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Abstract 

          This paper introduces a new family of continuous distributions called a Garhy generated family of 

distributions. Some mathematical properties of this family are discussed. The derived properties are hold to any 

proper distribution in this family. Some special sub-models in the new family are derived. General explicit 

expressions for the quantile function, ordinary and incomplete moments, generating function and order statistics 

are obtained. The estimation of the model parameters is discussed by using maximum likelihood and the 

potentiality of the extended family is illustrated with one application to real data. 

Keywords: Kumaraswamy distribution; Exponetiated distribution; Moments; quantile function, Maximum 

likelihood estimation. 

 

1. Introduction 

Many statistical distributions have been extensively used and applied for modeling data in several areas such as 

engineering, actuarial, medical sciences, demography, etc. However, in many situations, the classical 

distributions are not suitable for describing and predicting real world phenomena. For that reason, attempts 

have been made to define new techniques for creating new distributions by introducing additional shape 

parameter(s) to baseline model and at the same time provide great flexibility in modeling data in practice 

The extended distributions have attracted the attention of many authors to expand new models because the 

computational and analytical facilities available in programming software such as R, Maple, and Mathematica 

can easily tackle the problems involved in computing special functions in these extended distributions.  

Several mathematical properties of the extended distributions may easily be explored using mixture forms of the 

exponentiated- H  (exp- H  for short) distributions. The addition of parameters has been proved useful in 

exploring skewness and tail generated family. The well-known generators are the following:  Beta Generalized    

(Beta- H  ), introduced by Singh et al. (1988) is a rich class of generalized distributions. This class has captured 

a considerable attention over the last few years. Eugene et al. (2002) introduced a new class of distributions 

generated from the beta distribution. The cumulative distribution function (cdf) for beta-generated distributions 

has the form 
( )

1 1

0

1
( ) (1 ) , (1)

( , )

H x

a bG x w w dw
B a b

    

where,  0a    and  0b    are two additional parameters and  
( ) ( )

( )
( , ) .a b

a b
B a b  

 
  Eugene et al. (2002) 

defined and studied the beta normal distribution by taking ( )H x  to be the  cdf of normal distribution. 

Following the procedure of Eugene et al. (2002), many other authors have been defined and studied a number of 

the beta-generated distributions, using various forms of known  ( ).H x  Sepanski and Kong (2008) applied the 

Beta- H   distribution to model the size distribution of income. This distribution has been studied in literature for 

various forms of  H .  

Kumaraswamy (1980) introduced a two-parameter distribution on the interval  0,1  which bears his name. It's 

cumulative distribution function is given by  

( ) 1 1 , 0 1, (2)
b

aG x x x        

where  0a    and  0b    are shape parameters. The cdf (2) compares extremely favorably in terms of 

simplicity with the beta cdf which is given by the incomplete beta function ratio. The corresponding probability 

density function (pdf) is  
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1
1( ) 1 . (3)

b
a ag x abx x


      

The pdf  of the Kumaraswamy ( Kw ) has the same basic shape properties of the beta distribution:  1a    and  

1b    (unimodal) ; 1a    and  1b   (uniantimodel);  1a    and  1b    (increasing) ;  1a    and  1b   

(decreasing);  1a    and  1b    (constant). It does not seem to be very familiar to statisticians and has not been 

investigated systematically in much detail before, nor has its relative interchangeability with the beta distribution 

been widely appreciated. Jones (2009) explored the background and genesis of this distribution and, more 

importantly, made clear some similarities and differences between the beta and  Kw   distributions.  Cordeiro 

and de Castro (2011) replaced the classical beta generator distribution with the Kumaraswamy's distribution and 

introduced the Kumaraswamy generated family. They derived some mathematical properties of a new model, 

called the  Kw H   distribution, which stems from the following general construction:  If  H   denotes the 

baseline cumulative distribution function of a random variable, then a generalized class of distributions can be 

defined by 

( ) 1 [1 ( ) ]        , 0. (4)a bG x H x a b   
 

Where  0a    and  0b    are two additional shape parameters which aim to govern skewness and tail weight 

of the generated distribution. An attractive feature of this distribution is that the two parameters  a   and  b   can 

afford greater control over the weights in both tails and in its centre. The corresponding pdf is 
1

1( ) ( ) ( ) 1 ( ) . (5)
b

a ag x abh x H x H x


      

The density family (5) has many of the same properties of the class of beta H   distributions (see Eugene et al. 

