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Abstract 
      This paper considers the study of viscous flow and heat transfer over a shrinking sheet considering the 

effect of second order slip. The governing partial differential equations of the flow and heat transfer are 

transferred into nonlinear ordinary differential equations by using suitable similarity transformation. The 

exponential form of solution for momentum is assumed and governing heat transfer equation is solved 

analytically by power series method in terms of Kummer’s Hypergeometric function. The effects of various 

physical parameters on flow and heat transfer are investigated with graphical illustrations. 
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1. Introduction 

        The flow induced by a moving boundary is important in the study of extrusion processes (Sakiadis B.C. 

1961). (Sakiadis B.C.1961). (Crane L .J, 1970) and is a subject of considerable interest in the contemporary 

literature (Miklavcic M, Wang CY, 2006), for both permeable and impermeable stretching sheets.  Miklavcic 

and Wang ( Miklavcic M, Wang C.Y.2006).have reported an exact solution of the NS equations for flow over a 

shrinking sheet. The shrinking sheet problem was also extended to power-law shrinking velocity and other 

fluids. 

        In the past decade, fluid flow in micro-electro-mechanical systems (MEMS) has become a hot research 

topic. Because of the micro-scale dimensions of these devices, the flow behavior deviates significantly from the 

traditional no-slip flow (Gal-el-Hak M, 1999). Rarefied gas flows with slip boundary conditions are often 

encountered in micro-scale devices and low-pressure situation (Gal-el-Hak M, 1999). For the flow in the slip 

regime (Shidlovskiy VP.1967 and Pande GC, Goudas CL 1996)., the fluid motion still obeys the   Navier-Stokes 

(NS) equations with slip velocity boundary conditions. In addition, partial  slips over moving surface also occurs 

for fluids with particulate such as emulsions, suspensions, foams, and polymer solutions (Yoshimura A, 

proteome RK,1988),the slip flows under different flow  configurations have been studied in recent years. 

However, in these papers, only the first order Maxwell slip condition was used. Recently, (Wu L.A, 2008) 

proposed a new second order slip velocity model, which matches with the Fukui-Kaneko results based on the 

direct numerical simulation of the linerized Boltzmann equation (Fukui S, Kaneko R. A, 2009.). (Tiegang Fang, 

Shanshan Yao, ji Zzhang, Abdul Aziz, 2009). Studied the slip flow over a permeable shrinking surface with the 

newly proposed Wu’s slip velocity model with exact solutions of the governing NS equations.  In the present 

study we have extended the work of (Tiegang Fang, Shanshan Yao, ji Zzhang, Abdul Aziz ,2009).considering 

heat transfer and also with boundary   layer approximation. 

 

2. Mathematical formulation and discussion  

  

       Consider a steady, two-dimensional laminar flow over a continuously shrinking sheet in a quiescent fluid. 

The sheet shrinking velocity is Uw = - U0 x , with U0 being a constant and the wall mass transfer velocity is Vw 

=Vw (x), which will be determined later. 

       

 
Fig (1): Schematic diagram of boundary layer slip flow past a shrinking sheet 
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       The x-axis runs along the shrinking surface in the direction opposite to the sheet motion and the y-axis is 

perpendicular to it. The governing boundary layer equation for the proposed problem can be expressed as 

 0
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 
 

 
                                                                                                                                           (1) 
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With the boundary conditions  

U(x, 0) = U0 x+Uslip,           V(x, 0) = Uw (x), and u(x, ) = 0,                                                                         (3) 

where u and v are the velocity components in the x and y directions. v  is the kinematic coefficient of viscosity,  

  is the fluid density, and Uslip   is the velocity slip at the wall. The Wu’s slip velocity model used in this paper 

is valid for arbitrary Knudsen numbers, Kn, and is given as follows (Wu ,2008): 
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where l = min [
1

nK
, 1], , is the momentum accommodation coefficient with 0        1, and   is the 

molecular mean free path. Based on the definition of l, it is noticed that any given value of Kn,   we have 

 0    l   1. The molecular mean free path is always positive. Thus we know that B 0 and positive. The 

stream function and similarity variable can be assumed in the following form, 

  0,, ( )x y f x U     
0U

y


                                                                                                   (5) 

With these transformations, the velocity components are expressed as 

 
'

0 ( )u U xf   and 0 ( )v U v f   .                                                                                                      (6) 

The wall mass transfer velocity becomes 0( ) (0)wv x U v f  .                                                              (7) 

Using equations (5) and (6) in equations (1) and (2) we obtain the transformed form of boundary layer equations 

of motion, 

 
''' '' '2 0f ff f                                                                                                                                      (8) 

 Similarly, the boundary conditions equation (3) takes the form 

(0) ,f s    
' // ///(0) 1 (0) (0) 0f f f      , and

'( ) 0f   ,                                                   (9) 

where s is the wall mass transfer parameter showing the strength of the mass transfer at the surface,   is the first 

order velocity slip parameter with 
00 ,

U
A

v
   and   is the second order velocity slip parameter with 

00 .
BU

v
   we derive a closed form exact solution of Eq.(8) subject to the BCs of Eq. (9). We assume a 

solution of the form ( )f a be    . The application of boundary condition (9) gives the values for a and b 

as mentioned below. 
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,                                                                                                                                (10) 

2 3

1
a S
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 

 
.                                                                                                                       (11) 

Substituting the assumed solution into Eq.(9) yields a =  . The use of this relationship in Eq. (11) leads to the 

following fourth order algebraic equation for  , 
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4 3 2( ) ( 1) 1 0s s s             .                                                                                     (12) 

  should be least positive value. 

