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Abstract  

Testing goodness-of-fit plays a vital role in data analysis.  This problem seems to be much more complicated in 

the presence of vague data.  In this paper, the chi-square goodness-of-fit under trapezoidal fuzzy numbers (tfns.) 

is proposed using alpha cut interval method.  And the ranking grades of tfns. are also used to compute the chi-

square test statistic.  The proposed technique is illustrated with two different numerical examples along with 

different methods of ranking grades for a concrete comparative study. 

Keywords: Chi-square Test, Fuzzy Sets, Trapezoidal Fuzzy Numbers, Alpha Cut, Ranking Function, Graded 
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1. Introduction: 

Most of statistical procedures are based on fairly specific assumptions regarding the underlying 

population distribution, like normality, exponentiality, etc.  Therefore it might be desirable to check whether 

these assumptions are reasonable.  Statistical procedures for testing hypotheses about the underlying distribution 

are called goodness-of-fit test.   

Fuzzy set theory [34] has been applied to many areas which need to manage uncertain and vague data.  Such 

areas include approximate reasoning, decision making, optimization, control and so on.  In traditional statistical 

testing [13], the observations of sample are crisp and a statistical test leads to the binary decision.  However, in 

the real life, the data sometimes cannot be recorded or collected precisely.  The statistical hypotheses testing 

under fuzzy environments has been studied by many authors using the fuzzy set theory concepts introduced by 

Zadeh [34].  Viertl [29] investigated some methods to construct confidence intervals and statistical tests for 

fuzzy data.  Wu [32] proposed some approaches to construct fuzzy confidence intervals for the unknown fuzzy 

parameter.  A new approach to the problem of testing statistical hypotheses is introduced by Chachi et al. [8].  

Mikihiko Konishi et al. [19] proposed a method of ANOVA for the fuzzy interval data by using the concept of 

fuzzy sets.  Hypothesis testing of one factor ANOVA model for fuzzy data was proposed by Wu [31, 33] using 

the h-level set and the notions of pessimistic degree and optimistic degree by solving optimization problems. 

Gajivaradhan and Parthiban analysed one-way ANOVA test using alpha cut interval method for trapezoidal 

fuzzy numbers [20] and they presented a comparative study of 2-factor ANOVA test under fuzzy environments 

using various methods [21]. 

Wang et al. presented a method for centroid formulae for a generalized fuzzy number and arrived some different 

approach for ranking tfns. [30]. Salim Rezvani analysed the ranking functions with tfns. [25]. Thorani et al. 

approached the ranking function of a tfns. with some modifications [26].  Salim Rezvani and Mohammad Molani 

presented the shape function and Graded Mean Integration Representation for tfns. [24].   

 

In this paper, we propose the chi-square goodness-of-fit under fuzzy data.  That is, if the observed large samples 

are unavoidably in terms of trapezoidal fuzzy numbers (or triangular fuzzy numbers), we suggest here how to 

modify the classical chi-square test for such data using their alpha cut intervals. And the decision rules of the 

proposed technique are given.  In the proposed approach, the degrees of optimism, pessimism and h-level set are 

not used but used in Wu [31].  In fact we would like to present a conclusion that α-cut  interval method is 

general enough to deal with chi-square test of goodness-of-fit under fuzzy data (tfns.).  Also, in this paper we 

have analysed what can be the result if the centroid/ranking grades of tfns. are employed in hypotheses testing.  

The same concept can also be applied for the data which are in terms of triangular fuzzy numbers.  For better 

understanding, the proposed technique is illustrated with two different kinds of numerical examples with 

different conclusions. 
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2. Preliminaries 

Definition 2.1. Generalized fuzzy number  

A generalized fuzzy number A  is described as any fuzzy subset of the real line , whose membership 

function  
A

μ x  satisfies the following conditions: 

i.  
A

μ x  is a continuous mapping from  to the closed interval  0, ω ,  0 ω 1  , 

ii.    
A

μ x  = 0, for all x - , a  , 

iii.    L A
μ x L x  is strictly increasing on  a, b , 

iv.    
A

μ x ω,  for all b, c ,  as ω is a constant and 0 < ω 1  , 

v.    R A
μ x R x  is strictly decreasing on  c, d , 

vi.    
A

μ x 0,  for all x d,    .  where a, b, c, d are real numbers such that a < b c < d . 

Definition 2.2. A fuzzy set A  is called normal fuzzy set if there exists an element (member) ‘x’ such that 

 
A

μ x 1 . A fuzzy set A  is called convex fuzzy set if        1 2 1 2A A A
μ αx + 1 - α x min μ x , μ x

where  1 2x , x X and α 0, 1  .  The set   α
A

A x X μ x α    is said to be the α - cut  of a fuzzy 

set A . 

