djsinh Xx“=cosh_ x* (25)

11. DYE,(AX)=2ro *X“E,_(AX) (26)

3. General Solution of homogeneous Linear Fractional Differential Equation with
constant Coefficients :
Consider the following linear homogeneous linear fractional differential equation with

constant coefficients of order (n,q)

(D:a + aID)En—l)u + azp)gn—Z)a R an_lp)? + an)y(X) =0 (27)

1. .
where o = =is constant rational number, a,, k=1,2,...,nare real constant ,
q
D =D;D; ---Dy .
| ——

n—times
Rewrite Eq.(28) in the form
P(D;)y(x)=0 (28)

where P(Dy)is a linear fractional differential operator.

Lemma(3.1): D*E_(Wx*)=AE (Ax*), k=0,1,...,nwhere E_(u)= 3 is the
(3.1) o (AXY) o (AX%) «(U) kzz(;l“(ock+)

Mittag-Leffler function.

Proof:

D™E, (Ax*)=D"D"---D“E_(AXx*)
n—times

=D*D*.--D* AE, (AX")
%/_/

(n-1)—times
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=D“D*---D* A2E_ (AX%)
%f_/

(n—-2)—times

—A"E, (AX*).
By using Lemma (3.1), one can have

P(D)E,(Ax") =P(ME, (AX") (29)

where P(L)=A"+a A" +a,\"? +---+a

n

If A isany root of the algebraic equation P(A) =0, then Eq.(20) imply
P(D)E, (Ax") =0
which means simply that y(x) =E_(Ax*) is a solution of Eq.(28). the equation

P(A)=0 (30)

is called the auxiliary equation associated with Eq.(27) or Eq.(28).
The auxiliary equation for Eq.(27) is of degree n.
Theorem 3.2:

1. if P(A)=0has r real distance roots say m,,m,,....m , for 1<r<n then its
corresponding solution of Eq.(27) is

y(x) =c,E,(mx") +C,E,(m,x*) +---+¢E,(MX").
if P(A)=0has r repeated roots say m,=m,=...=m_, for 1<r<n then its
corresponding solution of Eq.(27) is

y(x) =¢,E_(mx*) +C,X“E_(MX*) +C,x*E_(M,x*) +---+¢ X" E_(m,x*).

3. if P(A)=0has complex roots say m=yxp=pe™, then its corresponding solution
of Eq.(27) is

P cos(kO) . _ < psin(ko)
Y= Zr( k) Zr(ock+1) |

Proof (1): Let P(A)=0 has r real distance roots say m,,m,,...,m_, then one
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can write P(A)=QMA)(A—m)(A—m,)---(A—m_) where Q(A)is a polynomial of degree

n—r satisfy Q(m,)=0for k=12,...,r.
Note that,
(D¢ —m)E, (M Xx*)=DE (M X*)—mE_(mx*)=0 for k=12,...r

so, P(DY)E, (m,x*)=0 for k=12,...,r.
P(D/)y(x) =P(D/)(c,E, (mx*)+cCc,E (M, X*)+---+C.E_(Mm X))
=c,P(D)E, (mXx*)+c,P(DY)E, (M,Xx*) +---+c,P(D})E, (M, X*)
=0.
Proof (2): Let P(A)=0has r repeated rootssay m,=m,=...=m_,for 1<r<n
then one can write P(A) =Q(\)(A—m,)" where Q(A)is a polynomial of degree n-r

satisfy Q(m,)=0.
Note that,
(’Df - ml)Ea (mlxa) =0

(D ~my)2x“E, (Mx®) = (D —m,) (D (X“E, (MX*)) - mx“E, (Mmx"))
=D -m)[x*mE_(mx*)+T'(a+DE_ (mx*)—mx“E_(mx")]
= (D —m,)[[ (o +DE, (mx®)]
=T(0+ D[DLE, (Mx*) ~m;E, (mx*)]
=T(o+D[M,E, (Mx*) ~mE, (Mx*)]

