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Stability analysis of SIR holing type II infectious epidemic model 

with treatment failure rate 

 

Saba Noori Majeed 

Baghdad University , College of Education for Pure Sciences,  Ibn Al-Haithem , mathematics department 

Abstract  

  In this paper a mathematical model of  SIR epidemics diseases holing type II with a treatment failure rate on a 

population of individuals had been introduced and studied so, its dynamical behavior such as stability  derived 

,first we prove the existence of  equilibrium points via Discartes rule of signs ,then local  stability demonstrate 

for the above equilibrium points  using Roth Hurwitz criteria , finally the global stability established with 

assistance of  Lyapunov theorem  to the equilibrium points above  and the results was encouraging and satisfy.    

Key words  stability , Holling type II , epidemic SIR model .  

 

1.Introduction 

It is well  common infectious have tremendous influenced on human life and for this controlling these disease is 

very important issue . Consequently , many epidemic models which used mathematics for describing the 

evolution of infectious diseases in the populations, are constructed and investigated in the researches and theses  

, these models are different from each other depending on the type of transmission of disease , latent period , 

resistance , immigrants , vaccination and many other causes. The existence of  infectious disease fractionate the  

population into many  parts  depending on the type of disease , such as susceptible (S) ,infected (I) , recovered 

(R) and others. The well known epidemic model SIR  which proposed originally by kermark and Mackendrick  

in 1927 [1]. In the SIR model the susceptible individuals become infective by contact with infected individuals 

and then the infected individuals may recovered and transfer to removal individuals at a specific rate . In [2] 

Ahmed A. M. and Hanan K. studied stability of  Prey-Predator  of SIS model  epidemic disease in predator 

involving Holling type II functional response .  In [3] studied Many models for the spread of infectious diseases 

in populations  been analyzed mathematically and applied to specific diseases.  the contact number σ, and the 

replacement number R are reviewed for the  classic SIR epidemic and endemic models. Similar results with new 

expressions for R0 are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. 

Values of R0 and σ are estimated for various diseases including measles in Niger and peruses in the United 

States. Previous models with age structure, heterogeneity, and spatial structure are surveyed .       

In [4]  David Easley and Jon Kleinberg study the epidemic diseases and the networks that transmit them in there 

book ” Networks, Crowds, and Markets: Reasoning about a Highly Connected World “ The patterns by which 

epidemics spread through groups of people is determined not just by the properties of the pathogen carrying it  

including its contagiousness, the length of its infectious period, and its severity  but also by network structures 

within the population it is affecting. The social network within a population  recording who knows whom 

determines a lot about how the disease is likely to spread from one person to another. But more generally, the 

opportunities for a disease to spread are given by a contact network : there is a node for each person, and an edge 

if two people come into contact with each other in a way that makes it possible for the disease to spread from 

one to the other. In [5]  Vijaya L. G. M. R. and others  investigates  the dynamical complexities of a prey 

predator model with susceptible and infected (SI) prey with nonlinear feedback . adequately in1965 Holling 

identified three general categories of functional response that he called Types 1, 2, and 3, Type 1 is the simplest: 

capture rate increases in direct proportion to prey density until it abruptly saturates. Type 2 is similar in that the 

rate of capture increases with increasing prey density, but in contrast to the linear increase of Type 1, Type 2 

approaches saturation gradually. Type 3 is similar to Type 2 except at low prey density, where the rate of prey 

capture accelerates  the aura of received knowledge. Now designated by roman numerals, Holling’s functional 

responses appear in every introductory ecology text, usually with illustrative examples (e.g., filter feeders are 

Type I; insects and parasitoids, Type II; vertebrates, Type III), and his classification is commonly employed by 
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theoretical ecologists when incorporating predation into models of population and community dynamics, see [6]. 

In our work we study the SIR model evolved  with  Holling  type II, depending on the case that the treatment fail  

in a fixed rate 𝜽    , in the next sections we  illustrate  and  demonstrate the dynamic of our model  equilibrium  

points such as asymptotically local stability based on Roth Hurwitz criteria ,  and asymptotically  global stability 

based on Lyapunove theorem supported with . 

 

2. The mathematical model 

 

From the classical simple SIR epidemiological model for a set of people with summation equal to N(t) at time t 

is breaker to three subsets, the susceptible individuals S(t) , infected individuals  I(t)  and the removable 

individuals R(t). 