Definition 2.3. A fuzzy subset A  of the real line  with membership function  
A

μ x  such that 

   
A

μ x : 0, 1 , is called a fuzzy number if A  is normal, A  is fuzzy convex,  
A

μ x is upper semi-

continuous and  Supp A  is bounded, where Supp     A
A cl x :  μ x 0    and ‘cl’ is the closure 

operator. 

 

Definition 2.4. α-cut  of a fuzzy number:  A useful notion for dealing with a fuzzy number is a set of its 

α-cuts .  The α-cut  of a fuzzy number A  is a non-fuzzy set defined as α A
A ={x  :μ (x) α}  .  A 

family of α{A : α (0,1]}  is a set representation of the fuzzy number A .  According to the definition of a 

fuzzy number, it is easily seen that every α-cut of a fuzzy number is a closed interval.  Hence we have, 
L U

α α αA [A ,  A ]  where 
L

α A
A inf{x  :μ (x) α}    and 

U

α A
A sup{x  :μ (x) α}   .  A space of 

all fuzzy numbers will be denoted by F( ) . 

It is known that for a normalized tfn A (a, b, c, d; 1) , there exists four numbers a, b, c, d  and two 

functions      
A A

L x ,  R x : 0, 1 , where  
A

L x  and  
A

R x are non-decreasing and non-

increasing functions respectively.  And its membership function is defined as follows: 

   
A A

μ x L x =(x-a)/(b-a) for a x b;  1 for b x c;      
A

R x =(x-d)/(c-d) for c x d   and 

0 otherwise.  The functions  
A

L x  and  
A

R x  are also called the left and right side of the fuzzy number A  

respectively [9].  In this paper, we assume that  A x dx < +





  .   The left and right sides of the fuzzy 

number A  are strictly monotone, obviously, LA  and UA  are inverse functions of  
A

L x  and  
A

R x  

respectively.  Another important type of fuzzy number was introduced in [6] as follows: 

Let a, b, c, d  such that a < b c < d .  A fuzzy number A defined as    
A

μ x :  0, 1 , 
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 
n n

A

x - a d - x
μ x for a x b; 1 for b x c;  for c x d;

b - a d - c

   
         
   

 0 otherwise where n > 0 is 

denoted by  
n

A a, b, c, d .  And  
n

x - a
L x

b - a

 
  
 

;  
n

d - x
R x

d - c

 
  
 

 can also be termed as left and 

right spread of the tfn. [Dubois and Prade in 1981].   

If  
n

A a, b, c, d , then[1-4], 

         n n
α L UA A α ,  A α a + b - a α,  d - d - c α ;  α 0, 1       

. 

When n = 1  and b = c , we get a triangular fuzzy number.  The conditions r = 1, a = b  and c = d imply the 

closed interval and in the case r = 1, a = b = c = d = t (some constant), we can get a crisp number ‘t’.  Since 

a trapezoidal fuzzy number is completely characterized by n = 1  and four real numbers a b c d   , it is 

often denoted as  A a, b, c, d .  And the family of trapezoidal fuzzy numbers will be denoted by  TF .  

Now, for n = 1we have a normal trapezoidal fuzzy number  A a, b, c, d  and the corresponding α - cut  

is defined by 

     αA a + α b - a ,  d - α d - c ;  α 0, 1 (2.5)     .  And we need the following results which can 

be found in [13, 14]. 

 

Result 2.1. Let D = {[a, b], a b and a, b }, the set of all closed, bounded intervals on the real line .  

 

Result 2.2. Let A = [a, b] and B = [c, d] in D.  Then A = B if a = c and b = d. 

 

3. Chi-square distribution 

 If Xi (i=1, 2, …, n) are n independent normal variates with mean iμ and variance 
2σ  (i=1, 2, …, n) 

then  
n

22

i i i

i=1

χ (X -μ ) / σ is a chi-square variate with n degrees of freedom.  The probability density 

function of the chi-square distribution is given by,

2χn n( ) 12 2 22 2 2nf(χ )=(1/(2 ))(χ ) e ;  0 χ
2




    where 

n is the degrees of freedom.  And the exact shape of the distribution depends upon the number of degrees of 

freedom n.  In general, when n is small, the shape of the curve is skewed to the right and as υ  gets larger, the 

distribution becomes more and more symmetrical.  The mean and variance of the chi-square distribution are n 

and 2n respectively.  As n  , the chi-square distribution approaches a normal distribution.  The sum of 

independent chi-square variates is also a chi-square variate.   