=0
Also,

(DS —m,)*x**E_(mX*) = (D —m,)* (D (X**E,, (M,x*)) —m,x**E_ (m,x*))
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=(D —m,)’[x**m,E_(mx*)+ [2o+]) g E,(mx*)-mx*E_(m,x*)]
I'o+1)
I'2a+1)
= (D% —m,)’ [———ZX“E_(m,x*
(D —m,) [r(a+1) o (Mx*)]
M(D“ m,)x“E,, (m,x")
I'o+1)
=0

and so on, one can have,
(D —m,)*x*DE, (mx*) = (D —m)* D (DF (x*P°E,, (mx*)) ~-mx “D°E,_(m,x*))

= (D —m)* P [x P mE_(mx*)+ —11:((((:(( ;))a 111)) x*2*E_(mx*) —mx“DE_(mx*)]

I((k-1)o.+1)

_ o _ (k-1)
=(Bi-m,) [F((k—Z)oc+1)

XCDE, ()]

_T(k=Da+D) .
T T((k—2)o+1)

m,)x“?"E, (m,x")
=0 for k=12,...,r
so, P(DY)x*V*E_(mx*)=0 for k=12,..,r
P(/D;)y(x) = P(D;)(ClEa (mlxa) + szaEa(mlxa) +03X2aEa(m1Xa) +-- '+Crx(n_l)aEa(m1Xa))

=C,P(D)E, (Mx") +C,P(DY)(X“E, (MX)) +C,P(D7)(X*E,, (M) +
o+ e P(DY)(X"PUE, (mx?)) =0

Proof (3): Let P(A)=0has complex roots say m=yFBi=pe™, then one can write
P(L) = QWA —7)* +B*) = QL) (\* —2pcos(0)r+p?) where Q(r) is a polynomial of

degree n—2 satisfy Q(yxpi)=0.

Note that,

a o ke) ol p COS(kO) 2(1 ak
D>* —2pcos(0) D + % K X% —
( peos(O)D +p )kz(; T(ok+1) Z S T(ak+1) >

P COS(kB) a ak P COS(kO) ok
ZpCOS(e)Z 1_,( K+ l) x Z F(OLk-Fl)
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Z p*cos(ko) (k-2 p* cos(kO) (kDo p COS(kG) ak
kzzzll"((k 2)oc+l) ~2pcos(0 )ZF((k Do+ ) Z F(ock+1)

< p'? cos((j+2)0). . 0 0s((j+1)0). 2 p'00S(j0) .
Z fajen ~ 7 Cos(e); foi) P L@

) i p'[cos((j+2)0) —2cos(B) cos((j+1)6) + cos(je)]xaj

P2 T(aj+1)

=, p'[cos(26) cos(jO) —sin(jB)sin(26) — 2 cos? () cos(jB) + 2 cos(8) sin(jO) sin(B) + cos(j0)] i
=p Z =

=0 (aj+1)
_ pzi p'[cos(26) —2cos?(0) +1] c0s(jO) ui _

=0 ['(aj+1)

In similar manner, one can have

(D2 —2pcos(0) DL +p )Z% o

o o ke) o p SIn(ke) ak
So, (D> —2pcos(0)D +p°)(c, % “ 4

and

o P COS(ke) ak P Sln(ke) ak
PBAE Z < T(ak+1) " Z:r(oa<+1)

Theorem: Let {y,(x),y,(X)....,y,(x)} be a set of solutions of the linear homogeneous
fractional differential equation with constant coefficients of order (n,q) then

Y, (X), ¥, (X),..., Y, (X) are linearly independent if and only if

IW((Y1 (%), Y (X),., ¥, (x))]| =0, where

W (X) Y, (X) o Yn (X)
Dlyi(x) DLy, (x) o DY (x)
IW((, (%), Y, (%), Y, 00) =| DEyi(x)  DEy,(x) DY, (X)
,Dinil)ayl(x) Dinil)ayz (X) Dénil)ayn (X)

The above determinant is called o -wronskian determinant.
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Proof:

Let cy,(X)+c,y,(X)+...+c.y,(X)=0
By successive o differentiation, we have

¢, Dy, (X)+c,Dly,(X)+...+¢, Dy, (X) =0
¢, D>y, (X) +C, DY, (X) +...+C, D>y, (X) =0

¢, D" Y1 (X) +C, DY, (X) +...+C¢, D7y, (X) =0

¢, D" Py (X) +¢, D Py, (X) +...+¢, D" Py (X) =0

In order to find the constants, c,,c,,...,c,, one can solve the following linear system

yl(x) Y, (X) o Yn (X) c 0
Dy, (X)) DY,(X) DY.(X) Cl 0
Dy, (x)  DFY,(X) Dy, (x) || V=] . (31)
(n—l)[; (n—l)c; ' (n—l)c; Cn O
Dx yl(X) Dx Y, (X) e Dx s (X)
The above system has zero solution, ¢, =c,=...=c,=0 ,if and only if

IW((Y,(X), Y, (X),.... ¥, (X))| 0. That is, y,(X),Y,(X),....y,(X) are linearly independent if

and only if |W((y,(X),Y,(X),-... ¥, (X))|#0.
4. General Solution of nonhomogeneous Linear Fractional Differential Equation with
constant Coefficients by using undetermined coefficients

The general solution of Eq.(1) is y(x) =y .(X)+Y,(x), where y_(x)is the general solution

of the homogenous equation Eq.(27) and 'y, (x) is any particular solution of the Eq.(1). In this

section, the method of undetermined coefficients will be used to find a particular solution of
the Eq.(2).
We will summarized the method in the following steps:

1. Write Eq.(1) in form of linear fractional differential operator P(D;)y(x) =f(x).

2. Suppose that the right member f(x) of Eq.(1) is itself a particular solution of some

homogeneous linear fractional differential equation with constant coefficients,
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QO )T (x) (32)

whose auxiliary equation has the rootsm;,m,,...,m;where s is the degree of

the polynomial Q(A) .
3. Find the general solution of the following homogeneous linear fractional differential

equation with constant coefficients of degree (n+s,q),

Q(DHP(DY)y(x) =0, (33)
Hence the general solution of Eq.(33) contains the y_ (x) of Eqg.(1) and so is of the form
y(x) = y.(X) +Yy,(x), Butalso any particular solution of Eq.(1) must satisfy Eq.(33). Now, if
P(DO(Y.(X)+Y, (X)) =f(x) , then P(D¢)(y, (X)) =f(x) because P(D¢)(y.(x))=0. Then

deleting the y (x) from the general solution of Eq.(33) leaves a function y, (x) that for

some numerical value of its coefficients must satisfy Eq.(1). The determination of those
numerical coefficient may be accomplished as in the following examples.
It must be kept in mind that the undetermined coefficients method is applicable when, and

only when, the right member of the equation is e™,cos(ax), cosh(ax),

sin(ax),sinh(ax), x*, E (ax), E, (ax”) or any combination of these functions.

5. General Solution of nonhomogeneous Linear Fractional Differential Equation with
constant variation of parameters

The general solution of Eq.(1) is y(x) =y (X)+Y,(X), where y_(x)is the general solution

of the homogenous equation Eq.(27) and y, (x) is any particular solution of the Eq.(1). In this

section, the method of variation of parameters will be used to find a particular solution of the
Eq.(1).We will summarized the method in the following steps:
1. Find the general solution of the homogenous equation Eq.(27),

Ye (X) = Clyl(x) +CY, (X) +--+ClY, (X) (34)
2. Replace each c, ,k=12,...,n by unknown functions v,(x),k=12,...,n, so that the
particular solution is 'y, (X) =V, (X)y,(X) +V,(X)Y,(X) +---+V, (X)y,(X) .

