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Abstract 

The object of this paper is to introducea class of module which is a fully stable Banach Algebra module. 

Introduction 

Given a Banachspace 𝐸 is aBanach left 𝐴-module if 𝐸 is a left 𝐴 −module, and  ‖𝑎. 𝑥‖ ≤ ‖𝑎‖‖𝑥‖(𝑎 ∈ 𝐴, 𝑥 ∈
𝐸)[1] .Recall that a submoduleN of an 𝑅 −module 𝑀 is said to be stable, if 𝑓(𝑁) ⊆ 𝑁 for each 

𝑅 −homomorphism𝑓: 𝑁 → 𝑀. In case each submodule of it is stable ,𝑀 is called a fully stable module 

[2],throughout this paper we introduce the concept of  full stability for modules . A Banachalgebra module 𝑀 is 

called fully stable Banach 𝐴-module if for every submodule 𝑁 of 𝑀 and for each multiplier 𝜃: 𝑁 ⟶ 𝑀  such that 

𝜃(𝑁) ⊆ 𝑁.Structure of fully stableBanach A- module in term of their elements is considered see(2.5) Studying 

Baer criterion gives another characterization  of fully stable Banach𝐴-modulein proposition (2. 8) 

 

1. Preliminaries 

In this section the fundamental basic concepts and primitive results are given. 

Definition (1.1) [2]  

A submoduleN of an 𝑅 −module 𝑀 is said to be stable, if 𝑓(𝑁) ⊆ 𝑁 for each 𝑅 −homomorphism 𝑓: 𝑁 ⟶ 𝑀,In 

case each submodule of it is stable , 𝑀 is called a fully stable module. 

Examples (1.2) [2] 

a) The 𝑍 −module 𝑍 of all integers is not fully stable .For, define 

𝜃: 2𝑍 ⟶ 𝑍by𝜃(2𝑛) = 3𝑛 for each 𝑛 ∈ 𝑍 

Clearly ,𝜃  is a 𝑍 −homomomrphism .But 𝜃(2𝑍) ⊈2Z  

b) Let 𝑀 be an𝑅 −module .For any ideal 𝐼 of 𝑅  , 

𝑎𝑛𝑛𝑀(𝐼) = {𝑚 ∈ 𝑀| 𝐼𝑚 = (0)}  . Is astable submodule of𝑀 

  In fact, for any 𝑅 −homomorphism 𝑓: 𝑎𝑛𝑛𝑀(𝐼) ⟶ 𝑀 

And each 𝑚 ∈ 𝑎𝑛𝑛𝑀(𝐼). 𝐼𝑚 = (0), 𝐼𝑓(𝑚) = 𝑓(𝐼𝑚) = 𝑓((0)) = (0) 

Hence  𝑓(𝑚) ∈ 𝑎𝑛𝑛𝑀(𝐼).  Thus 𝑎𝑛𝑛𝑀(𝐼)  is stable submodule. 

Recall that , a submodule𝑁 of an 𝑅 −module 𝑀 is said to be annihilator if   𝑁 = 𝑎𝑛𝑛𝑀(𝐼)   for some ideal 𝐼of 𝑅. 

As in (𝑏) by the a bove an 𝑅 −module , in which all its submodules are annihilators is fully stable.  

Following remark  show us ,it issufficies to consider stability over a very restricted class of submodules. 
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[2]  Remark (1.3) 

Let 𝑀 be an𝑅 −module. If every cyclic submodule of 𝑀 is stable then 𝑀 is fully stable module. 

Proposition (1.4) [2] 

 An 𝑅 −module 𝑀 is fully stable if and only if for each 𝑥, 𝑦in 𝑀, 𝑦∉(x)  implies 𝑎𝑛𝑛𝑅(𝑥)  ⊈    𝑎𝑛𝑛𝑅(𝑦). 

Corollary (1.5) [2] 

Let 𝑀 be a fully stable 𝑅 −module .Then for each 𝑥, 𝑦in 𝑀,          𝑎𝑛𝑛𝑅(𝑦) = 𝑎𝑛𝑛𝑅(𝑥) implies (𝑥) = (𝑦). 