Moreover, chi-square distribution is very useful: (i) to test if the hypothetical value of the population variance is 
2 2

0σ =σ  (say).  (ii) to test the “goodness of fit”.  It is used to determine whether an actual sample distribution 

matches a known theoretical distribution.  (iii) to test the independence of attributes i.e. if a population is known 

to have two attributes, then chi-square distribution is used to test whether the two attributes are associated or 

independent, based on a sample.  (iv) to test the homogeneity of independent estimates of the population 

correlation coefficient. 

3.1. Conditions for the validity of chi-square test: 

(i) The experimental data (sample observations) must be independent of each other.  (ii) The total 

frequency (or number of observations in the sample) must be reasonably large, say  50. (iii) No individual 

frequencies should be less than 5, if any frequency is less than 5, then it is pooled with the preceding or 

succeeding frequency so that the pooled frequency is more than 5.  Finally adjust for the degrees of freedom lost 

in pooling.  (iv) The number of classes n must be neither too small nor too large i.e. 4 n 16  . 
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3.2. Chi-square test of goodness of fit: 

 Tests of goodness of fit [12, 27] are used when we want to determine whether an actual sample 

distribution matches a known theoretical distribution.  It enables us to find if the deviation of the experiment 

from theory is just by chance or it is really due to the inadequacy of the theory to fit the observed data.  If O i, 

(i=1, …, n) is a set of observed frequencies and Ei, (i=1, …, n) is the corresponding set of expected frequencies, 

then 

n
2 2

i i i

i=1

χ ((O - E ) /E ) follows chi-square distribution with (n-1) degrees of freedom.  Suppose that a 

random sample X1, …, Xn is drawn from a population with unknown cumulative distribution function F.  We 

wish to test the null hypothesis 0 0H :F(x) = F (x)  x  that the population cdf is F0 (which is completely 

specified), against A 0H :F(x)  F (x)  for some x.  To apply this test, the data must first be grouped into 

categories and then the observed frequencies for these categories are compared with the frequencies expected 

under the null hypothesis.  In the case of a discrete distribution these categories appear in a natural way and are 

relevant to the distribution under study.  When the distribution F0 is continuous we have to arrange classes which 

are counterparts of above mentioned categories.  Let ‘k’ be the level of significance.  If the calculated 
2 2

kχ χ  

with (n-1) degrees of freedom, we will accept the null hypothesis H0 then the difference between the observed 

and expected frequencies is not significant at k% level of significance.  If
2 2

kχ χ , we reject H0 and conclude 

that the difference is significant.  It may happen that a sample used for making decision consists of observations 

that are not necessarily crisp but may be vague as well.  In order to describe the vagueness of data we use the 

notion of a fuzzy number, introduced by Dubois and Prade [9]. 

3.3. Fuzzy random variables: 

 A notion of fuzzy random variables was introduced by Kwakernaak [17, 18].  Other definitions of fuzzy 

random variables are due to Kruse [15] or to Puri and Ralescu [22].  Suppose that a random experiment is 

described as usual by a probability space (, , ), where  is the set of all possible outcomes of the 

experiment,  is the σ -algebra of subsets of  ( the set of all possible events) and  is a probability measure.  

Then the mapping X : F( )  is called a fuzzy random variable if {X(α, ω): α (0, 1]}  is a set 

representation of X(ω)  for all ω  and for each α (0, 1]  both 
L L

α α αX X (ω) inf X (ω)   and 

U U

α α αX X (ω) sup X (ω)  are usual real-valued random variables[16] on (, , ). 

A fuzzy random variable X is considered as a perception of an unknown usual random variable V: ,

called an original of X (if only vague data are available, it is of course impossible to show which of the possible 

originals is the true one).  Similarly n-dimensional fuzzy random sample X1, …, Xn may be treated as a fuzzy 

perception [16] of the usual random sample V1, …, Vn (where V1, …, Vn are independent and identically 

distributed crisp random variables).  A random variable is completely characterized by its probability distribution

θP .  In statistical reasoning we assume that a probability distribution under study belongs to a family of 

distributions  = { θP : θ} where  is the parameter space.  Then very often we identify the distribution with 

its parameter θ and restrict statistical inference to that parameter.  However, if we deal with a fuzzy random 

variable, we cannot observe the parameter θ  directly but only its vague image.  Using this reasoning together 

with Zadeh’s extension principle Kruse and Meyer [16] introduced the notion of fuzzy parameter of fuzzy 

random variable θ  which may be considered as a fuzzy perception of the unknown parameter θ .  It is defined 

as a fuzzy subset of the parameter space  with membership function 
A

μ :  [0, 1]. Of course, if our data are 

crisp i.e. X = V, we get θ θ . 