3. Compute v, (x) ,k=12,...,n from
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i (%)
Or,
v, (X)=D; W"(X), k=12,...,n
(%)

W (©) _W.(0)
W) W)

V00 == [ (x=0)**( ), k=12,...n

()

where W(x) isthe o-wronskian determinant and W.(x) isthe o -wronskian determinant

with the k™ column replaced by (0,0,...,f(x)). So that, the particular solution to the

non-homogeneous equation Eq.(1) can be written as

wr WO _ W, (©)
Y5 (x) = Z[F( ) OGS Wi W)

6. lllustrated Examples:

Example 1 : we consider the homogeneous fractional differential equation
1
(D+D?-2)y(x)=0
Clearly, the auxiliary equation is p(m)=m?+m-2=0 and its rootsare m=1,-2.then the

1 1
general solution is seen to be y(x) =c,E, (x?)+c,E, (-2x2)
2 2
Example 2 : we consider the homogeneous fractional differential equation

4 2 1

(D3 —7D+18D3% —20D% +8)y(x) =0, Clearly, the auxiliary equation is
p(m)=m*—7m’®+18m*-20m+8=0 and its roots are m, =1,2,2,2. then the general

solution is seen to be
1 1 1 1 2 1
y(x) =c,E, (x®)+C,E, (2x3) +Cc,x3E, (2x3) +C,X3E (2Xx3) .
3 3 3 3
Example 3 : we consider the homogeneous fractional differential equation

3 1
(D2 —3D+9D2 +13)y(x) =0
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Clearly, the auxiliary equation is p(m) =m®—-3m®+9m+13=0 and its roots are
m =—1,27F 3i. then the general solution is seen to be

i 13@ cos (k tan™ GDXM( ) Csi 13(gj sin (k tan™ GDXO«

— T(ak +1) — T(ak +1)

Example 4 : we consider the nonhomogeneous fractional differential equation

1
Y(x) = ¢E, (-x2) +c,
2

(D? -2)y(x) =€

Clearly, the auxiliary equation is p(m)=m-2=0 and itsrootis m=2.then

y.()=CE, (ZX%) =C, (e‘“ —%\/Ze‘“ (—1+ erfc (2\/t_))}

2

1
The particular solution by using undetermined coefficients, first we find Q(D?) such that

Q(Dx%)ex =0,

2
Clearly, (D?-1)e* =0and the auxiliary equation is Q(m)=m?-1=0

1 1
and its rootis m=1,-1.then Yy, (x)=c,E, (x?)+c,E, (-x?).One can see that each solution
2 2

in y,(x)notexistin y_(x)so that the particular solution has the form

1 1
Y, (X) =C,E,; (X?) +¢,E, (—Xx?) . Now, substitute y (x) in given equation to find the
2 2

numerical value for c,c, , as follows

(D% —2)(01El (x%) +c2E1(—x;)J =g

2 2

1 1 1 ! L .
Cl'DZEl(Xz)+C2'D2E£(—X2)—201E1(X2)_ZCZEE(_XQ) _ X

2 2 2 2

1 1 1 1
C,E; (X?)—C,E  (—x?)—2¢,E, (X?) - 2¢,E, (-x?) =€’
2 2 2 2
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1 1

C,E,(x?)+3c,E, (—x?)=—€"

2 2

L3 k

0 X2 © (] k X2 0 Xk

Y. +3¢, ) CUxE__
k k oo L(K+1)

OM(-+1 OM(-+1
(5+D) (5+D)

k

i:[cl+(—1)"3cz]x2 -3 X"

oy F(;+1) = T(k+1)
For k iseven in the left member of above equation, we have
c,+3c,=-1

For k is odd in the left member of above equation, we have
c,—3c,=0

So, one can have c, :_?1,02 :%1 and the particular solution is

1 1

Y, (X) :_?1El (x2) JF%El (—x2) . and the general solution is
2 2
| | L
y(X)=cE, (2x*)-ZE, (X?) +—E, (-x?)
2 2 3 6 3

_ 4t 1 t 1 t
y(x)=ce (1+erf(2\/t_))—§e (1+erf (\/t-))+ge (—1+erf(\/f))
_ 4t 2 t 1 t
y(x) =ce (1+erf(2\/t_))—§e -z e (\/f)
The particular solution by using variation of parameters,
Replace c, by unknown functions v,(x), so that the particular solution is 'y (x) =v,(X) .