(2002)), but has some advantages in terms of tractability, since it does not involve any special function such as 

the beta function. Equivalently, as occurs with the beta H   family of distributions, special  Kw H   

distributions can be generated as follows: The  Kw Weibull (Cordeiro et al. (2010)),  Kw  generalized 

gamma (Pascoa et al. (2011)),  Kw Birnbaum-Saunders (Saulo et al. (2012)), and  Kw    Gumbel 

(Cordeiro et al. (2012)) distributions are obtained by taking  ( )H x   to be the cdf of the Weibull, generalized 

gamma, Birnbaum-Saunders and Gumbel distributions, respectively, among several others. Hence, each new  

Kw H   distribution can be generated from a specified  H   distribution. General results for the Kw H  

distribution were studied by Nadarajah et al. (2012).   

 

Recently, the  G    distributions (or exponentiated distributions) have been shown to have a wide domain of 

applicability, in particular in modeling and analysis of life time data. The exponentiated distributions have been 

widely studied in statistics and numerous authors have developed various classes of these distributions. 

Mudholkar et al. (1995) proposed the exponentiated Weibull distribution. It's properties have been studied in 

more detail by Mudholkar and Hutson (1996). Gupta et al. (1998) introduced and developed the general class of 

exponentiated distributions. They defined and studied the exponentiated exponential distribution. Gupta and 

Kundu (1999) introduced the exponentiated exponential distribution as a generalization of the standard 

exponential distribution. Nadarajah and Kotz (2006) proposed, based on the same idea, four more exponentiated 

type distributions to extend the standard gamma, standard Weibull, standard Gumbel and standard Fr échet 

distributions. More recently, Lemonte and Cordeiro (2011) introduced the exponentiated generalized inverse 

Gaussian distribution.  

 

In this paper, a new extension of the  Kw H   family of distributions called exponentiated Kumaraswamy 

denoted by (Garhy )  G H family of distributions is proposed. The rest of this article is organized as 

follows. In Section 2, the Garhy family of distributions is defined and some of it's properties are provided. Some 

general mathematical properties of the family are discussed in Section 3. Distribution of kth order statistics is 

discussed in Section 4. Some members of Garhy distributions are discussed in Section 5. In Section 6, the 

estimation of the model parameters is performed by the method of maximum likelihood. An illustrative 

application based on real data is investigated in Section 7. Finally, concluding remarks are addressed in Section 

8. 
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2.  The Garhy-Generated Family 

In this section, the new class of distributions, called Garhy  G H  generated family of distributions 

is introduced. The cdf of this family is defined by adding shape parameter   to the cdf (4) as follows 

( ) [1 (1 ( ) ) ]         , , 0, 0, (6)a bF x H x a b x       

where , 0,a b    and  0    are three shape parameters. The cdf (6) provides a wider family of continuous 

distributions. The pdf corresponding to (6) is given by 

 

         
1 1 1(1 ) [1 (1 ) ]    , , 0, 0. (7)

a a ab bf x ab h x H x H x H x a b x 
       

 
 Hereafter, a random variable X with pdf (7) is denoted by   .X G H   

Note that: 

1. For  1,   the  G H   distribution reduces to Kw H  which is obtained by Cordeiro and de 

Castro (2011). 

2. For 1a b   the  G H   distribution reduces to exponentiated distributions ( )E H  which is 

obtained by Gupta et al. (1998). 

 The survival, hazard and reversed hazard functions are obtained, respectively, as follows  

 

  1 [1 (1 ( ) ) ]           , , 0, 0,a bF x H x a b x        

 
1 1 1( ) ( ) ( ) (1 ( ) ) [1 (1 ( ) ) ]

( ) ,
1 [1 (1 ( ) ) ]( )

a a b a b

a b

f x ab h x H x H x H x
R x

H xF x





     
 

  
 

 

and,  
1 1( ) ( ) ( ) (1 ( ) )

( ) .
( ) 1 (1 ( ) )

a a b

a b

f x ab h x H x H x
x

F x H x




 
 

 
 

3.  Statistical Properties 

 

In this section, we provide  some of the important properties of  G H generated family of distributions.       