Such model can be represented as a system of  nonlinear differential equations in follows : 

 

 

 
𝑑𝑆

𝑑𝑡
=  𝛬 −

𝛽𝑆𝐼

𝐾1+𝐼
− 𝜇𝑆 

 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝐾1+𝐼
+ 𝜃𝑅 − 𝜓(1 − 𝑚)𝐼 − (𝜇 + 𝛼)𝐼                        ……..(1) 

𝑑𝑅

𝑑𝑡
= 𝜓(1 − 𝑚)𝐼 − (𝜃 + 𝜇)𝑅   

   

Where 𝛬>0  is the natural birth  rate of the population , 𝛽>0 is the  incidence rate of the susceptible individuals 

because of  parasitic disease transmitted by contact  from the individual to the susceptible   , 𝜓>0 is the recovery 

rate  , m  is the failure treatment rate such that )10( m , 𝜃>0 is the loosing immunity rate of the 

recovered individuals , 𝜇 >0 natural death rate , 𝛼 >0 is the disease related death , K1 >0 the half saturation 

constant. 

Therefore at any point at time t the total number of the individuals is N(t) = S(t)+I(t)+R(t)  is clear , according to 

a biological concepts and meanings of the variables  S(t) , I(t) , and R(t) , system (1) has the domain ℝ+
3 =

{(𝑆, 𝐼, 𝑅) ∈ ℝ+
3 : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0}, This is positively invariant for system (1) Clearly, the interaction functions 

on the right hand side of system (1) are continuously differentiable. In fact they are Liptschizan function on ℝ+
3  , 

for this the solutions of system (1) exists and unique , in addition all solutions of  system (1) with non-negative 

initial conditions are uniformly bounded as shown in the following theorem . 

Theorem 2.1   All the solutions of system (1), which are initiate in ℝ+
3  , are uniformly bounded.  

Proof .   let ( S(t),I(t),R(t)) be any solution of system (1) , with a non-negative initial conditions      

(S(0),I(0),R(0) ) . 

    Since  N(t) = S(t)+I(t)+R(t)  then  

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
                                                                                                                                           

This gives 

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇(𝑆 + 𝐼 + 𝑅)                                                                                                                                            

𝑑𝑁

𝑑𝑡
= 𝛬 − 𝜇 𝑁                                                                                                                                                            

𝑑𝑁

𝑑𝑡
≤ 𝛬 − 𝜇 𝑁                                                                                                                                                             
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𝑁(𝑡) ≤
𝛬

𝜇
(1 − 𝑒−𝜇𝑡) + 𝑁(0)𝑒−𝜇𝑡                                                                                                                           

Therefore  𝑁(𝑡) ≤
𝛬

𝜇
  , as 𝑡 → ∞ , hence all the solutions of system (1) that initiate in ℝ+

3  are confined in the 

region   𝛤 = {(𝑆, 𝐼, 𝑅) ∈ ℝ+
3 : 𝑁 ≤

𝛬

𝜇
 }  

Which complete the proof . 

 

3.  Existence of equilibrium point of system (1)  

 The system of differential equations (1) has two equilibrium points say 𝐸0, 𝐸1  and Below we will discuss the 

conditions to be met to prove the existence of each of the points: 

1) If  I =0 then the system (1) has an equilibrium point called disease free equilibrium point and denoted 

by 𝐸0 = (𝑆0, 0,0) where 𝑆0 =
𝜦

𝝁
 . 

2) If  I ≠0 then the system (1) has an equilibrium point called endemic equilibrium point and denoted by 

𝐸1 = (𝑆1, 𝐼1,𝑅1) where 𝑆1, 𝐼1 𝑎𝑛𝑑 𝑅1 represent the positive solution of the following set of equations : 

 

𝛬 −
𝛽𝑆1𝐼1

𝐾1+𝐼1
− 𝜇𝑆1 = 0  

𝛽𝑆1𝐼1

𝐾1+𝐼1
+ 𝜃𝑅1 − 𝜓(1 − 𝑚)𝐼1 − (𝜇 + 𝛼)𝐼1 = 0                                             (2) 

𝜓(1 − 𝑚)𝐼1 − (𝜃 + 𝜇)𝑅1 = 0 

  Straightforward computation to solve the above system of equations and from Eqs.(1) and (3) of system (2) 

gives that: 