3.4. Chi-square test for vague data: 

 Suppose 
1 nX X

μ ,  ...,  μ denote membership functions of fuzzy numbers which are observations of a 

fuzzy random sample 1 nX ,  ...,X .  Suppose our sample comes from the unknown distribution F, and our aim is 
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to test the null hypothesis 0
θ

H : F F against A
θ

H : F F  where the distribution 
θ

F is completely specified by 

a fuzzy parameter θ  described by its membership function 
A

μ .  And the test statistic for testing 0H  against 

AH with fuzzy data is given by [10, 11] 

n
2 2

i ii

i=1

χ ((O -E ) /E ) (3.5)  for large samples and which 

follows approximately chi-square distribution with (n-1) degrees of freedom.  Therefore, we reject 0H  in favor 

of AH if 
2 2

1-α, n-1χ χ where 
2

1-α, n-1χ is the quantile of order 1-α  from the chi-square distribution with k-1 

degrees of freedom. 

4. Chi-square goodness of fit using alpha cut interval method: 

 The fuzzy test of hypotheses of chi-square model in which the sample data are trapezoidal fuzzy 

numbers is given here.  The test statistic for fuzzy observations given by (3.5) is formulated according to the 

α-cut interval of tfns. (def. 2.4; section 2).  Using the relation (def. 2.5; section 2), we transform the fuzzy chi-

square model to interval chi-square model.  Having the upper limit of the alpha cut interval, we construct upper 

level crisp chi-square model and using the lower limit of the alpha cut interval, we construct the lower level crisp 

chi-square model.  Thus, in this approach, the test statistic (3.5) is split into two parts up namely lower level and 

upper level α-cut intervals viz. L i i iA (α)=[a + α(b - a )]---(4.1)  and U i i iA (α)=[d - α(d - c )]---(4.2) ; 

i=1,..., n; α [0, 1] .  Accordingly, the test statistics will be 

 
2

L L

iin
2

L L
i=1 i

O  - E
χ (4.3)

E
   and 

 
2

U U

iin
2

U U
i=1 i

O  - E
χ (4.4)

E
  where 

L

i i i iO [a + α(b - a )]  

and 
U

i i i iO [d - α(d - c )];  i=1, ..., n; α [0, 1]  . 

 

Decision rules: 

The decision rules for the fuzzy hypotheses are given below: 

0
θ

H : F F  against 0
θ

H : F F   0
θ

H : F F          
against 0

θ
H : F F         

. 


θ θ

L U L U L U
0 0H ,  H : F ,F F ,  F     

      
 against 

θ θ

L U L U L U
0 0H ,  H : F ,F F ,  F     

      
. 

The null hypothesis for lower level model: 
θ

L L L
0H : F F     

      
against

θ

L L L
0H : F F     

      
. 

The null hypothesis for upper level model: 
θ

U U U
0H : F F     

      
 against 

θ

U U U
0H : F F     

      
. 

Example 1. The following table shows defective articles produced by four machines Ai, i=1, 2, 3, 4.  Due to 

some work congestion, the observed data are unavoidably trapezoidal fuzzy numbers. 

We now test whether the tfns. indicate a significant difference in the performance of the machines. 

Example 2. The demand for a particular spare part in a factory was found to vary from day-to-day.  The 

observed demand of the spare parts are in terms of tfns. due to some unexpected situations in the non-stop work 

flow.  The obtained sample study is tabulated below: 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives (10, 12, 13, 15) (26, 29, 30, 32) (58, 60, 63, 64) (94, 96, 98, 101) 
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We test the hypotheses whether the number of parts demanded depends on the day of the week. 

Example 4.1. Let us consider example 1, using the relation (2.5) in section 2, the alpha cut interval model for the 

4 machines are given by, 

0H : Production rates of the 4 machines are same. 

The lower level model (l.l.m.) 

 

 

L

0H : Production rates of the 4 machines are same. 

The total number of defectives at l.l.m. = [188+9 

The expected number of defectives and observed number of defectives produced by the four machines are given 

below respectively, 

 

 

 

 

Now, the test statistic for l.l.m. is 
 

2
L L

2iin
2

L L
i=1 i

O  - E
1400α -13552α+104132

χ
378α+7896E

  . 

And since 
L L

i iE O  , v =4-1=3, from the chi-square table, 
2

T(5%)χ ( 3) 7.815v    

Here, 
2 2

T(5%)Lχ  > χ  α, 0 α 1   . The null hypothesis 
L

0H  is rejected at 5% level of significance α.  

There is a significant difference in the performance of machines at l.l.m. 

The upper level model (u.l.m.) 

 

 

U

0H : Production rates of the 4 machines are same. 

