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Abstract  

A new family of distributions called Kumaraswamy-generalized power Weibull (Kgpw) distribution is proposed 

and studied. This family has a number of well known sub-models such as Weibull, exponentiated Weibull, 

Kumaraswamy Weibull, generalized power Weibull and new sub-models, namely, exponentiated generalized 

power Weibull, Kumaraswamy generalized power exponential distributions.  Some statistical properties of the 

new distribution include its moments, moment generating function, quantile function and hazard function are 

derived. In addition, maximum likelihood estimates of the model parameters are obtained. An application as well 

as comparisons of the Kgpw and its sub-distributions is given. 

 

Keywords: Generalized power Weibull distribution, Kumaraswamy distribution, Maximum likelihood 
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1. Introduction 

In reliability models, the probability distributions are most often used as time to failure distributions. In 

same context, the reliability model quality significantly depends on the success in selecting appropriate 

probability distribution of the phenomenon under discussion. During the past decades, a specific group of the 

classical distributions such as, exponential, Weibull and Rayleigh distributions were used for modeling lifetime 

data. However, in practice, we find that most of these distributions are not flexible enough to accommodate 

different phenomena. For this reason, the statisticians have worked on development and extend of these 

distributions to become more flexible and more suited for modeling data in practice. The traditional Weibull 

distribution by Waloddi Weibull (1951) is one of the most used lifetime distributions for modeling lifetime data. 

However, the Weibull distribution does not provide non-monotone failure rates that are common in reliability 

and survival analysis. Many versions of generalized Weibull distribution have arisen out of the need to improve 

its properties. The first generalization of Weibull distribution provides bathtub shaped hazard rate is the 

exponentiated Weibull distribution due to Mudholkar et al. (1995). The exponentiated Weibull distribution can 

be used quite effectively to analyze the lifetime data in place of Weibull distribution. Also, Nikulin and Haghighi 

(2006) proposed a new generalization of the Weibull distribution by introducing an additional shape parameter, 

which they called the generalized power Weibull distribution. The random variable X has the generalized power 

Weibull (gpw) distribution if its cdf and pdf are  

G𝑔𝑝𝑤(x) = 1 − exp {1 − (1 + (
x

λ
)

α

)
θ

} , α, λ, θ > 0,   x > 0                                                        (1) 

and  

g𝑔𝑝𝑤(x) =  
αθ

λα
xα−1 (1 + (

x

λ
)

α

)
θ−1

exp {1 − (1 + (
x

λ
)

α

)
θ

} ,   α, λ, θ > 0,   x > 0                            (2) 

 

where λ is a scale parameter and α and θ are two shape parameters. It is reduced to the standard Weibull 

distribution when, θ = 1. Nikulin and Haghighi (2006) showed that the hazard rate function of the generalized 

power Weibull distribution has nice and flexible properties and can be constant, monotone and non-monotone 

shaped. This distribution is often used for constructing accelerated failures times models that describe 

dependence of the lifetime distribution on explanatory variables. They also illustrated that the gpw provides a 

good fit to the well-known randomly censored survival times data for patients at arm A of the head-and-neck 

cancer clinical trial by using a chi-squared goodness-of-fit test. 

Eugene et al. (2002) introduced the beta-generated family to generalize the continuous probability 

distribution as follows 
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𝐹𝐵(𝑥) =
1

𝐵(𝑎, 𝑏)
∫ 𝑢𝑎−1(1 − 𝑢)𝑏−1𝑑𝑢 

𝐺(𝑥)

0

                                                                                                (3) 

the corresponding pdf of the beta generated distribution is 

𝑓(𝑥) =
1

𝐵(𝑎, 𝑏)
𝑔(𝑥)𝐺(𝑥)𝑎−1[1 − 𝐺(𝑥)]𝑏−1                                                                                               (4) 

where B(α, β) is the beta function, g(x) and G(x) are the pdf and cdf for parent probability distribution. The 

formula given in (4) has been used first by Eugene et al. (2002) to generate the beta–normal distribution. After 

that, number of authors proposed a new beta-generated family of distributions include Famoye et al. (2005) 

introduced the beta-Weibull distribution, Nadarajah and Kotz (2004) introduced the beta Gumbel distribution 

Nadarajah and Kotz (2006) introduced the beta exponential distribution, Kong et al. (2007) introduced the 

beta-gamma distribution, Cordeiro and Lemonte (2011) introduced beta Laplace distribution. Mameli and Musio 

(2013) introduced the beta skew-normal distribution. Recently, Merovci and Sharma (2014) introduced 

beta-Lindley distribution, Jafari et al. (2014) introduced beta-Gompertz distribution, Chukwu and Ogunde (2015) 

introduced Beta Mekaham distribution and MirMostafaee et al. (2015) introduced beta Lindley distribution . For 

a good review of beta- generated distributions, one may refer to Lee et al. (2013).      