Wl(x): e _ 1
W(x) El(ZX;) 1+erf(\/;)’

2

1
sz A (X) =

-1 x o-1
wm—agLaﬂ)Izﬁw7
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erf (\E)
n(x=C) (l+ erf (\/E))

So, the particular solution is

V()= - dg

dg,

. . y erf \E
yp(x)=(e _%\/Ze (1+erfc(2ﬁ)))|.om((“e)rf(\/z))

and the general solution is

erf (\/Z) "
Jr(x=¢) (1+ erf (\/E))

Example 5 : we consider the homogeneous fractional differential equation

y(x) Z(e‘“ _%«/Ze‘” (_1+erfc(2\/t_))J C1+on_

1
(D+D? -2)y(x) =cos(x)
Clearly, the auxiliary equation is p(m)=m?+m—-2=0 and its rootsare m=1,-2.then

1 1
y.(X)=cE, (XE) +C,E; (_ZXE) :

2 2

1
The particular solution by using undetermined coefficients, first we find Q(D?) such that

1
Q(D?)cos(x) =0,
4
Clearly, (D? +1)cosx =0and the auxiliary equation is Q(m)=m*+1=0 and its root is

mo Lol 11T hen
V20V 2
- cos(ﬁ) Kk © sin(@) Kk © cos(%) B sin(ﬁ) K
y,(X)=c, X2 +C, ) X2 +C, k—4x°‘ +C, Y, ——*—x? One can
S+ SI(+) T+ S I( )

see that each solution in y, (x) not exist in y_(x)so that the particular solution has the form

kr . km 3km . 3kn
» COS(—) «k % SIN(—) « » COS(——) » SIN(—) «
y,(x)=c,> X2 +C, ) X2 +C; ) v 4 _ye +C, > ——*—x* Now,
ST+ ST+ SRYCEY DI+

substitute y,(x) in given equation to find the numerical value for c,,c, , as follows
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1 " cos(@) k " sin(@) K » cos(%) sm(%) K
ak
(D+D2-2) clz " X2+CzZ X G X" e 2 —¢ X2 |=cos(x)
k—01”(—+1) k=0 F(—+1) k=0 F(E+1) k=0 F(EH)
» [C, cos( )+c sm( )+c cos( )+c sm(—)] 1 K
> (D +D? - 2)x? = cos(x)
k=0 F(—+1)
» [C, cos( )+c sm( )+c cos( )+c Si n(%)] 1 K
> (D +D? - 2)x? = cos(x)
k=0 F(—+1)

[c, cos( )+c sm( )+c cos( )+c sm(3kn)] K

® Xa
2. k 2 X* o+

k=2 F(—+1)
» [C, cos( )+c sm( )+c cos( )+c sn(%)] (=
> X7 -
k=1 F(—+1)
» [C cos( )+c sm( )+c cos( )+c sm(—)] Kk
22 X2 = c0s(X)
k=0 F(E+1)

3(J+2)n 3(J+2)n

[c, cos((J 2)m ) c s.ln((J 2)m ) C, COS(———

- )+ sin(=——)]
> s
0 r%+n
i [c, cos((jj:ll)n) +cC, sin((j+41)n) +C, cos(3(jzl)n) +cC, sin(e’(jzl)n)] i
- X2 —

0 r@+n

» [C cos( )+c sm(J )+C, cos(—)+c sm(SJn)] i
2_7 J X2 =c0s(X)

I= F(E+l)
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fecfoos 2%+ cos( 1 0%) 200513+ gsin(L A7) sin( U ED%) —osinI Ty

3 | 24
=0 r(i+1)

. TesfoosCUEA%) 4 cos DT o005y v gsinU 2%) 4sin U2 D) —5in Ty
)2 j

= F(§+1)

zo F(21+1)