The total number of defectives at u.l.m. = [212-8 

  

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

No. of parts 

demanded 

(1119, 1122, 

1124, 1126) 

(1120, 1122, 

1125, 1128) 

(1107, 1108, 

1110, 1114) 

(1116, 1120, 

1122, 1123) 

(1121, 1124, 

1126, 1127) 

(1114, 1115, 

1117, 1120) 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives [10+2, 15-2] [26+3, 32-2] [58+2, 64-] [94+2, 101-3] 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives [10+2] [26+3] [58+2] [94+2] 

L

iE  (1/7)[188+9] (1/7)[188+9] (2/7)[188+9] (3/7)[188+9] 

L

iO  [10+2] [26+3] [58+2] [94+2] 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives [15-2] [32-2] [64-] [101-3] 
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The expected number of defectives and observed number of defectives produced by the four machines are given 

below respectively, 

 

 

 

Now, the test statistic for u.l.m. is 
 

2
U U

2iin
2

U U
i=1 i

O  - E
693α +8988α+81368

χ
8904-336αE

   

And since 
U U

i iE O  , v =4-1=3, from the chi-square table, 
2

T(5%)χ ( 3) 7.815v    

Here,
2 2

T(5%)Uχ  > χ  α, 0 α 1   . The null hypothesis 
U

0H  is rejected at 5% level of significance α.  

There is a significant difference in the performance of machines at u.l.m. 

Hence, observing the decisions from both l.l.m. and u.l.m., the null hypothesis 0H is rejected at 5% level 

of significance and we conclude that there is a significant difference in the performance of 4 machines. 

Example 4.2. Let us consider example 2, using the relation (2.5) in section 2, the alpha cut interval of the given 

tfns. are tabulated below: 

 

0H : The number of spare parts demanded are same over the 6-day. 

The lower level model (l.l.m.) 

 

 

L

0H : The number of spare parts demanded are same over the 6-day period. 

The total number of defectives at l.l.m. = [6697+14

Under the null hypothesis, the expected frequencies of the spare parts demanded on each of the six days would 

be [6697

Now, the test statistic for l.l.m. is 
 

2
L L

2iin
2

L L
i=1 i

O  - E
264α +1344α+4854

χ
84α+40182E

  . 

And since 
L L

i iE O  , v =6-1=5, from the chi-square table, 
2

T(5%)χ ( 5) 11.07v    

Here,
2 2

T(5%)Lχ  < χ  α, 0 α 1   .The null hypothesis 
L

0H  is accepted at 5% level of significance α.  

U

iE  (1/7)[212-8] (1/7)[212-8] (2/7)[212-8] (3/7)[212-8] 

U

iO  [15-2] [32-2] [64-] [101-3] 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand 
[1119+3, 

1126-2] 

[1120+2, 

1128-3] 

[1107+, 

1114-4] 

[1116+4, 

1123-] 

[1121+3, 

1127-] 

[1114+, 

1120-3] 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand [1119+3] [1120+2] [1107+] [1116+4] [1121+3] [1114+] 

L

iE  [6697 [6697 [6697 [6697 [6697 [6697 

L

iO  [1119+3] [1120+2] [1107+] [1116+4] [1121+3] [1114+] 
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The number of spare parts demanded are same over the 6-day period at l.l.m. 

The upper level model (u.l.m.) 

 

 

U

0H : The number of spare parts demanded are same over the 6-day period. 

The total number of defectives at l.l.m. = [6738-14

Under the null hypothesis, the expected frequencies of the spare parts demanded on each of the six days would 

be [6738 

Now, the test statistic for l.l.m. is 
 

2
U U

2iin
2

U U
i=1 i

O  - E
100α +720α+2520

χ
20214-42αE

  . 

And since 
U U

i iE O  , v =6-1=5, from the chi-square table, 
2

T(5%)χ ( 5) 11.07v    

Here,
2 2

T(5%)Uχ  < χ  α, 0 α 1   .The null hypothesis 
U

0H  is accepted at 5% level of significance α.  

The number of spare parts demanded are same over the 6-day period at u.l.m. 

Hence, observing the decisions obtained from both l.l.m. and u.l.m., the null hypothesis 0H  is accepted at 

5% level of significance and we conclude that the number of spare parts demanded are same over the 6-

day period. 