Definition (1.6) [2] 

Let 𝑀  be an 𝑅 −module, and  𝑁be  anysubmodule of 𝑀. We say that 𝑁satisfies Baer criterion if for every 

𝑅 −homomorphism 𝑓: 𝑁 ⟶ 𝑀, there exists an element 𝑟 ∈ 𝑅 such that 𝑓(𝑛) = 𝑟𝑛  for each 𝑛 ∈ 𝑁An 

𝑅 −module 𝑀 is said to be satisfy Baer criterion if each submodule of 𝑀 satisfies Baer criterion ,that is for every 

submodule 𝑁 of 𝑀 and 𝑅 −homomorphism 𝑓: 𝑁 ⟶ 𝑀, there exists an element 𝑟 in 𝑅 such that  𝑓(𝑛) = 𝑟𝑛  for 

each 𝑛 ∈ 𝑁   .   

Note :-From above definition notice that every  module which satisfies Baer criterion is fully stable. 

In thefollowing proposition and its corollary obtain another characterization of fully stable modules. 

Proposition (1.7) [2] 

Let 𝑀 be anR −module .Then Baer criterion holds for cyclic submodules of M if and only if 𝑎𝑛𝑛𝑀(𝑎𝑛𝑛𝑅(𝑥)) =
(𝑥)  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑥 ∈ 𝑀. 

Corollary (1.8) [2] 

An𝑅 −module𝑀is fully stable if and onlyif  𝑎𝑛𝑛𝑀(𝑎𝑛𝑛𝑅(𝑥)) = (𝑥)  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑥 𝑖𝑛 𝑀. 

2. Main results 

We see that we need first to define follows 

Definition (2.1) [3] 

A map from a left Banach𝐴 −module 𝑋 in to a left Banach 𝐴 −module 𝑌 (A is not necessarily commutative ) is 

said a multiplier if it satisfies 

𝑇(𝑎. 𝑥) = 𝑎. 𝑇𝑥for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋 . 

Definition (2.2) [4]  

For a nonempty subset 𝑀 in a left Banach 𝐴 −module 𝑋, the annihilater  𝑎𝑛𝑛𝐴(𝑀) of 𝑀 is 𝑎𝑛𝑛𝐴(𝑀) = {𝑎 ∈
𝐴 ; 𝑎. 𝑥 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑀} .   

Definition (2.3) [5] 

Aleft Banach𝐴 −module 𝑋 is called 𝑛 −generated for 𝑛 ∈ 𝑁  if there exists𝑥1, … , 𝑥𝑛 ∈ 𝑋such  thateach 𝑥 ∈ 𝑋  

can represented as𝑥 = ∑ 𝑎𝑘 . 𝑥𝑘𝑘=1 for some     𝑎1, … , 𝑎𝑛 ∈ 𝐴   .A cyclic module is just a 1-generated one. 

Now,we start by introducing the concept of stability forBanach 𝐴 −module. 

Definition (2. 4) 

Let 𝑋be Banach𝐴 − module ,  𝑋 is called fully stableBanach𝐴 −module if for every submodule 𝑁 of 𝑋 and for 

each multiplier    𝜃: 𝑁 ⟶ 𝑋   such that 𝜃(𝑁)  ⊆   𝑁. 
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In the following proposition  wediscuss another characterization of fully stable modules . 

 

Notations:- 

Let 𝑋 a Banach 𝐴 −module  

1)𝑁𝑥 =  {𝑛𝑥|  𝑛 ∈ 𝑁,   𝑥 ∈ 𝑋} 

𝐾𝑦  = {𝑘𝑦| 𝑘 ∈ 𝐾,    𝑦 ∈ 𝑋} 

2)  𝑎𝑛𝑛𝐴𝑁𝑥  = {𝑎 ∈ 𝐴 , 𝑎. 𝑛𝑥 = 0,   ∀  𝑛𝑥 ∈ 𝑁𝑥} 

𝑎𝑛𝑛𝐴𝐾𝑦  = {𝑎 ∈ 𝐴,   𝑎. 𝑘𝑦 = 0,   ∀𝑘𝑦 ∈ 𝐾𝑦} 

 

Proposition (2.5) 

𝑋is fully stable Banach 𝐴 −module if and only if for each 𝑥, 𝑦 ∈ 𝑋 

And𝑁𝑥, 𝐾𝑦subsetsof 𝑋, 𝑦 ∉  𝑁𝑥 implies 𝑎𝑛𝑛𝐴(𝑁𝑥) ⊈ 𝑎𝑛𝑛𝐴(𝐾𝑦). 