 

 3.1 Quantile and median 

 

       Quantile functions are generally in common use in statistics. The quantile function of  G H  distributions,  

say
1( ) ( )Q u F u , is straightforward to be computed by inverting (6) as follows  

1 1 1

( ) [1 (1 ) ] 0, (8)b a

qH x q                                                                                                

where, ( ),qx Q u u  is the uniform distribution on  0,1 .  Therefore, by solving numerically the nonlinear 

equation (8), the generated random number from G H random variable X will be obtained.  Also, the median 

can be derived from (8) be setting  0.5,q  that is,  the median is given through the following relation 

 
1 1 1

( ) [1 (1 0.5 ) ] 0.b a

qH x       

3.2 Expansion for distribution and density functions 

In this subsection some representations of cdf and pdf for Garhy family of distributions will be presented. The 

useful mathematical relation will be given below. 

 It is well-known that, if  0    is a  real non integer and  1z   , the generalized binomial theorem is written 

as follows 
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 
11

0

1 ( 1)  . (9)i i

ii

z z







 
    

 
  

Then, by applying the binomial theorem (9) in (6), the distribution function of G H  distribution becomes 

      

   

 

0

, 0

,

, 0

1 1 ,

1 ,

,

bi
i a

i

i j aj

i j

aj

i j

i j

F x H x
i

bi
H x

i j

w H x

















 
   

 
  

    
  









 

where   , 1 .
i j

i j

bi
w

i j

   
    

  
 

Also, using the binomial expansion (9) in (7), the probability density function of G H  distribution becomes 

 1 ( 1) 1

0

( 1) 1

,

, 0

1
( ) ( ) ( ) 1 (1 ( ) )

( )  ( ) , (10)

ia a b i

i

a j

i j

i j

f x ab h x H x H x
i

h x H x







  




 



 
   

 






  

where,

 

 
 

,

1 1 1
1

i j

i j

b i
ab

i j


 

     
    

  
.  

Then pdf (10) reduces to  

, ( 1) 1

, 0

( ) ( ), (11)i j a j

i j

f x h x


 



   

where,                                                          

( 1) 1

( 1) 1( ) ( ( 1) 1) ( ) ( )a j

a jh x a j h x H x  

       and

 

,

, .
( 1) 1

i j

i j
a j


 

 
 

For     is an integer the index i in the previous sum stops at  1   . 

 

3.3 Moments 

A formula of the  rth   moment of X  can be obtained from (10) as  
´

, ,
, 0

( )r

r i j i j
i j

E Z 




    where  ,i jZ   

denotes the G H distribution with power parameter  ( 1) 1.a j    Since the inner quantities in (11) are 

absolutely integrable, the incomplete moments and moment generating function  of X  can be written as 

, ,

, 0

( ) ( ) ( ),
y

r

X i j i j

i j

I y x f x dx I y





    

where , ( 1) 1( ) ( )
y r

i j a jI y x h x dx 
    and 

 

,

,

, 0

( ) ( ).i jtZ

X i j

i j

M t E e




     

 
 

4.  Order Statistics 
Order statistics are among the most fundamental tools in non-parametric statistics and inference. They play an 

important rule in the problems of estimation and hypothesis tests in a variety of ways. For a given random 
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sample 1,..., nX X   from the G H  distribution,  the pdf  
( ) ( )( )
kX kf x   of the kth  order is obtained by 

using the following  

 

   

   
 

( )

( )

1

( ) ( ) ( ) ( )

1

( ) ( ) ( )

0

!
( ) ( ) ( ) 1 ( )

1 ! !

!
( ) 1 ( ) ( ) . (12)

1 ! !

k

k

k n k

X k k k k

n k
u u k

X k k k

u

n
f x f x F x F x

k n k

n kn
f x f x F x

uk n k

 


 



        

 
   

   


  
 

 

By substituting cdf (6) in pdf(12), then  

   
    

 

( )

1

( ) ( )

0

!
( ) 1 ( ) 1 1 , (13)

1 ! !k

u k
bn k au

X k k k

u

n kn
f x f x H x

uk n k

  




           
      

 

 

by applying the binomial theorem (9) in  (13), then the pdf  
( ) ( )( )
kX kf x   of the kth  order statistic from 

G H  distribution becomes 

 

   
 

 

( ) ( )

, 0 0

( ) ( )

!
( ) 1

1 ! !