5. Wang’s centroid point and ranking method 

Wang et al. [30] found that the centroid formulae proposed by Cheng are incorrect and have led to some 

misapplications such as by Chu and Tsao.  They presented the correct method for centroid formulae for a 

generalized fuzzy number  A= a, b, c, d; w as 

   
       

0 0

1 dc - ab w c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

        
                         

--- (5.1)                                                                                                                       

And the ranking function associated with A is             
2 2

0 0
R A x  + y --- (5.2)   

For a normalized tfn., we put w = 1 in equations (5.1) so we have, 

   
       

0 0

1 dc - ab 1 c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

        
                         

--- (5.3)                

And the ranking function associated with A is          
2 2

0 0
R A x  + y --- (5.4) 

Let i jA  and A  be two fuzzy numbers    i j i j(i) R A R A  then A A     

   i j i j(ii) R A < R A then A A      i j i j(iii) R A = R A  then A A . 

 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand [1126-2] [1128-3] [1114-4] [1123-] [1127-] [1120-3] 

L

iE  
[6738 [6738 [6738 [6738 [6738 [6738 

L

iO  [1126-2] [1128-3] [1114-4] [1123-] [1127-] [1120-3] 
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Example 5.1. Let us consider example 1, the ranking grades of tfns. are calculated using relations (5.3) and (5.4) 

which are given below: 

 

 

And total no. of defectives = 200, iE : 200/7;  200/7; 2(200)/7; 3(200)/7  and converting iE  to the 

whole numbers subject to the condition that iE =200, we get, 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 10.80  ; since i iE O  , 4 1 3v    , from the chi-square table it is 

seen that 
2

T(5%)χ ( 3) 7.815v   .  Here 
2 2

T(5%)χ  > χ .  The null hypothesis 0H is rejected at 5% level of 

significance.  The difference between the performances of 4 machines is significant. 

Example 5.2. Let us consider example 2, the ranking grades of tfns. are calculated using relations (5.3) and (5.4) 

which are given below: 

 

 

And total no. of demand = 6717.492, iE = (total no. of defectives/6) = (6717.492/6) = 1119.582 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 0.1376  ; since i iE O  , 6 1 5v    , from the chi-square table it 

is seen that 
2

T(5%)χ ( 5) 11.07v   .  Here 
2 2

T(5%)χ  < χ .  The null hypothesis 0H is accepted at 5% level of 

significance.    The number of spare parts demanded are same over the 6-day period. 

6. Rezvani’s ranking function of TFNs 

The centroid of a trapezoid is considered as the balancing point of the trapezoid.  Divide the trapezoid into three 

plane figures.  These three plane figures are a triangle (APB), a rectangle (BPQC) and a triangle (CQD) 

respectively.  Let the centroids of the three plane figures be 1 2 3G , G  and G  respectively.  The incenter of 

these centroids 1 2 3G , G  and G  is taken as the point of reference to define the ranking of generalized 

trapezoidal fuzzy numbers.  The reason for selecting this point as a point of reference is that each centroid point 

are balancing points of each individual plane figure and the incenter of these centroid points is much more 

balancing point for a generalized trapezoidal fuzzy number.  Therefore, this point would be a better reference 

point than the centroid point of the trapezoid. 

  

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives 12.5013 29.1929 61.2261 97.3097 

iE  29 29 57 85 

iO  13 29 61 97 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand 1122.704 1123.788 1109.889 1120.111 1124.417 1116.583 

iE  1119.582 1119.582 1119.582 1119.582 1119.582 1119.582 

iO  1122.704 1123.788 1109.889 1120.111 1124.417 1116.583 
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Consider a generalized trapezoidal fuzzy number  A= a, b, c, d; w .  The centroids of the three plane figures 

are: 

 

1 2 3

a+2b w b+c w 2c+d w
G , ,  G ,  and G ,

3 3 2 2 3 3

     
       
     

--- (6.1) 

Equation of the line 1 3G G is 
w

y = 
3

 and 2G  does not lie on the line 1 3G G .  Therefore, 1 2 3G , G  and G  

are non-collinear and they form a triangle.  We define the incenter  0 0
I x , y  of the triangle with vertices 

1 2 3G , G  and G  of the generalized fuzzy number  A= a, b, c, d; w  as [25], 

 0 0A

a+2b b+c 2c+d w w w
α β γ α β γ

3 2 3 3 2 3
I x , y ,  

α + β + γ α + β + γ

            
               

            
 
  

--- (6.2)

     
2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w

where α ,β ,γ
6 3 6

 
   --- (6.3) 

And ranking function of the trapezoidal fuzzy number  A= a, b, c, d; w which maps the set of all fuzzy 

numbers to a set of all real numbers i.e. R: A     
 is defined as   

2 2

0 0
R A x  + y --- (6.4)  which is 

the Euclidean distance from the incenter of the centroids.  For a normalized tfn., we put w = 1 in equations (6.1), 

(6.2) and (6.3) so we have, 

1 2 3

a+2b 1 b+c 1 2c+d 1
G , ,  G ,  and G ,

3 3 2 2 3 3

     
       