 Kumaraswamy (1980) proposed a two-parameter distribution on (0, 1), so-called Kumaraswamy 

distribution, and denoted by Kum(a, b). Its cumulative distribution function (cdf) is 

 

  𝐹𝑘𝑢𝑚(𝑥) = 1 − (1 − 𝑥𝑎)𝑏  ,    0 < 𝑥 < 1                                                                                                 (5)  

 

and its density function is 

 

𝑓𝑘𝑢𝑚(𝑥) = 𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1  ,     0 < 𝑥 < 1                                                                                       (6) 

 

   Kum(a, b) distribution, according to Jones (2009) like the beta distribution, can be unimodal, 

uniantimodal, increasing, decreasing or constant and has advantage over the beta distribution that, Kum(a, b) 

distribution does not involve any special function such as the beta function and its cumulative distribution 

function has a simple closed form. For this reasons, Cordeiro and de Castro (2011) developed the beta-generated 

family by employing the Kumaraswamy distribution instead of beta distribution. For an arbitrary baseline cdf 

G(x), Cordeiro and de Castro (2011) defined the cdf and pdf of Kumaraswamy generalized distributions 

(Kum-G), respectively, as follow  

 

𝐹(𝑥) = 1 − {1 − 𝐺(𝑥)𝑎}𝑏                                                                                                                              (7) 

and  

𝑓(𝑥) = 𝑎𝑏𝑔(𝑥)𝐺(𝑥)𝑏−1{1 − 𝐺(𝑥)𝑎}𝑏−1                                                                                                   (8) 

 

where 𝑔(𝑥) = 𝑑𝐺(𝑥)/𝑑𝑥 and 𝑎 > 0 and 𝑏 > 0 are two additional shape parameters of the G(x) distribution 

which role are to govern skewness and tail weights of the generated distribution. This type of generalizations 

contains distributions with unimodal and bathtub shaped hazard rate functions and have some desirable structural 

properties compared with beta-generated family of distributions, for detail see Cordeiro and de Castro (2011) 

and Jones (2009). Several generalized distributions from (5) have been studied in the literature including, the 

Kw-Weibull distribution by Cordeiro et al. (2010), Kw-Gumbel distribution by Cordeiro et al. (2011), 

Kw-generalized gamma distribution by Pascoa et al. (2011), Kw-log-logistic distribution by Tiago et. al. (2012), 

Kw-modified Weibull distribution by Cordeiro et. al. (2012), Recently, Gosh (2014) introduced Kw-half-Cauchy 

distribution, Antonio at. el. (2014) introduced Kw-generalized Rayleigh distribution and (Rocha et al. 2015) 

introduced Kw- Gompertz  distribution.    

In this paper, we apply the works of Kumaraswamy (1980), Cordeiro and de Castro (2011), Nikulin and 

Haghighi (2006) in order to study the mathematical properties of a new distribution referred to as the 

Kumaraswamy generalized power Weibull (Kgpw) distribution. The rest of the article is organized as follows. 

Section 2 introduces the Kumaraswamy generalized power Weibull distribution. Some statistical properties of 

http://www.iiste.org/
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the Kumaraswamy generalized power Weibull distribution are discussed in Section 3. The pdf of order statistics 

of the Kgpw model is introduced in Section 4. Maximum likelihood estimation is investigated in Section 5. In 

Section 6, real data set are used to illustrate the usefulness of the Kgpw model. Concluding comments are given 

in Section 7. 

 

2. The Kumaraswamy Generalized Power Weibull Distribution 

 

  In this section, we introduce the pdf and the cdf of Kgpw distribution by setting the gpw baseline 

functions (1) and (2) in Equations (5) and (6), then the cdf and pdf of the Kgpw distribution are obtained as 

follow 

𝐹𝑘𝑔𝑝𝑤(𝑥) = 1 − [1 − (1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

)

𝑎

 ]

𝑏

, 𝑎, 𝑏, 𝛼, 𝜆, 𝜃 > 0,   𝑥 > 0                                  (9) 

and  

𝑓𝑘𝑔𝑝𝑤(𝑥) =
𝑎𝑏𝛼𝜃

𝜆𝛼
𝑥𝛼−1 (1 + (

𝑥

𝜆
)

𝛼

)
𝜃−1

𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎−1

× {1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑏−1

                                                                                 (10) 

 

where λ is a scale parameter and the others parameters a, b, α and θ are shape parameters. The possible shapes 

of the pdf and cdf of Kgpw distribution are provided for five combinations of the parameters in Figure 1 and 

Figure 2, respectively. The shapes in Figure 1, show that the pdfs of Kgpw distribution can be monotonically 

decreasing or positively skewed.  

 

 

 

Figure (1): Some Possible Shapes of the Kgpw Density Function 
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Figure (2): Some Possible Shapes of the Kgpw Cumulative Density Function 

 

2.1 Some sub-models of the Kgpw 

The Kgpw distribution is very flexible seeing as this distribution includes several well-known 

distributions as sub-models based on special values of the parameters (𝑎, 𝑏, 𝜃 and 𝛼). These sub-models are 

1) Setting a = b = 1, we obtain generalized power Weibull distribution (Nikulin and Haghighi 2006) with cdf: 

F(x) = 1 − e
1−(1+(

x
λ

)
α

)
θ

, 
2) Setting b = 1, we obtain exponentiated generalized power Weibull distribution (new) with cdf: 

F(x) = (1 − e
1−(1+(

x
λ

)
α

)
θ

)

a

,  

3) Setting θ = 1, we obtain Kumaraswamy Weibull distribution distribution (cordiro et. al. 2010) with cdf: 

F(x) = 1 − (1 − (1 − e−(
x
λ

)
α

)
a

)

b

,  

4) Setting α = 1 we obtain Kumaraswamy generalized power exponential distribution (new) with cdf: 

F(x) = 1 − (1 − (1 − e1−(1+
x
λ

)
θ

)

a

)

b

, 

5) Setting b = θ = 1, we obtain exponentiated Weibull distribution (Mudholkar et al.(1995)) with cdf: 