1
( ) ( ) . (14)

k

n k
i j u

X k

i j u

a j

k k

n kn
f x

uk n k

biu k
H x f x

ji



 
 

 

 
   

   
   

  
  


  

Where (.)h   and  (.)H   are the density and cumulative functions of the G H  distribution, respectively. 

 

5.  Some Special Sub-Models 

In this section, we discuss some special distributions which will be derived  from G H family.  The density 

function (7) will be most tractable when the cdf  ( )H x   and the pdf  ( )h x   have simple analytic expressions. 

5.1 G-uniform distribution 

Suppose that the parent distribution is uniform in the interval 0 x S    as a first example, where  

( ) .x
s

H x   Therefore, the G  uniform distribution, say  , , ,a bG D sU   has the following cdf , pdf by 

direct substituting   ( ) ,x
s

H x    in  (6) and (7)as follows    

( ) [1 (1 ( ) ) ]        , , 0    ,   0 ,a bx
F x a b x s

s

        

 
1

1 1( ) (1 ( ) ) [1 (1 ( ) ) ] ,   , , 0  ,   0 .
a

a b a b

a

ab x x x
f x a b x s

s s s





       

 

Furthermore, the  survival and hazard rate  functions are given, respectively, as follows 

 

( ) 1 [1 (1 ( ) ) ]        , , 0    ,   0 ,a bx
F x a b x s

s

         

and 

1 1 1(1 ( ) ) [1 (1 ( ) ) ]
( ) ,   , , 0  ,   0 .

{1 [1 (1 ( ) ) ] }

a a b a b

a a b

x x
ab x

s sR x a b x s
x

s
s








    
   

  

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

6 

5.2 G-BurrXII distribution 

 

Let us consider the parent Burr XII distribution with pdf and cdf given by 

1 1( ) [1 ( ) ]        , , 0c c cx
h x c x c  



       and  H 1 [1 ( ) ] ,       cx
x 



   respectively. Then 

the G BurrXII distribution, denoted by  , , , , ,GBurrXIID a b c    has the following cdf, pdf , 

survival and the hazard rate functions 

 

( ) [1 (1 {1 [1 ( ) ] } ) ]        , , , , , 0    ,   0,c a bx
F x a b c x    



        

 

1 1 1 1

1

( ) [1 ( ) ] (1 [1 ( ) ] ) (1 (1 [1 ( ) ] ) )

[1 (1 {1 [1 ( ) ] } ) ]  ,    

c c c c a c a b

c a b

x x x
f x ab c x

x

  

 

 
  



       

 

      

    
 

 

( ) 1 [1 (1 {1 [1 ( ) ] } ) ]        , , , , , 0    ,   0,c a bx
F x a b c x    



         

and 

1 1 1 1

1 1

( ) [1 ( ) ] (1 [1 ( ) ] ) (1 (1 [1 ( ) ] ) )

[1 (1 (1 [1 ( ) ] ) ) ]  {1 [1 (1 (1 [1 ( ) ] ) ) ] } ,    

c c c c a c a b

c a b c a b

x x x
R x ab c x

x x

  

   

 
  

 

       

   

      

         
 

where  0, 0x    is scale parameter, , , , , 0a b c     are shape parameters. 

 

5.3 G-Weibull distribution 

In this subsection, the pdf and cdf of G Weibull is derived from the G family of distributions.   

If the random variable X follows the Weibull distribution with scale parameter 0    and shape parameter

0  , then the cdf of X is    1 xH x e
   for  0x   . The cdf , pdf , survival and the hazard rate 

functions of the G Weibull distribution, say  , , , ,aW bG D    , take the following forms  

 

(x) [1 (1 (1 ) ) ]        , , , , 0    ,   0,x a bF e a b x
           

 

1 1

1

( ) (1 ) (1 (1 ) )

[1 (1 (1 ) ) ]      , , , , 0    ,   0,

x x a x a b

x a b

f x ab xe e e

e a b x

  



  

 



  

    

 

   

     
 

 

( ) 1 [1 (1 (1 ) ) ]        , , , , 0    ,   0,x a bF x e a b x
            

and 

1 1 1(1 ) (1 (1 ) ) [1 (1 (1 ) ) ]
( )     

1 [1 (1 (1 ) ) ]

x x a x a b x a b

x a b

ab xe e e e
R x

e

   



    

 

       



     


   
 

respectively. Note that if  1    the G Weibull distribution reduces to G  exponential distribution. 