𝑆1 =
𝛬(𝐾1+𝐼1)

𝛽𝐼1+𝜇(𝐾1+𝐼1)
   ,   

 𝑅1 =
𝜓(1−𝑚)𝐼1

(𝜃+𝜇)
  

Now substituting 𝑆1 and 𝑅1in Eq. (2) we get  𝐼1 which it is a positive root for the following equation : 

𝐷1𝐼
4 + 𝐷2𝐼

3 + 𝐷3𝐼
2 + 𝐷4𝐼 + 𝐷5 = 0                                                          (3) 

Here  

𝐷1 = −[ 𝜓(1 − 𝑚)(𝜃 + 𝜇)(𝛽 + 𝜇) + 𝜇(𝜃 + 𝜇)(𝛽 + 𝜇) + 𝛼(𝜃 + 𝜇)(𝛽 + 𝜇)]                                        

 𝐷2 = 𝛬𝛽(𝜃 + 𝜇) − 𝜓𝐾1(1 − 𝑚)(𝜃 + 𝜇)(𝜃 + 2𝜇) − 𝜇𝐾1(𝜃 + 𝜇)(𝛽 + 2𝜇) − 𝛼𝐾1(𝜃 + 𝜇)(𝛽 + 2𝜇) 

𝐷3 = 𝛬𝛽𝐾1(𝜃 + 𝜇) + 𝜃𝜓(1 − 𝑚)(𝛽 + 𝜇) − 𝜓𝜇𝐾1
2(1 − 𝑚)(𝜃 + 𝜇) − 𝜇2𝐾1

2(𝜃 + 𝜇) − 𝛼𝜇𝐾1
2(𝜃 + 𝜇) 

 

𝐷4 = 𝜃𝜓𝐾1(1 − 𝑚)(𝛽 + 2𝜇)                                                

𝐷5 = 𝜃𝜓𝜇𝐾1
2(1 − 𝑚)                                            
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Clearly by used Descartes rule then Eq. (3) has a unique positive root given by 𝐼1 if and only if one of the bellow 

conditions satisfied : 

𝛽 < 𝐾1(𝛽 + 2𝜇)(𝜓(1 − 𝑚) + 𝜇 + 𝛼)  …              …(1a) 

(𝛬𝛽𝐾1+𝜓𝜃(1-m)) > 𝜇𝐾1
2(𝜓(1 − 𝑚) + 𝜇 + 𝛼) ……..(2a) 

 

4.Local stability of system (1) 

In this section the local stability analysis of the equilibrium points 𝐸0 , 𝐸1 of system (1) studied as shown  in the 

following theorems . 

 

Theorem 4.1: The disease free equilibrium point 𝐸0 = (𝑆0, 0,0) of system (1) is locally asymptotically stable 

provided that :  
𝛽𝑆0

𝐾1
< 𝜓(1 − 𝑚) + 𝜇 + 𝛼   …… ….(3a) 

Proof . The Jacobin  matrix of system (1) at 𝐸0 can be written as : 

𝐽(𝐸0) =

[
 
 
 
−𝜇 −𝛽𝐾1𝑆0 0

0        
𝛽𝑆0

𝐾1

− 𝜓(1 − 𝑚) − 𝜇 − 𝛼 0

0 𝜓(1 − 𝑚) −(𝜃 + 𝜇)]
 
 
 

 

we get the characteristic Eq. of 𝐽(𝐸0) can be written by : 

( (
𝛽𝑆0

𝐾0

− (𝜓(1 − 𝑚) + 𝜇 + 𝛼)) − 𝜆) (𝜆2 − 𝑇𝜆 + 𝐷) = 0 

Where  T (trace) = -(2𝜇 +𝜃)  , D (determinant) = 𝜇 (𝜃+𝜇) 

𝜆𝑆𝑅 = −
𝑇

2
∓

𝜃

2
  , 𝐷 = 0  

𝜆𝐼 =
𝛽𝑆0

𝐾1
− (𝜓(1 − 𝑚) + 𝜇 + 𝛼)  

On the other hand  𝐸0  is saddle node if  
𝛽𝑆0

𝐾1
> 𝜓(1 − 𝑚) + 𝜇 +  𝜶. 