F(x) = (1 − e−(
x
λ

)
α

)
a

, 

6) Setting θ = a = b = 1 we obtain Weibull distribution with cdf: 

F(x) = 1 − e−(
x
λ

)
α

, 
7) Setting α = 1, b = 1 we obtain exponentiated generalized power exponential distribution (new) with cdf: 

F(x) = (1 − e1−(1+
x
λ

)
θ

)

a

, 

8) Setting α = θ = 1 we obtain Kumaraswamy exponential distribution with cdf: 

F(x) = 1 − (1 − (1 − e−
x
λ)

a

)
b

, 

9) Setting b = θ = α = 1, we obtain exponentiated exponential distribution (Gupta and Kundu (2001)) with 

cdf: 

F(x) = (1 − e−
x
λ)

a

, 

10) Setting α = a = b = 1, we obtain the exponential extension distribution (Nadarajah and Haghighi (2011)) 

with cdf: 

F(x) = 1 − e1−(1+
x
λ

)
θ

, 
11) Setting α = θ = a = b = 1, we obtain exponential distribution with cdf: 

F(x) = 1 − e−
x
λ , 
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12) Setting θ = 1, α = 2, we obtain Kumaraswamy Burr type X distribution (NEW) with cdf: 

F(x) = 1 − (1 − (1 − e−(
x
λ

)
2

)
a

)

b

,  

13)  Setting b = θ = 1, α = 2 we obtain Burr type X distribution with cdf: 

F(x) = (1 − e−(
x
λ

)
2

)
a

. 

 

2.2 Expansions for the cumulative and density functions  

  The expansion for the cumulative distribution function of Kgpw can be derived by using the generalized 

binomial theorem. For any real number r > 0 and |z| < 1 the binomial expansion is  

(1 − 𝑧)𝑟 = ∑(−1)𝑖 (
𝑟
𝑖
) 𝑧𝑖

∞

𝑖=0

                                                                                                                        (11) 

where  (
𝑟
𝑖
) =

𝑟(𝑟−1)…(𝑟−𝑖+1)

𝑖!
 .  

Using the binomial expansion (11) in equation (9), we get the cdf as a power series expansion as follows 

𝐹(𝑥) = 1 − ∑ 𝑝𝑖

∞

𝑖=0

𝐺𝑔𝑝𝑤(𝑥)𝑎𝑖                                                                                                                        (12) 

where 𝑝𝑖 = (−1)𝑖 (
𝑏
𝑖

) and 𝐺𝑔𝑝𝑤(𝑥) denotes the gpw cumulative distribution with parameters 𝛼, 𝜆 and 𝜃 . 

Which means that, 𝐺𝑔𝑝𝑤(𝑥)𝑎𝑖  denotes the cdf of exponentiated generalized power Weibull (egpw) with 

parameters 𝛼, 𝜆, 𝜃 and 𝑎𝑖. Using the binomial expansion (11), again in the last term of (12), we get  

𝐹(𝑥) = 1 − ∑ ∑(−1)𝑖+𝑗 (
𝑏
𝑖

) (
𝑎𝑖
𝑗

)

∞

𝑗=0

𝑒
𝑗(1−(1+(

𝑥
𝜆

)
𝛼

)
θ

)
                                                                            (13)

∞

𝑖=0

 

Differentiating (13) with respect to x gives the expansion of pdf as follow 

𝑓𝑘𝑔𝑝𝑤(𝑥) =
αθ

λα
∑ ∑(−1)𝑖+𝑗 (

𝑏
𝑖

) (
𝑎𝑖
𝑗

) 𝑗

∞

𝑗=0

𝑥𝛼−1 (1 + (
𝑥

𝜆
)

𝛼

)
θ−1

𝑒
𝑗(1−(1+(

𝑥
𝜆

)
𝛼

)
θ

)
  

∞

𝑖=0

                          (14) 

 

2.3 The hazard and survival functions 

Failure rates or hazard rates are important subject in the industry, engineered system, finance and 

fundamental to the plan of social security, medical insurance and safe systems in a wide variety of applications. 

The hazard rate function (hrf) of the random variable T that has the Kgpw is given by 

 

ℎ(𝑡) =

𝑎𝑏𝜃𝛼𝑡𝛼−1 (1 + (
𝑡
𝜆

)
𝛼

)
𝜃−1

𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

]

𝑎−1

𝜆𝛼 (1 − (1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

)

𝑎

)

,   𝑡 > 0                          (15) 

Using the expansions in (13) and (14), the hrf of the Kgpw distribution in (15) can be expressed in the mixture 

form as follows 

ℎ(𝑡) =
αθ ∑ ∑ (−1)𝑖+𝑗 (

𝑏
𝑖

) (
𝑎𝑖
𝑗

) 𝑗∞
𝑗=0 𝑡𝛼−1 (1 + (

𝑡
𝜆

)
𝛼

)
θ−1

𝑒
𝑗(1−(1+(

𝑡
𝜆

)
𝛼

)
θ

)

 ∞
𝑖=0

 λα ∑ ∑ (−1)𝑖+𝑗 (
𝑏
𝑖

) (
𝑎𝑖
𝑗

)∞
𝑗=0 𝑒

𝑗(1−(1+(
𝑡
𝜆

)
𝛼

)
θ

)
∞
𝑖=0

,   𝑡 > 0 

 

Note that for all 𝑏, 𝜃, 𝜆 we have 
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ℎ(0) = { 