 
5.4 G- quasi Lindley distribution 
Quasi Lindley distribution is introduced by Rama and Mishra (2013). The cdf, pdf , survival and the hazard rate 

functions for Garhy quasi Lindley distribution (GQLD ) are obtained from (6)and(7) by taking  (.)H   and 
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(.)h   to be the cdf and pdf of the quasi Lindley  ( , )QL p   distribution, where, ( ) 1 [1 ]
1

x x
H x e

p

   


 

and ( ) ( ) (1 [1 ])
1 1

x x x
h x p x e e

p p

  
     

 
 

 Hence, 

 

 ( ) [1 (1 (1 [1 ]) ) ] , , , , 0 , 1, 0,
1

x a bx
F x e a b p x

p

 
         


    

       

1 1

1

( ) ( ) (1 [1 ]) (1 (1 [1 ]) )
1 1 1

[1 (1 (1 [1 ]) ) ] , , , 0  1 0,
1

x x a x a b

x a b

ab x x
f x p x e e e

p p p
x

e a b p x
p

  

 

  



 

    

 

      
  

        


 

 

( ) 1 [1 (1 (1 [1 ]) ) ] , , , , 0 , 1, 0,
1

x a bx
F x e a b p x

p

 
          


 

and 

1 1

1 1

( ) ( ) (1 [1 ]) [1 (1 (1 [1 ]) ) ]
1 1 1

(1 (1 [1 ]) ) {1 [1 (1 (1 [1 ]) ) ] }
1 1

x x a x a b

x a b x a b

ab x x
R x p x e e e

p p p
x x

e e
p p

   

  

  


 

    

   

       
  

        
 

 

 

respectively. For  p    the G  Lindley distribution will be obtained. 

    Considering the above different distributions derived from G  family,  plots of pdf, cdf , survival function 

and hazard rate functions for some parameter values are displayed in Figures 1, 2, 3 and 4 respectively. 
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Figure 1: (a)  , , ,a bG D sU  , (b)  , , , , ,GBurrXIID a b c    (c)  , , , ,aW bG D     and 

 QLD , , , ,G a b p   density functions. 

 

 

  
 

 

 

   
 

Figure 2: (a)  , , ,a bG D sU  , (b)  , , , , ,GBurrXIID a b c    (c)  , , , ,aW bG D     and 
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 QLD , , , ,G a b p   distribution functions 

 

 

  
 

 

  
        

Figure 3 : (a)  , , ,a bG D sU  , (b)  , , , , ,GBurrXIID a b c    (c)  , , , ,aW bG D     and 

 QLD , , , ,G a b p    survival functions 
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Figure 4(a)  , , ,a bG D sU  , (b)  , , , , ,GBurrXIID a b c    (c)  , , , ,aW bG D     and 

 QLD , , , ,G a b p   hazard rate functions 

 

6. Maximum Likelihood Estimation 

The maximum likelihood estimators (MLEs) of the model parameters of the new family of distributions based on 

complete random samples are determined. Let  1,..., nX X   be the observed values from the G H

distribution with parameters  , ,a b    and  .  Let      ( , , , )Ta b     be the  1p    parameter vector. The 

total log-likelihood function for the vector of parameters   can be expressed as  

 

1 1

1 1

ln ( ) ln ln ln ln ( , ) ( 1) ln ( , )

( 1) ln[1 ( , ) ] ( 1) ln[1 [1 ( , ) ] ]

n n

i i

i i
n n

a a b

i i

i i

L n a n b n h x a H x

b H x H x

  

  

 

 

      

      

 

 
 

The elements of the score function  ( ) ( , , , )a bU U U U U     are given by 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.2, 2016 

 

11 

1 1

1

1

( , ) ln ( , )
ln ( , ) ( 1)

1 ( , )

[1 ( , ) ] ( , ) ln ( , )
( 1) ,

1 [1 ( , ) ]

an n
i i

a i a
i i i

a b an

i i i

a b
i i

H x H xn
U H x b

a H x

H x H x H x
b

H x

 




  




 





   
  


 

 

 



 

 

1 1

[1 ( , ) ] ln[1 ( , ) ]
ln[1 ( , ) ] ( 1) ,

1 [1 ( , ) ]

a b an n
a i i

b i a b
i i i

H x H xn
U H x

b H x

 
 

 

 
    

 
   

 

1

ln[1 [1 ( , ) ] ],
n

a b

i

i

n
U H x 

 

     

 
创

1 1

1 ?