Proof  complete  

Theorem 4.2.  If the endemic equilibrium point  𝐸1 = (𝑆1, 𝐼1, 𝑅1) of system (1) exist then it is locally 

asymptotically stable provided that :   𝐾1𝛽𝑆1 < (𝜇 + 𝑚)(𝐾1 + 𝐼1)
2 …….. (4a) 

 Proof .   The Jacobin matrix of system (1) at the endemic equilibrium point  𝐸1 can be written as:  

     𝐽(𝐸1) =

[
 
 
 
 

−𝛽𝐼1

𝐾1+𝐼1
− 𝜇

−𝐾1𝛽𝑆1

(𝐾1+𝐼1)2
  0

𝛽𝐼1

𝐾1+𝐼1
       

𝐾1𝛽𝑆1

(𝐾1+𝐼1)2
− 𝜇 − 𝛼   0

0            0  −(𝜃 + 𝜇)]
 
 
 
 

= [𝑏𝑖𝑗]3×3 

The characteristic equation of Jacobin matrix is given by : 
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𝜆3 + Ω1𝜆
2 + Ω2𝜆 + Ω3 = 0   

  

here  Ω1 = −(𝑏11 + 𝑏12 + 𝑏33)  

 Then Ω1 > 0 iff  𝐾1𝛽𝑆1 < (𝜇 + 𝛼)(𝐾1 + 𝐼1)
2  

i.e.  condition (3a) hold . 

Ω2 = 𝑏11𝑏21 − 𝑏12𝑏21 + 𝑏11𝑏33 + 𝑏22𝑏33   

Ω3 = −[𝑏11𝑏22𝑏33 − 𝑏33𝑏12𝑏21]   

We get  Ω3 > 0 iff condition (3a) satisfied  , now to check Δ = Ω1Ω2 − Ω3 

Δ = −(𝑏11 + 𝑏33)(𝑏22
2 + 𝑏33

2 ) + 𝑏12𝑏21(𝑏11 + 𝑏22) − 𝑏11
2 (𝑏22 + 𝑏33) − 2𝑏11𝑏22𝑏33                               

Clearly Δ is positive if the condition (4a) satisfied , proof complete . 

 

5. Global stability analysis of system (1 ): 

 In this section, the global dynamics of system (1) is studied with the help of Lyapunov function as shown in the 

following theorems : 

Theorem 5.1. Assume that the disease free equilibrium point 𝐸0 of system (1) is locally asymptotically stable , 

then the basin of attraction of  𝐸0 , say 𝐵(𝐸0 ) ⊂ ℝ+
3  , satisfy the following condition : 

𝜇

𝑆
(𝑆 − 𝑆0)

2 + (𝜇 + 𝛼)𝐼 + 𝜇𝑅 >
𝛽𝑆0𝐼

𝐾1+𝐼
   …….(5a) 

Proof . consider the following positive function : 

𝑊1 = (𝑆 − 𝑆0 − 𝑆0 ln (
𝑆

𝑆0

)) + 𝐼 + 𝑅  

 
𝑑𝑊1

𝑑𝑡
= (

𝑆−𝑆0

𝑆
)

𝑑𝑠

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

𝑑𝑊1

𝑑𝑡
= −

𝜇

𝑆
(𝑆 − 𝑆0) − (𝜇 + 𝛼) − 𝜇𝑅 +

𝛽𝑆0𝐼

𝐾1 + 𝐼
 

It is clear that  
𝑑𝑊1

𝑑𝑡
 ≤ 0, for every initial points and then 𝑊1 is a Lyapunov function provided that condition (5a) 

hold. Thus E0 is globally asymptotically stable in the interior of B(E0) which means that B(E0) is the basin of 

attraction and that complete the proof. 