0 𝑓𝑜𝑟 𝑎, 𝛼 > 1
𝑏𝜃

𝜆
    𝑓𝑜𝑟 𝑎 = 𝛼 = 1

∞  𝑓𝑜𝑟 𝑎, 𝛼 < 1

 

 

The hazard rate function of Kgpw distribution can be have various shapes, including constant, monotonically 

decreasing or increasing, bathtub and upside down bathtub. More specifically, the hazard rate curve is 

(a)  monotone increasing if either 𝑎𝛼 > 1 and 𝛼𝜃 > 1 or 𝑎𝛼 = 1 and 𝜃 > 1, 

(b)  monotone decreasing if either 0 < 𝑎𝛼 < 1 and 𝛼𝜃 < 1 or 0 < 𝑎𝛼 < 1 and 𝛼𝜃 = 1, 

(c)  unimodal (inverted bathtub shaped) if 𝑎𝛼 > 1 and 0 < 𝛼𝜃 < 1, 

(d)  bathtub shaped if 0 < 𝑎𝛼 < 1 and 𝛼𝜃 > 1, 

(e)  constant, ℎ(𝑡) =
𝑏

𝜆
 if 𝑎 = 𝛼 = 𝜃 = 1. 

Figure 3, provides plots of the hazard function of Kgpw distribution for some selected parameters values. These 

plots show flexibility of hazard rate function that makes the Kgpw hazard rate function useful and suitable for 

non-monotone hazard behaviors that are more likely to be observed in real life situations. 

  In reliability theory there are several important functions such as the survival function s(t), reverse hazard 

function r(t) and the cumulative hazard rate function H(t). These functions corresponding of the Kgpw 

distribution, take the following forms: 

𝑠(𝑡) = 1 − 𝐹(𝑥) = (1 − (1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

)

𝑎

)

𝑏

  ,    𝑡 > 0,                                                                      (16) 

 

𝑟(𝑡) =

𝑎𝑏𝜃𝛼𝑡𝛼−1 (1 + (
𝑡
𝜆

)
𝛼

)
𝜃−1

𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

]

𝑎−1

{1 − [1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑏−1

𝜆𝛼 [1 − (1 − (1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

)

𝑎

)

𝑏

] 

 

𝑡 > 0            (17) 

and  

𝐻(𝑡) = −𝑏 𝑙𝑛 (1 − (1 − 𝑒
1−(1+(

𝑡
𝜆

)
𝛼

)
𝜃

)

𝑎

)   ,    𝑡 > 0                                                                                   (18) 

respectively. 

 
Figure (3): Some Possible Shapes of the Kgpw Hazard Rate Function 
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3. The Statistical Properties of Kgpw Distribution 

 

   In this section, we present the quantile function, the moments and the moment generating function, 

skewness, kurtosis and random variables generation for the Kgpw distribution. 

 

3.1 Quantile function 

There are several measures for location and dispersion such as median, the interquartile range, the 

quartiles, the skewness and the kurtosis can be obtained by using the quantile function. The definition of the q-th 

quantile is the real solution of the following equation 

𝐹(𝑥𝑞) = 𝑞,  where  0 ≤ 𝑞 ≤ 1 

Thus, the quantile function Q(q) corresponding of the Kgpw distribution is  

𝑄(𝑞) = 𝜆 {(1 − 𝑙𝑛 [1 − (1 − (1 − 𝑞)
1

𝑏⁄ )
1

𝑎⁄

])

1
𝜃⁄

− 1}

1
𝛼⁄

                                                          (19) 

The median M(x) of Kgpw distribution can be obtained from previous function, by setting 𝑞 = 0.5, as follows 

𝑀(𝑋) = 𝜆 {(1 − 𝑙𝑛 [1 − (1 − (0.5)
1

𝑏⁄ )
1

𝑎⁄

])

1
𝜃⁄

− 1}

1
𝛼⁄

                                                              (20) 

Also, the quartiles of the Kgpw distribution can be obtained by putting 𝑞 = 0.25 and 𝑞 = 0.75 in (19). 

 

3.2 Skewness and kurtosis 

The statistical measures of skewness and kurtosis play important role in describing shape characteristics 

of the probability distributions. The Bowley’s skewness measure based on quartiles (Kenney and Keeping, 

(1962)) is given by 

 

𝑆𝑘 =
𝑄(3

4⁄ ) − 2𝑄(1
2⁄ ) + 𝑄(1

4⁄ )

𝑄(3
4⁄ ) − 𝑄(1

4⁄ )
                                                                                                     (21) 

 

and the Moors’ kurtosis measure based on octiles (Moors (1988)) is given by 

𝐾𝑢 =
𝑄(7

8⁄ ) − 𝑄(5
8⁄ ) + 𝑄(3

8⁄ ) − 𝑄(1
8⁄ )

𝑄(6
8⁄ ) − 𝑄(2

8⁄ )
                                                                                   (22) 

 

The previous measures Sk and Ku have a number of advantages compared to the classical measures of 

skewness and kurtosis, e.g. they are less sensitive to outliers and they exist for the distributions even without 

defined the moments. 