1

1 1 ?

1

( , ) ( , )
( 1)

( , ) ( , )

( , ) ( , )
( 1)

1 ( , )

[1 ( , ) ] ( , ) ( , )
( 1) .

1 [1 ( , ) ]

k

n n
k i k i

i ii i

an
i k i

a
i i

a b an
i i k i

a b
i i

h x H x
U a

h x H x

H x H x
a b

H x

H x H x H x
ab

H x



 

 

 



  




 





 



  

 



 

 

 





 

Setting , ,a bU U U    and  U    equal to zero and solving the equations simultaneously yields the MLEs  

( , , , )a b      of   ( , , , ) .Ta b     These equations cannot be solved analytically and statistical 

software can be used to solve them numerically using iterative methods such as the Newton-Raphson type 

algorithms.  

For interval estimation of the parameters, the 4 4 observed information matrix ,( ) { }u vI I   for 

( , , , , )u v a b   , whose elements are given in appendix. Under the regularity conditions, the known 

asymptotic properties of the maximum likelihood method ensure that: 
1( ) (0, ( ))dn N I      as

n  , where 
dmeans the convergence in distribution, with mean zero and covariance matrix

1( )I     

then, the  100(1 )% confidence interval for ( , ,a b  )  is given as follows  

                            2 var( )Z    

where 2Z   is the standard normal at 2  is significance level and var (.)   denote the diagonal elements of 

1( )I   corresponding to the model parameters. 

7.  Application 

In this section a data analysis will be provided below to see how the new model works in practice. The data have 

been obtained from (Aarset 1987). It represents the lifetimes of 50 devices.  

0.1  0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 75 79 82 82 

83 84 84 84 85 85 85 85 85 86 86. 

For the selected data, we fit the Garhy Lindley (GL) distribution defined in (4). Its fitting also compared with the 

widely known Kumaraswamy Lindley (KwL)(see Çakmakyapan, and Kadlar ), exponentiated Lindley (EL) ( see 

Nadarajah et al., 2011) and Lindley (L)( see Lindley, 1958) models with the following corresponding densities:   
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2
1 1( ) (1 ) (1 [1 ]) (1 (1 [1 ]) )

1 1 1

[1 (1 (1 [1 ]) ) ]
1

x x a x a b

GL

x a b

ab x x
f x x e e e

x
e

  



  

  




    



      
  

    


 

2
1 1( ) (1 ) (1 [1 ]) (1 (1 [1 ]) )

1 1 1

x x a x a b

KwL

ab x x
f x x e e e    

  

          
  

 

2
1( ) (1 ) (1 [1 ])

1 1

x x a

EL

a x
f x x e e  

 

     
 

 

2

( ) (1 )
1

x

Lf x x e 



 


 

In order to compare the four distribution models, we consider criteria like  2ln ,L    Akaike information 

criterion ( )AIC ,    corrected Akaike information criterion ( ),CAIC   Bayesian information criterion ( ),BIC  

and    Hannan- Quinn information criterion 
 
( )HQIC  for the chosen data set. The formula for these criteria is 

as follows 

 

 2 1
2 2ln  ,  

1

k k
AIC k L CAIC AIC

n k


   

 
 

 ln( ) 2ln   and   2 ln ln 2lnBIC k n L HQIC k n L      , 

where  k   is the number of parameters in the statistical model, and  n is  the sample size.  

 

The best distribution corresponds to smaller values of  2ln ,L   ,AIC   CAIC   and  HQIC    

      Table  1:  Maximum likelihood estimates and information criteria of the models based on above data set  

. 

Table 1 shows  the values of  , ,AIC CAIC BIC   and  HQIC  for the real data set. The values in Table 1 

indicate that the Garhy Lindley distribution is a strong competitor to other distributions used here for fitting data 

set. 