     

--- (6.5) 

 

 0 0A

a+2b b+c 2c+d 1 1 1
α β γ α β γ

3 2 3 3 2 3
I x , y ,  

α + β + γ α + β + γ

            
               

            
 
  

--- (6.6)

     
2 2 2

c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1
where α ,β  and γ

6 3 6

 
   --- (6.7) 

And ranking function of the trapezoidal fuzzy number  A= a, b, c, d; 1 is defined as  
2 2

0 0
R A x  + y --- 

(6.8). 
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7. Chi-square test using Rezvani’s ranking function 

We now analyse the chi-square test by assigning rank for each normalized trapezoidal fuzzy numbers and based 

on the ranking grades the decisions are observed. 

 

Example 7.1. Let us consider example 1, the ranking grades of tfns. are calculated using the relations (6.6), (6.7) 

and (6.8) which are given below: 

 

 

And total no. of defectives = 202, iE : 202/7;  202/7;  2(202)/7;  3(202)/7 , the expected and observed number of 

defectives are tabulated below: 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 10.34  ; since i iE O  , 4 1 3v    , from the chi-square table it is 

seen that 
2

T(5%)χ ( 3) 7.815v   .  Here 
2 2

T(5%)χ  > χ .  The null hypothesis 0H is rejected at 5% level of 

significance.  The difference between the performances of 4 machines is significant. 

Example 7.2. Let us consider example 2, the ranking grades of tfns. are calculated using relations (6.6), (6.7) 

and (6.8) which are given below: 

 

And total no. of demand = 6717.5, iE = (total no. of defectives/6) = (6717.5/6) = 1119.5833 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 0.1636  ; since i iE O  , 6 1 5v    , from the chi-square table it 

is seen that 
2

T(5%)χ ( 5) 11.07v   .  Here 
2 2

T(5%)χ  < χ .  The null hypothesis 0H is accepted at 5% level of 

significance.    The number of spare parts demanded are same over the 6-day period. 

8. Thorani’s centroid point and ranking method 

As per the description in Salim Rezvani’s ranking method, Y. L. P. Thorani et al. [26] presented a different kind 

of centroid point and ranking function of tfns.  The incenter  0 0A
I x , y  of the triangle [Fig. 1] with vertices 

1 2 3G , G  and G  of the generalized tfn.  A= a, b, c, d; w is given by, 

 0 0A

a+2b b+c 2c+d w w w
α β γ α β γ

3 2 3 3 2 3
I x , y ,  

α + β + γ α + β + γ

            
               

            
 
  

--- (8.1)

     
2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w

where α ,β  ,γ
6 3 6

 
   --- (8.2) 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives 12.5113 29.5030 61.5062 9797 

iE  28.86 28.86 57.71 86.57 

iO  13 30 62 97 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand 1123 1123.5 1109 1121 1125 1116 

iE  1119.5833 1119.5833 1119.5833 1119.5833 1119.5833 1119.5833 

iO  1123 1123.5 1109 1121 1125 1116 
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And the ranking function of the generalized tfn.  A= a, b, c, d; w  which maps the set of all fuzzy numbers 

to a set of real numbers is defined as   0 0R A x y  --- (8.3).  For a normalized tfn., we put        w = 1 in 

equations (8.1) and (8.2) so we have, 

 0 0A

a+2b b+c 2c+d 1 1 1
α β γ α β γ

3 2 3 3 2 3
I x , y ,  

α + β + γ α + β + γ

            
               

            
 
  

--- (8.4)

     
2 2 2

c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1
where α ,β  and γ

6 3 6

 
   --- (8.5) 

And for  A= a, b, c, d; 1 ,   0 0R A x y  --- (8.6) 

9. Chi-square test using Thorani’s ranking function 

We now analyse the chi-square test by assigning rank for each normalized trapezoidal fuzzy numbers and based 

on the ranking grades the decisions are observed. 

Example 9.1. Let us consider example 1, the ranking grades of tfns. are calculated using the relations (8.4), (8.5) 

and (8.6) which are given below: 

 

 

And total no. of defectives = 83, iE : 83/7;  83/7;  2(83)/7;  3(83)/7 , the expected and observed number of 

defectives are tabulated below: 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 4.74  ; since i iE O  , 4 1 3v    , from the chi-square table it is 

seen that 
2

T(5%)χ ( 3) 7.815v   .  Here 
2 2

T(5%)χ  < χ .  The null hypothesis 0H is accepted at 5% level of 

significance.  The difference between the performances of 4 machines is not significant. 