 

3.3 Random variables generation 

The quantile function of the Kgpw has a closed form, which makes the simulation from this distribution 

easier. When the parameters 𝑎, 𝑏, 𝛼, λ and 𝜃 are known, we can generate Kgpw random variables from the 

quantile function (19) as follows 

𝑋 = 𝜆 {(1 − 𝑙𝑛 [1 − (1 − (1 − 𝑢)
1

𝑏⁄ )
1

𝑎⁄

])

1
𝜃⁄

− 1}

1
𝛼⁄

                                                                (23) 

where, u is generated number from the Uniform distribution (0, 1). 
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3.4 Moments and moment generating function 

 If X has the Kgpw distribution, the moments and moment generating function are given by the 

following theorems 

Theorem 1. If X is a random variable having the pdf (2), For integer value of r
α⁄ , the r-th moment about zero 

can be determined as  

𝐸(𝑋𝑟) = 𝜆𝑟𝜑𝑖𝑗𝑘

𝑒𝑗

𝑗
𝑘
𝜃

𝛤 (
𝑘

𝜃
+ 1, 𝑗)                                                                                                               (24) 

where, 𝜑𝑖𝑗𝑘 = ∑ ∑ ∑ (−1)𝑖+𝑗+𝑟
𝛼−𝑘 (

𝑏
𝑖

)
𝑟

𝛼⁄

𝑘=0 (
𝑎𝑖
𝑗

)𝑎𝑖
𝑗=1 (

𝑟
𝛼⁄

𝑘
)𝑏

𝑖=1 . 

Proof. From definition, the r-th moment of Kgpw distribution is 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟
∞

0

 𝑓𝑘𝑔𝑝𝑤(𝑥)𝑑𝑥                                                                                                                    (25) 

By setting 𝑓𝐾𝑔𝑝𝑤(x) from (14) in previous equation yields 

𝐸(𝑋𝑟) =
𝛼𝜃

𝜆𝛼
∑ ∑ (−1)𝑖+𝑗 (

𝑏
𝑖

)

𝑎(𝑖+1)−1

𝑗=0

(
𝑎𝑖
𝑗

)

𝑏−1

𝑖=0

𝑗 ∫ 𝑥𝑟+𝛼−1 (1 + (
𝑥

𝜆
)

𝛼

)
𝜃−1

𝑒
𝑗(1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

)
𝑑𝑥

∞

0

     (26) 

Substitution 𝑣
1

𝜃 = 1 + (
𝑥

𝜆
)

𝛼

in the previous equation and after that using the binomial expansion, we get 

𝐸(𝑋𝑟) = 𝜆𝑟 ∑ ∑ ∑(−1)𝑖+𝑗+𝑟
𝛼−𝑘 (

𝑏
𝑖

)

𝑟
𝛼⁄

𝑘=0

(
𝑎𝑖
𝑗

)

𝑎𝑖

𝑗=1

(
𝑟

𝛼⁄

𝑘
) 𝑗𝑒𝑗 ∫ 𝑣

𝑘
𝜃 𝑒−𝑗𝑣

∞

1

𝑑𝑣

𝑏

𝑖=1

                                          (27) 

The last term is Γ (
k

θ
+ 1, j) 𝑗

𝑘
𝜃

+1⁄ . Therefore, (27) can be reduced to (24). 

Theorem 2. If X is a random variable having the pdf (2), for integer value of r
α⁄  the moment generating 

function is   

𝑀𝑥(𝑡) = 𝜆𝑟 ∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜑𝑖𝑗𝑘

𝑒𝑗𝛤 (
𝑘
𝜃

+ 1, 𝑗)

𝑗
𝑘
𝜃

                                                                                                    (28) 

Proof. The moment generating function of Kgpw distribution is given by 

 𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥∞

0
 𝑓𝑘𝑔𝑝𝑤(𝑥)𝑑𝑥 

Using the fact that etx = ∑
(tx)r

r!

∞
r=0  , we get 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝐸(𝑋𝑟)                                                                                                                                 (29) 

Inserting (24) in equation (29) yields the mgf of Kgpw in (28). 

The numerical values of mean and variance for various choices of parameters are given in Table 1and Table 2, 

respectively. 
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Table 1: Mean of the Kgpw Distribution for Some Values of a, b, θ, α and 𝝀 = 𝟑 