 

8.  Concluding Remarks 
In this paper, we propose the new Garhy generated family of distributions. Some of it's structural properties 

including an expansion for the density function, explicit expressions for the ordinary and incomplete moments, 

quantile function and order statistics have been derived. The maximum likelihood method has been  employed 

for estimating the model parameters. We fit one of the special models of the proposed family to real data set to 

Model Estimates 2ln L  AIC  BIC  CAIC  HQIC  

 

GL  

ˆ 0.102a   

ˆ 0.574b   

ˆ 0.054   

ˆ 3.076   

474.259 482.259 489.907 490.37 485.172 

 

EL  
ˆ 0.585a   

ˆ 0.042   

485.44 

 

489.44 493.264 493.504 490.896 

L  ˆ 0.043   
502.861 504.861 506.773 506.902 505.589 

 

 

KwL  

ˆ 0.983a   

ˆ 1.906b   

ˆ 0.027   

 

 

 

503.731 

 

 

509.731 

 

 

515.467 

 

 

515.818 

 

 

511.915 
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demonstrate the usefulness of the new family. The Garhy Lindley distribution provides consistently better fits 

than other competing models.  

 

Appendix 

 The elements of the observed Fisher information matrix ( )I  ,  are given by 

                 

( )

aa ab a a

ba bb b b

a b

a b

U U U U

U U U U
I

U U U U

U U U U

 

 

   

   

 
 
   
 
 
 

  

 
2

2 2
1
2 2

2
1

( )
( 1)

[ ( 1) ]
( 1) ,

a an

i i i i
aa

i i
b a a a bn

i i i i i i i i i

i i

A B C An
U b

a C

B C A b D A C D bA C
b

D








  

   
 




 

 
1

1 1
1

2
1

( 1)

( )
( ) ,

a b an n

i i i i i
ab

i ii i
b a bn

b i i i i i i
i i

i i

A B C A B
U

C D

C E A B D C
b D C

D




 




   


 

 


 

 

1

1

,
b an

i i i
a

i i

B C A
U b

D






 
              1

,
bn
i i

b

i i

C E
U

D




 
   

2
  ,

n
U 




  

 
2

2 2
1

( )
( 1) ,

b bn
i i i i

bb

i i

E C D Cn
U

b D





   

1 1

1

,
k

b an
i i i

i i

C A F
U ab

D


 



   

 

 

 
1 1 1

1 1
1 1

2
1

( 1)

( )
( 1) ,

k

a b an n

i i i i i
b

i ii i
b a bn
i i i i i i

i i

A F C A F
U a a

C D

C E A F D C
ab

D

 



  

 
 



   


 

 


 

 
1 1 1 1

2
1 1 1 1

2 1

2

( )
( 1) ( 1) ( 1)

[ ( 1) ]
( 1) ,

k

a a a b an n n n

i i i i i i i i i i i
a

i i i ii i i i
b a a b a

i i i i i i i i i i

i

F A F A B F C A C A F
U b a b b

A C C D

C A B F C D b A D bC A
ab

D

 



   

   
 


      

  
 

   


 

2 2
1 1

2 1

2
1

2 2

2
1

( 1)

( 1)
( 1) { }

( 1)

{ ( 1) ( 1) }.

k l

n n
i i i i i i i

i ii i
a a an
i i i i i i i

i i i
b an

i i

i i
a b a

i i i i i i i i i i i i

G N k L A F M
U a

N A

A F M a C aA A L
a b

C C

C A
ab

D

F M a D C a b D A abC A C A D L

 



 
 


 



 
  

     

 

       

 




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Where 

( , )   ,   ln ( , )   ,   1 ( , ) , 1 1 ( , ) ,
b

a a

i i i i i i i iA H x B H x C H x D H x           

  创 ?

,ln 1 ( , )     ,    ( , ) , ( , ) , ( , ) ,a

i i i k i i k l i i iE H x F H x G h x N h x       
  

 
创 创 ?

,( , ) ( , ) , ( , )    ,   ( , ).i k i l i i k l i i l iK h x h x L H x M H x       

where 

 
´( , ) ( , )

kk i iH x H x


 


    ,  
´( , ) ( , )

ll i iH x H x


 


   

and  
2创

, ( , ) ( , ).
k lk l i iH x H x

 
 

 
   
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