Then the solution reads as  
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and 
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Based on the results in Eq. (14), it is easy to show that  

// 2

2
(0) ( )

1
f s


 

 
  

 
                                                                                                     (15) 

 

1. Heat transfer analysis: 

 

      The thermal boundary layer equation, with work done by deformation, and internal heat generation or 

absorption is given by  
2

2

p

T T k T
u v
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  
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                                                                                                                      (16) 

where pc  is the specific heat,   is density, k is thermal conductivity 

 

3.1 Constant surface temperature (CST) 

 

The boundary conditions in case of CST is given by 

                  
  at 0;

 as 

wT T y

T T y
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                                                                                                               (17) 

where WT is the temperature of the sheet and T  is the temperature of the fluid far away from the sheet. 

Defining the non-dimensional temperature     as  

 
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T T
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
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
                                                                                                                                    (18) 

Using ( 18), Eq. (16 ) can be written in the form  

     '' 'Pr 0f                                                                                                                     (19) 

where Pr
Cp

k


 is the Prandtl number. 

Consequently the boundary conditions (17) take the form  
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                                                                                                                          (20) 

Introducing the new independent variable  

Pr e     

and substituting in Eq. (19) we obtain 

 

       '' ' ' '

11 12 0P P                                                                                                 (21) 

where 11 12
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, Pr

a b
P P and e 

 

    

The corresponding boundary conditions are  
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The solution of Eq. (21) subject to the boundary conditions (22) is given by  
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3.2 The Prescribed surface temperature (PST case) 

   

      The boundary conditions in case of PST are given by   
2
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where A is constant. WT  is temperature at the wall. T  is temperature away from the sheet. 

 We define non-dimensional temperature as 
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  So that the equation   (16) reduces to the form        
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 the corresponding boundary conditions (24)    reduces  to  

  
0 1

0

 

 

  


   
                                                                                                                                        (27) 

Using the new independent variable defined as 

 
2

Pr e
t






  

and substituting in equation (26) we obtain 
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We obtain the solution of above equation (26) by using power series method and in terms of Kummer’s function   

is as mentioned below, 
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4. Results and Discussion: 

 

        In this problem, we proposed to investigate the flow and heat transfer characteristics of a viscous fluid with 

second order slip. The governing equations for momentum and heat transfer are partial differential equations 

which are converted into ordinary differential equations by using suitable similarity transformations. 

An analytical solution [exponential solution] for flow has been assumed, and this assumed solution is used to 

solve the heat transfer equations by power series method and expressed in terms of Kummer’s hyper geometric 

functions. The results are depicted graphically from graph Fig 2 to 12. 

 

Fig 2. Shows the effect of mass suction parameter s on considered flow. It shows that as there is increase in the 

parameter value of‘s’ velocity 
'f  is decreases.  

Fig 3. Shows the effect of first order slip parameter   on velocity profile
'f . It is noticed that as first order slip 

parameter    increases velocity profile 
'f  decreases. 

 Similarly in Fig 4, we notice that the effect of second order slip parameter is to sustain velocity profile 
'f  in 

the boundary layer.  
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Fig (5) and (6), Shows the effect of mass suction parameter on temperature profile in CST and PST cases. It is 

observed from these two graphs that as mass suction parameter s increases temperature decreases. 

Fig (7) and (8), Shows the effect  of second order slip parameter   in CST and PST cases. It is observed from 

these two graphs that as decreases temperature increases. 

Fig. (9) and (10), Shows the effect Pr in CST and PST cases. It is observed from these two graphs that as Pr 

increases temperature decreases. 

Fig (11) and (12), Shows the effect of first order slip parameter   .in CST and PST cases. It is observed from 

these two graphs that as  increases temperature decreases. 

 

Nomenclature: 

x   flow directional coordinate along the stretching sheet 

y   distance normal to the stretching sheet 

u, v  velocity components along x and y direction 

a, b  constants 

   root value 

   first order velocity slip parameter  

   second order velocity slip parameter 

A  prescribed constants 
pc   specific heat at constant pressure 

k  thermal Conductivity 

T  fluid temperature of the moving sheet 

wT   wall temperature 
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Pr   Prandtl number 

T   temperature far away from the plate 

w   wall shearing stress 

s  mass suction 

M  Kummer’s Function 

Greek symbols   

   dimensionless temperature 

   dimensionless space variable 

   Kinematic viscosity 

   density 

   coefficient of viscosity 

(1) Subscripts 

w   properties at the plate 

           free stream condition 

η  differentiation with respect to η 
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