  
θ=1.5 θ=2.5 θ=3.5 

a b α=1.5 α=2.5 α=3.5 α=1.5 α=2.5 α=3.5 α=1.5 α=2.5 α=3.5 

1 

1 1.85 2.135 2.312 1.213 1.666 1.94 0.937 1.43 1.741 

2 1.218 1.657 1.927 0.824 1.315 1.636 0.644 1.137 1.475 

3 0.947 1.422 1.727 0.649 1.137 1.474 0.51 0.986 1.332 

4 0.789 1.275 1.597 0.545 1.023 1.366 0.43 0.889 1.236 

5 0.685 1.17 1.502 0.475 0.942 1.287 0.376 0.819 1.165 

2 

1 2.483 2.614 2.697 1.602 2.017 2.245 1.23 1.724 2.007 

2 1.874 2.212 2.395 1.244 1.734 2.015 0.966 1.492 1.81 

3 1.599 2.012 2.239 1.075 1.589 1.893 0.839 1.371 1.704 

4 1.432 1.884 2.137 0.97 1.494 1.812 0.759 1.291 1.633 

5 1.315 1.791 2.062 0.896 1.425 1.752 0.703 1.233 1.58 

3 

1 2.845 2.858 2.883 1.816 2.191 2.386 1.388 1.867 2.13 

2 2.264 2.498 2.62 1.484 1.943 2.192 1.147 1.666 1.964 

3 1.998 2.32 2.486 1.326 1.817 2.089 1.029 1.562 1.876 

4 1.835 2.205 2.398 1.227 1.735 2.021 0.955 1.494 1.817 

5 1.72 2.122 2.334 1.156 1.674 1.971 0.902 1.444 1.773 

4 

1 3.092 3.016 3 1.96 2.3 2.474 1.493 1.956 2.204 

2 2.533 2.682 2.76 1.646 2.075 2.299 1.267 1.775 2.057 

3 2.277 2.518 2.639 1.497 1.961 2.209 1.157 1.682 1.979 

4 2.118 2.413 2.561 1.402 1.886 2.149 1.088 1.62 1.928 

5 2.007 2.337 2.503 1.335 1.832 2.104 1.037 1.575 1.89 

5 

1 3.278 3.13 3.082 2.065 2.378 2.535 1.57 2.02 2.256 

2 2.736 2.815 2.859 1.766 2.168 2.374 1.356 1.851 2.121 

3 2.488 2.661 2.747 1.623 2.063 2.291 1.252 1.765 2.051 

4 2.334 2.562 2.675 1.533 1.994 2.237 1.185 1.709 2.004 

5 2.225 2.491 2.621 1.469 1.944 2.196 1.138 1.668 1.969 

Table 1 indicates that, the mean of Kgpw distribution is decreasing when b ana θ increasing with fixed the others 

parameters. While, the mean of Kgpw distribution is increasing when increasing a or α with fixed the others 

parameters. 
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Table 2: Variance of the Kgpw Distribution for Some Values of a, b, θ, α and λ= 𝟑 

  
θ=1.5 θ=2.5 θ=3.5 

a b α=1.5 α=2.5 α=3.5 α=1.5 α=2.5 α=3.5 α=1.5 α=2.5 α=3.5 

1 

1 1.287 0.707 0.46 0.474 0.379 0.288 0.266 0.265 0.221 

2 0.597 0.451 0.338 0.246 0.262 0.226 0.145 0.189 0.178 

3 0.372 0.342 0.278 0.162 0.205 0.191 0.097 0.15 0.153 

4 0.264 0.279 0.241 0.118 0.171 0.169 0.072 0.126 0.135 

5 0.201 0.237 0.215 0.092 0.147 0.152 0.056 0.109 0.123 

2 

1 1.177 0.504 0.286 0.399 0.249 0.166 0.216 0.168 0.123 

2 0.619 0.335 0.21 0.235 0.18 0.13 0.133 0.125 0.099 

3 0.432 0.267 0.176 0.172 0.149 0.113 0.1 0.105 0.087 

4 0.338 0.228 0.157 0.139 0.13 0.103 0.081 0.093 0.08 

5 0.28 0.203 0.143 0.118 0.117 0.095 0.069 0.085 0.075 

3 

1 1.071 0.407 0.217 0.345 0.192 0.12 0.182 0.126 0.087 

2 0.581 0.268 0.155 0.208 0.137 0.092 0.115 0.093 0.068 

3 0.418 0.215 0.13 0.157 0.113 0.079 0.089 0.079 0.06 

4 0.335 0.185 0.115 0.13 0.1 0.072 0.074 0.07 0.055 

5 0.284 0.166 0.106 0.113 0.091 0.067 0.065 0.064 0.051 

4 

1 0.993 0.35 0.18 0.308 0.159 0.096 0.16 0.104 0.069 

2 0.543 0.228 0.126 0.186 0.112 0.072 0.101 0.075 0.053 

3 0.396 0.182 0.104 0.142 0.092 0.061 0.079 0.063 0.046 

4 0.321 0.157 0.092 0.119 0.082 0.055 0.067 0.056 0.042 

5 0.275 0.141 0.084 0.104 0.074 0.051 0.059 0.051 0.039 

5 

1 0.934 0.312 0.157 0.281 0.139 0.082 0.144 0.089 0.058 

2 0.512 0.201 0.107 0.17 0.096 0.06 0.091 0.063 0.043 

3 0.375 0.16 0.088 0.13 0.079 0.051 0.071 0.053 0.037 

4 0.305 0.138 0.078 0.109 0.069 0.046 0.06 0.047 0.034 

5 0.263 0.123 0.071 0.096 0.063 0.042 0.053 0.043 0.031 

 

Table 2 indicates that, the variance of Kgpw distribution will decrease with increase the parameters values. 

  

 

4. Order Statistics 

Suppose 𝑋(1), 𝑋(2), … , 𝑋(𝑛) denote the order statistics of a random sample of size n drawn from a continuous 

distribution with cdf 𝐹(𝑥) and pdf 𝑓(𝑥), then the pdf of 𝑋(𝑙) is given by 
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𝑓𝑙:𝑛(𝑥) =
𝑛!

(𝑛 − 𝑙)! (𝑟 − 𝑙)!
𝑓(𝑥)[𝐹(𝑥)]𝑙−1[1 − 𝐹(𝑥)]𝑛−𝑙                                                                    (30) 

 

New, If 𝑋 is a random variable following Kgpw distribution then, by substituting F(x) and f(x) in eqs (9) and 

(10) in to eq (30), we get the Kgpw density of the 𝑙-th order statistics as follows 

 

𝑓𝑙:𝑛(𝑥) =
𝑛!

(𝑛 − 𝑙)! (𝑙 − 1)!