Example 9.2. Let us consider example 2, the ranking grades of tfns. are calculated using relations (8.4), (8.5) 

and (8.6) which are given below: 

 

 

And total no. of demand = 2797.748, iE = (total no. of defectives/6) = (2797.748/6) = 466.2913 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 0.0687  ; since i iE O  , 6 1 5v    , from the chi-square table it 

is seen that 
2

T(5%)χ ( 5) 11.07v   .  Here 
2 2

T(5%)χ  < χ .  The null hypothesis 0H is accepted at 5% level of 

significance.    The number of spare parts demanded are same over the 6-day period. 

 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives 5.205 12.2812 25.6226 40.4040 

iE  11.857 11.857 23.71 35.57 

iO  5 12 26 40 

Days Mon. Tues. Wed. Thurs. Fri. Sat. 

Demand 467.722 468.005 461.879 466.875 468.507 464.760 

iE  466.2913 466.2913 466.2913 466.2913 466.2913 466.2913 

iO  467.722 468.005 461.879 466.875 468.507 464.760 
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10. Graded mean integration representation (GMIR) 

Let  A= a, b, c, d; w be a generalized trapezoidal fuzzy number, then the GMIR [24] of A  is defined by

 
   -1 -1w w

0 0

L h R h
P A h dh /  hdh

2

 
  

 
  . 

Theorem 10.1. Let  A= a, b, c, d; 1  be a tfn. with normal shape function, where a, b, c, d are real numbers 

such that a < b c < d .  Then the graded mean integration representation (GMIR) of A is

 
 

 
a + d n

P A b - a - d + c
2 2n + 1

  . 

Proof : For a trapezoidal fuzzy number  
n

A= a, b, c, d; 1 , we have  
n

x - a
L x

b - a

 
  
 

 and 

 
n

d - x
R x

d - c

 
  
 

Then,    
n

1
-1 n

x - a
h = L h a + b - a h

b - a

 
  

 
; 

   
n

1
-1 n

d - x
h = R h d - d - c h

d - c

 
  

 
 

       
 

   

1 1
1 1

n n

0 0

1
P A h a + b - a h d - d - c h dh / hdh

2

a + d1 n 1             = b - a - d + c /
22 2 2n + 1

       

  
   

  

  
 

 
 

 
a + d n

Thus, P A b - a - d + c
2 2n + 1

   Hence the proof. 

Result 10.1. If n =1 in the above theorem, we have  
a + 2b + 2c + d

P A
6

  

11. Chi-square test using GMIR of tfns. 

We now analyse the chi-square test by using GMIR of each normalized trapezoidal fuzzy numbers and based on 

the GMIR of tfns. the decisions are observed. 

Example 11.1. Let us consider example 1, the GMIRs of tfns. are calculated using the result (10.1) of theorem 

10.1 which are given below: 

 

 

And total no. of defectives = 200, iE : 200/7;  200/7; 2(200)/7; 3(200)/7  and converting iE  to the 

whole numbers subject to the condition that iE =200, we get, 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 10.80  ; since i iE O  , 4 1 3v    , from the chi-square table it is 

seen that 
2

T(5%)χ ( 3) 7.815v   .  Here 
2 2

T(5%)χ  > χ .  The null hypothesis 0H is rejected at 5% level of 

significance.  The difference between the performances of 4 machines is significant. 

Machine A1 A2 A3 A4 

Production time (in hours) 1 1 2 3 

Number of defectives 12.513 29.3329 61.3361 97.1797 

iE  29 29 57 85 

iO  13 29 61 97 
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Example 11.2. Let us consider example 2, the GMIRs of tfns. are calculated using the result (10.1) of theorem 

10.1 which are given below: 

 

 

And total no. of demand = 6717.5, iE = (total no. of defectives/6) = (6717.5/6) = 1119.5833 

 

 

Now, 

n
2 2

i ii

i=1

χ ((O -E ) /E ) 0.1485  ; since i iE O  , 6 1 5v    , from the chi-square table it 

is seen that 
2

T(5%)χ ( 5) 11.07v   .  Here 
2 2

T(5%)χ  < χ .  The null hypothesis 0H is accepted at 5% level of 

significance.    The number of spare parts demanded are same over the 6-day period. 

12. Conclusion 

The decisions obtained from various methods are tabulated below for the null hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

Here, the proposed α -cut interval method provides a parallel decision for the acceptance/rejection of null 

hypothesis in lower level (L) and upper level (U) models for both example 1 and example 2.  Wang’s ranking 

method, Rezvani’s ranking method and GMIR of tfns. exhibit the same decisions for example 1 and example 2.  

Thorani’s ranking method of tfns. does not provide reliable result as it accepts the null hypothesis in all the 

cases. 
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