 

Theorem 5.2.  Let the endemic equilibrium point (𝐸1) of system (1) is locally asymptotically stable , then the 

basin of attraction of  𝐸1 , say B(𝐸1) ⊂ ℝ+
3  , satisfy the following conditions : 

𝜓(1 − 𝑚) + 𝜇 + 𝛼 >
𝛽

𝐼 + 𝐾1

(𝑆 +
𝐾1𝑆1

𝐾1+𝐼

)…… … . . (6𝑎) 

(𝜃 + 𝜓(1 − 𝑚))(𝐼 − 𝐼1) < (𝜃 + 𝜇)(𝑅 − 𝑅1)… …… (6𝑏)  

2𝜇(𝑆 − 𝑆1) >
𝛽

𝐾1 + 𝐼
(𝑆 +

𝐾1𝑆1

𝐾1 + 𝐼1
) (𝐼 − 𝐼1)… …… (6𝑐) 
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Proof.  Conceder the following positive definite function : 

𝑤2 =
(𝑆 − 𝑆1)

2

2
+

(𝐼 − 𝐼1)
2

2
+

(𝑅 − 𝑅1)
2

2
 

𝑑𝑊2

𝑑𝑡
= (𝑆 − 𝑆1)

𝑑𝑆

𝑑𝑡
+ (𝐼 − 𝐼1)

𝑑𝐼

𝑑𝑡
+ (𝑅 − 𝑅1)

𝑑𝑅

𝑑𝑡
 

By simplifying this equation we get: 

𝑑𝑊2

𝑑𝑡
= (𝑆 − 𝑆1)𝑞11 + (𝐼 − 𝐼1)𝑞22 + (𝑅 − 𝑅1)𝑞33 

With  : 

𝑞11 = −𝜇(𝑆 − 𝑆1) −
𝛽𝑆𝐼

𝐾1 + 𝐼
+ 

𝛽𝑆𝐼1
𝐾1 + 𝐼

−
𝛽𝑆1𝐼

𝐾1 + 𝐼
+

𝛽𝑆1𝐼1
𝐾1 + 𝐼1

 

𝑞22 = 𝜃(𝑅 − 𝑅1) − 𝜓(1 − 𝑚)(𝐼 − 𝐼1) − (𝜇 + 𝛼)(𝐼 − 𝐼1) +
𝛽𝑆𝐼

𝐾1 + 𝐼
+ 

𝛽𝑆𝐼1
𝐾1 + 𝐼

−
𝛽𝑆1𝐼

𝐾1 + 𝐼
−

𝛽𝑆1𝐼1
𝐾1 + 𝐼1

 

𝑞33 = 𝜓(1 − 𝑚)(𝐼 − 𝐼1) − (𝜇 + 𝛼)(𝑅 − 𝑅1) 

It is clear that 
𝑑𝑊2

𝑑𝑡
 ≤ 0, for every initial points and then 𝑊2 is a Lyapunov function provided that condition (6a , 

6b , 6c) holds. Thus E1 is globally asymptotically stable in the interior of B(E1) which means that B(E1) is the 

basin of attraction and that complete the proof. 

 

6. Numerical simulation 

 

In this section, the global dynamics of system (1) is studied numerically .the objective of this study are 

confirming our obtained analytical results and understand the effect of treatment and the range of its failure 

against the disease on the dynamics of  SIR  epidemic model  . For the following set of hypothetical, biologically 

feasible, set of parameters, definitely different set of hypothetical parameters can be chosen also, The system (1) 

is solved numerically starting in different three  initial conditions and   (3500,2000,1000) ,(2000,1500.1500) and 

(500,500,500) and different parameters 

  𝛬=500 , 𝛽=0.000001, 𝜇=0.1,𝐾1 = 0.3 ,𝜓= 0.1,m = 0.2 ,𝛼 =0.01, 𝜃=0.1 as illustrated in (fig.1) shows the 

existence of  a unique disease free equilibrium point of system (1) which is locally asymptotically stable , while 

with 𝛽= 0.2 i.e. incidence rate is higher and 𝛬=500 , 𝜇=0.1,𝐾1 = 0.3 ,𝜓= 0.1,m = 0.2 here in  (fig.2) shows the 

existence of unique endemic equilibrium point for system (1) which is locally asymptotically stable . 

 It is obvious from time series trajectories the blue solid line refers to susceptible individuals , the green solid line 

refers to infected individuals and the red solid line refers to recovered one,  in (fig.3 a,b,c) that  when the  

recovery rate 𝜓  increases from 0.1 to 0.6 the endemic equilibrium point of system (1) becomes stable point and 

the trajectory of susceptible  individuals increases and  the number of the  infected individuals decreases  while 

the recovery individuals stay fixed .  In (fig. 4 a,b,c) when the  failure rate m  increases from 0.2 to 1 the disease 

resistance become at the top stage and the treatment would fail absolutely , therefore the number of susceptible 

not effect and the recovered individuals decrease while the infected individuals increase .  