𝑎𝑏𝛼𝜃

𝜆𝛼
𝑥𝛼−1 (1 + (

𝑥

𝜆
)

𝛼

)
𝜃−1

𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎−1

× {1 − [1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

]

𝑏

}

𝑙−1

{1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑏(𝑛−𝑙+1)−1

         (31) 

when 𝑙 = 1 and when 𝑙 = 𝑛, the pdf of order statistics become 

 

𝑓1:𝑛(𝑥) = 𝑛
𝑎𝑏𝛼𝜃

𝜆𝛼
𝑥𝛼−1 (1 + (

𝑥

𝜆
)

𝛼

)
𝜃−1

𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎−1

× {1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑛𝑏−1

                                                                           (32) 

and 

𝑓𝑛:𝑛(𝑥) = 𝑛
𝑎𝑏𝛼𝜃

𝜆𝛼
𝑥𝛼−1 (1 + (

𝑥

𝜆
)

𝛼

)
𝜃−1

𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎−1

× {1 − [1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

]

𝑏

}

𝑛−1

{1 − [1 − 𝑒
1−(1+(

𝑥
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑏−1

      (33) 

respectively. 

 

5. Maximum Likelihood Estimation 

In this section, we determine the maximum likelihood estimates (𝑀𝐿𝐸𝑠) for the parameters 𝜎 =
(𝑎, 𝑏, 𝛼, 𝜆, 𝜃) of the Kgpw distribution. Let 𝑥1, 𝑥1, … , 𝑥𝑛 be a complete random sample of size n from the Kgpw 

distribution. The likelihood function (LF) is given by 

  

𝐿(𝜎|𝑥) = (
𝑎𝑏𝜃𝛼

𝜆𝛼
)

𝑛

∏ 𝑥𝑖
𝛼−1 (1 + (

𝑥𝑖

𝜆
)

𝛼

)
𝜃−1

𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
𝜃

[1 − 𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
𝜃

]

𝑎−1

 

𝑛

𝑖=1

 

 × {1 − [1 − 𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
𝜃

]

𝑎

}

𝑏−1

                                                                                         (34) 

 

and the log-likelihood function (logL) is given by  

 

𝑙𝑜𝑔𝐿 = 𝑛ln (
𝑎𝑏𝜃𝛼

𝜆𝛼
) + 𝑛 + (𝛼 − 1) ∑ ln 𝑥𝑖

𝑛

𝑖=1

+ (𝜃 − 1) ∑ ln (1 + (
𝑥𝑖

𝜆
)

𝛼

)

𝑛

𝑖=1

− ∑ (1 + (
𝑥𝑖

𝜆
)

𝛼

)
𝜃

𝑛

𝑖=1

  

                             +(𝑎 − 1) ∑ ln (1 − 𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
𝜃

)

𝑛

𝑖=1

+ (𝑏 − 1) ∑ ln [1 − (1 − 𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
𝜃

)

𝑎

]

𝑛

𝑖=1

      (35) 

The derivatives of the logL with respect to the unknown parameters 𝑎, 𝑏, 𝛼, λ and θ are 

 

𝜕 ln 𝐿

𝜕𝑎
=

𝑛

𝑎
+ ∑ ln(1 − 𝜔𝜃,𝛼,𝜆) − (𝑏 − 1)

𝑛

𝑖=1

∑
ln(1 − 𝜔𝜃,𝛼,𝜆) (1 − 𝜔𝜃,𝛼,𝜆)

𝑎

1 − (1 − 𝜔𝜃,𝛼,𝜆)
𝑎

𝑛

𝑖=1

                               (36) 
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𝜕 ln 𝐿

𝜕𝑏
=

𝑛

𝑏
+ ∑ ln(1 − (1 − 𝜔𝜃,𝛼,𝜆)

𝑎
)

𝑛

𝑖=1

                                                                                                 (37) 

𝜕 ln 𝐿

𝜕𝛼
=

𝑛

𝛼
− 𝑛 ln 𝜆 + ∑ ln 𝑥𝑖 + (𝜃 − 1) ∑

ln (
𝑥𝑖

𝜆
) (

𝑥𝑖

𝜆
)

𝛼

𝜑𝛼,𝜆

−

𝑛

𝑖=1

𝑛

𝑖=1

𝜃 ∑ ln (
𝑥𝑖

𝜆
) (

𝑥𝑖

𝜆
)

𝛼
𝑛

𝑖=1

𝜑𝛼,𝜆
𝜃−1 

× {1 −
(𝑎 − 1)𝜔𝜃,𝛼,𝜆

1 − 𝜔𝜃,𝛼,𝜆

+
𝑎(𝑏 − 1)(1 − 𝜔𝜃,𝛼,𝜆)

𝑎−1
𝜔𝜃,𝛼,𝜆

1 − (1 − 𝜔𝜃,𝛼,𝜆)
𝑎 }                                              (38) 

  

𝜕 ln 𝐿

𝜕𝜆
= −

𝛼𝑛

𝜆
+

𝛼𝜃

𝜆𝛼+1
∑[𝑥𝑖

𝛼𝜑𝛼,𝜆
θ−1]

𝑛

𝑖=1

−
𝛼(𝜃 − 1)

𝜆𝛼+1
∑ [

𝑥𝑖
𝛼

𝜑𝛼,𝜆

]

𝑛

𝑖=1

+
𝛼𝜃

𝜆𝛼+1
∑ 𝑥𝑖

𝛼𝜑𝛼,𝜆
𝜃−1

𝑛

𝑖=1

 

× 𝜔𝜃,𝛼,𝜆 {
(𝑎 − 1)