So, we have the following linear system

c{l—%\/ﬁj+c2 (—1—%\5)%3(1+%\/§j+c4(1—%\/§j:-1

cN2-c,—c\2+c,=0
cl(1+%\/§j+c2[1—%\/§j+c3(1—%\/§j+04(—1—%\/§j:0

¢, +C\2+c,+¢,N2=0
The solution of the above system is

S SN PO SN Y P 1\/— 1 115

6 12 6 12 6 12
Therefore , the particular solutlon is

cos( ) k sin(kn) k
1 1 1 1 - 4’ 5
yp(x):(—g+ﬁﬁjzk—x2+(6+Eﬁ)z k4 X% +
kO (S +1) kO (S +1)
2 2
3km 3Km
» COS(—— » Sin(/—=
([La-1)s s ’Xz{_;g ) RN
2 8 r(:+1) 6 12 Jis r(;+1)

and the general solution is

y(x)=c, (eX +e’ (l—erfc(«/;)))+ C, (e“x +%\/4_84X (—1+ erfc(Zx/;))j

cos(kn) K sin(kn) K cos(3kn) K

Ll e (L a4,

{ 6+12ﬁ)2 K o +(6+12ﬁ)2 kK T 2 6 2, k o F
k 0r(5+1) k 0r(5+1) k=0 r(5+1)
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3kn
= SIN(==) «
6 12 )& kg
2

The particular solution by using variation of parameters, Replace c,andc, by unknown

functions v, (x)and v, (x)respectively ,so that the particular solution is

Yo (x)= Vl(X)EE (X%) +V, (X)El(—ZX;) .
0 E (2x?)

2
1

cos(x) —2E, (-2x?)

vyl r | s sy
EE(XE) El(_zxi) 3E1(x5) 3(ex+ex(1—erfc(\/§)))
El(x;) —2El(—2x;)
El(x;) 0
. E, (x?) cos(x)
D2V, (X) == 2 L COS(X)1 _ 1 —cos(x)
E,(x%)  E,(-2x?) | -3E,(-2x?) 3(e“*+2ﬁe“*(—1+erfc(2&))j
El(x;) —2E1(—2x;)

1 cos(C)—2e" + ecerfc(\ja )
3 Jx—Cfme (—2 + erfc(\ﬁ)

1y -2c08(G)+2e* ~e* /4 +e4cﬁerfc(2ﬁ)
VZ(X)_'f[g »\/X—Cx/;e4c(2—«/4_+\/2erfc(2\ﬁ))

So, the particular solution is

w00 =]|- |
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X L ox X cos(G) — 2¢° +e“erfc(/C
yp(X):(e " (1_erfc(&)))! _%ﬂﬁe€(2+erfc((ﬁ)))

~2c0s(()+2e* —e*f4 +e* \/Zerfc(Z\/E)
mﬁe“ (2 —\/4_+\/Zerfc(2\fz))

dg+

(o 38 (caver( ) 3

0

dc

and the general solution is

X | ox X1 COS(C)—ZeCJreCerfc(\/E)
e ool ) o 4 220wl

” " x1—2c0s(&)+2e* —e* 4 +e*“\Jaerfc 2\/5
J{e +%ﬁe (—1+erfc(2ﬁ))) C2+E|)% \/E\/;e4€(2—\/z+«/4_erf0(2\/(g)) )

dc |+
)

6. Conclusion:

Depending on the roots of the characteristic polynomial of the corresponding homogeneous
equation, The general solution to a homogenous LSFDE with constant coefficients is obtained
in theorem (3.2). For the non-homogeneous case, two methods, undetermined coefficients and
variation of parameter, are investigated to find the particular solution. The method of
undetermined coefficients is independent of the integral transforms but it is applicable when,

and only when, the right member of the Eq.(1) is e™, cos(ax), cosh(ax), sin(ax),

sinh(ax), x*, E_(ax), E,(ax")orany combination of these functions. while the method of

variation of parameter depend on the integral transforms and it is applicable when the right
member of the Eq.(1) is any function.
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