 In (fig.5 a,b,c)  when  𝛼  the disease related death rate  increase from 0.01 to 1.5 the number of the infected and 

recovered individuals decrease while the susceptible individuals increase  . finally as 𝜃   the loosing immunity 

rate  increase from 0.1 to 0.9  the susceptible individuals  stay fixed  in the other hand the number of  infected 

individuals  increase and recovered decrease  as shown in  (fig.6 a,b,c ) . 

 

7. conclusion and discussions  

  

In this paper we study the dynamical behavior of epidemic model SIR Holling type II in system (1)when the 

treatment rate m become failed against the disease with the loosing of immunity because of it . 

The model consists of three non-linear autonomous differential equations that describe the dynamics of three 

different population’s  namely first susceptible ( S ), second  infected (I) and recovered (R)  . In order to confirm 
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our analytical results and understand the effect of m in system (1) that has been studied numerically with 

different set of parameters and the following observation are  made: 

  

i. For the three initial conditionse system (1) as we see in fig.1when the treatment rate m ≃0 the free 

equilibrium point ≃ (5000,0,0)  asymptotically stable point . 

ii. When the treatment failed  rate m increase to 0.2 and the same three initial conditions in (i)  system (1) 

has endemic equilibrium point ≃ (1750,2250,1000)  which it is asymptotically stable point ,as we see 

in fig.2 this mean the resistance against the disease became so week and this is consistent with the 

desired objective to research . 

iii. In fig.3 (a,b,c) the time series trajectories is observed ,  when the  recovery rate 𝜓  increases from 0.1 

to 0.6 the endemic equilibrium point of system (1) becomes stable point and the trajectory of 

susceptible  individuals increases and  the number of the  infected individuals decreases  while the 

recovery individuals stay fixed . 

iv. In fig.4 (a,b,c) the time series trajectories is observed , when the  failure rate m  increases from 0.2 to 1 

the disease resistance become at the top stage and the treatment would fail absolutely , therefore the 

number of susceptible not effect and the recovered individuals decrease while the infected individuals 

increase .  

v.  In fig.5 (a,b,c) the time series trajectories is observed , when 𝛼  the disease related death rate  increase 

from 0.01 to 1.5 the number of the infected and recovered individuals decrease while the susceptible 

individuals increase . 

vi. Finally in fig.6 (a,b,c) the time series trajectories is observed ,  as 𝜃   the loosing immunity rate  

increase from 0.1 to 0.9  the susceptible individuals  stay fixed  in the other hand the number of  

infected individuals  increase and recovered decrease .           
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Fig. 1 Disease free equilibrium point of system (1) with 𝛬=500 , 𝛽=0.000001, 𝜇=0.1,𝐾1 = 0.3 

,𝜓= 0.1,m = 0.2 ,𝛼 =0.01, 𝜃=0.1and the initial conditions are (3500,2000,1000) 

,(2000,1500.1500) and (500,500,500) . 

 

Fig.2  Endemic equilibrium point for system (1) with 𝛬=500 ,  𝜇=0.1,𝐾1 = 0.3 ,𝜓= 0.1,m = 

0.2 ,𝛼 =0.01, 𝜃=0.1 but 𝛽= 0.2 i.e. incidence rate is higher  and the initial conditions  

(3500,2000,1000) ,(2000,1500.1500) and (500,500,500) . 
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(a) 𝜓 = 0.1                                                                (b) 𝜓 = 0.3 

(c) 𝜓 = 0.6   

Fig. 3 Time series of system (1) when 𝜓  increase from 0.1 to 0.6  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

59 

 
(a) m =0.2                                                                  (b) m =0.7  

 

( c ) m =1 

Fig. 4 Time series of system (1) when m increase from 0.2 to 1 . 
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(a) 𝛼  = 0.01                                                          (b) 𝛼  = 0.5 

( c ) 𝛼  = 1.5  

Fig . 5  Time series of system (1) when 𝛼   increase from 0.01 to 1.5 . 

 

(a) 𝜃  = 0.1                                                                            (b) 𝜃  = 0.5  

( c ) 𝜃  =0.9 

Fig . 6  Time series of system (1) when 𝜃   increase from 0.1 to 0.9  
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