𝜔𝜃,𝛼,𝜆 − 1
+

𝑎(𝑏 − 1)(1 − 𝜔𝜃,𝛼,𝜆)
𝑎−1

1 − (1 − 𝜔𝜃,𝛼,𝜆)
𝑎 }                                                            (39) 

 

𝜕 ln 𝐿

𝜕𝜃
=

𝑛

𝜃
+ ∑ ln(𝜑𝛼,𝜆) − ∑ ln (𝜑𝛼,𝜆) 𝜑𝛼,𝜆

𝜃 + (𝑎 − 1)

𝑛

𝑖=1

𝑛

𝑖=1

∑
ln(𝜑𝛼,𝜆) 𝜔𝜃,𝛼,𝜆𝜑𝛼,𝜆

𝜃

1 − 𝜔𝜃,𝛼,𝜆

 

𝑛

𝑖=1

 

−𝑎(𝑏 − 1) ∑
ln(𝜑𝛼,𝜆) 𝜔𝜃,𝛼,𝜆𝜑𝛼,𝜆

𝜃(1 − 𝜔𝜃,𝛼,𝜆)
𝑎−1

1 − (1 − 𝜔𝜃,𝛼,𝜆)
𝑎

𝑛

𝑖=1

                                                          (40) 

where, 𝜔𝜃,𝛼,𝜆 = 𝑒
1−(1+(

𝑥𝑖
𝜆

)
𝛼

)
θ

, 𝜑𝛼,𝜆 = (1 + (
𝑥𝑖

𝜆
)

𝛼

) . 

The maximum likelihood estimates of 𝑎, 𝑏, 𝛼, 𝜆 and 𝜃 are the simultaneous solutions of the equations 
𝜕 ln 𝐿

𝜕𝑎
= 0 ,

𝜕 ln 𝐿

𝜕𝑏
= 0 ,

𝜕 ln 𝐿

𝜕𝛼
= 0 ,

𝜕 ln 𝐿

𝜕𝜆
= 0 ,

𝜕 ln 𝐿

𝜕𝜃
= 0. These equations cannot be solved analytically and statistical 

software can be used to solve them numerically by using iterative techniques like the Newton-Raphson 

algorithm.  

 

6. Application 

 

In this section, we have given an application of Kgpw distribution using real data set to illustrate that Kgpw 

distribution provides significant improvements over its sub-models Weibull (W) and generalized power Weibull 

(gpw). The real data set is taken from Badar and Priest (1982). The data represent the strength data measured in 

GPA, for single carbon fibers were tested under tension at gauge lengths of 1, 10, 20 and 50 mm. For illustrative 

purpose, we consider only the data set consisting the single fibers of 20 mm, with a sample of size 63. The data 

are: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 

2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 

2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 

3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

 

In Table 3. the maximum likelihood estimates of the unknown parameters of the Kgpw, gpw and Weibull 

distributions are given, along with the criteria likelihood (−ℓ𝑛(𝑘)),  Akaike information criterion (AIC), 

corrected Akaike information criterion (CAIC) and Hannan-Quinn criterion (HQC) (see Hannan and Quinn 

(1978)). These criteria take the following forms, 𝐴𝐼𝐶 = −2𝑙𝑛ℓ𝑛(𝑘) + 2𝑘 , 𝐴𝐼𝐶𝐶 = −2 𝐴𝐼𝐶 + 2𝑘(𝑘+1)

𝑛−𝑘−1
 and 

𝐻𝑄𝐶 = −2𝑙𝑛ℓ𝑛(𝑘) + 2𝑘𝑙𝑛(𝑙𝑛(𝑛)) where, ℓ𝑛(𝑘) be the maximum likelihood of a model with number of 

parameters k based on a sample of size n. Also, the plots of the empirical and estimated cdf’s of these 

distributions are given in Figure (4) as a graphical illustration of the goodness of fit for these data. 

 

Table 3: The estimated parameters and statistics −𝓵𝒏(𝒌), AIC, AICC and HQC for fitted models 

 Estimates Statistics 

Model 𝑎 𝑏 𝛼 𝜆 𝜃 −ℓ𝑛(𝑘) AIC AICC HQC 

Weibull - - 5.049 3.315 - 61.957 127.914 128.114 129.6 

gpw - - 3.151
 

19.824 179.363 69.271 144.542 144.949 147.071 

Kgpw 40.071 1.407 2.215 0.67 0.467 56.346 122.692 123.745 126.907 
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It is observed from Table 3 that −ℓ𝑛(𝑘), AIC, AICc and HQC are lowest in case of Kgpw distribution. 

Therefore, we can conclude that Kgpw distribution performs better than Wibull and gpw distributions. The 

figures (4a) and (4b) also confirm a good fit of the Kgpw model for the data set. 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Estimated pdfs of the Kgpw Distribution and its Sub-Models for the Strength Data from Badar and 

Priest (1982). (b) Empirical and Estimated cdfs of the Kgpw Distribution and its Sub-Models for the Strength 

Data from Badar and Priest (1982). 

 

 

7. Concluding Remarks 

 

In this article, we define a new model, which is called the Kumaraswamy generalized power Weibull 

distribution. The new distribution generalizes the generalized power Weibull distribution defined by Nikulin and 

Haghighi (2006). Some mathematical properties are derived and plots of the pdf, cdf and hazard function are 

presented to show the flexibility of the new distribution. The maximum likelihood estimation for the model 

parameters is discussed. Finally, an application of the proposed model to a real data set is given to illustrate that 

Kgpw distribution can be used quite effectively to provide better fits than other available models. 
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