Proof :- 

Suppose that 𝑋 is fully stable Banach 𝐴 −module there exists 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ∉ 𝑁𝑥  and 𝑎𝑛𝑛𝐴(𝑁𝑥) ⊆

𝑎𝑛𝑛𝐴(𝐾𝑦) 

Define   𝜃: < 𝑁𝑥 >⟶ 𝑋     by   𝜃(𝑎. 𝑛𝑥) = 𝑎. 𝑘𝑦,for all 𝑎 ∈ 𝐴 

if𝑎. 𝑛𝑥 = 0     then  𝑎 ∈ 𝑎𝑛𝑛𝐴(𝑁𝑥) ⊆ 𝑎𝑛𝑛𝐴(𝐾𝑦) 

This implies that  𝑎. 𝑘𝑦 = 0,hence𝜃  is well define , clear 𝜃 

is a multiplier ,because 𝑋 is fully stable , there exsits an element  𝑡 ∈ 𝐴such 

that𝜃(𝑚𝑥) = 𝑡𝑚𝑥      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑚𝑥 ∈ 𝑁𝑥 

In particular,𝑘𝑦 = 𝜃(𝑛𝑥) = 𝑡𝑛𝑥 ∈ 𝑁𝑥 

Which is a contradiction 

Conversely, assume that there is a subset𝑁𝑥  of 𝑋  and a multiplier 𝜃: < 𝑁𝑥 >⟶ 𝑋   such that 𝜃(𝑁𝑥) ⊈ 𝑁𝑥  then 

there exists an element 𝑚𝑥 ∈ 𝑁𝑥    such that 𝜃(𝑚𝑥) ∉ 𝑁𝑥  . Let  𝑠 ∈ 𝑎𝑛𝑛𝐴(𝑁𝑥)therefor  𝑠𝑛𝑥 = 0  , 𝑠𝜃(𝑚𝑥) =
𝜃(𝑠𝑚𝑥) = 𝜃(𝑠𝑡𝑛𝑥) = 𝜃(𝑡𝑠𝑛𝑥)   = 𝜃(0) = 0. 

Hence 𝑎𝑛𝑛𝐴(𝑁𝑥) ⊆ 𝑎𝑛𝑛𝐴(𝜃(𝑚𝑥))   , which is a contradiction.∎ 

 

Corollary (2. 6)  

Let 𝑋 be a fully stable Banach 𝐴 −module .Then for each 𝑥, 𝑦  in 𝑋, 𝑎𝑛𝑛𝐴(𝐾𝑦) = 𝑎𝑛𝑛𝐴(𝑁𝑥)      implies 𝑁𝑥 = 𝐾𝑦 

     Proof:- 

Assume that there are two elements 𝑥, 𝑦 in 𝑋  such that 𝑎𝑛𝑛𝐴(𝑁𝑥) = 𝑎𝑛𝑛𝐴(𝐾𝑦)   and 𝑁𝑥 ≠ 𝐾𝑦 

Then without loss of generality there is an element 𝑧𝑥  in 𝑁𝑥  not in 𝐾𝑦  .By proposition (2.5)we have 

𝑎𝑛𝑛𝐴(𝐾𝑦) ⊈ 𝑎𝑛𝑛𝐴(𝑍𝑥)  but 𝑎𝑛𝑛𝐴(𝑁𝑥) ⊆ 𝑎𝑛𝑛𝐴(𝑍𝑥),hence,𝑎𝑛𝑛𝐴(𝐾𝑦) ⊈ 𝑎𝑛𝑛𝐴(𝑁𝑥)   which is a contradiction ∎ 
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Definition (2. 7) 

A Banach𝐴 −module 𝑋 is said to satisfy Baer criterion if eachsubmoduleof  𝑋 satisfies Baer criterion ,that is for 

every submodule 𝑁 of 𝑋 and 𝐴 − multiplier𝜃: 𝑁 ⟶ 𝑋     ,there exists an element 𝑎 in 𝐴 such that 𝜃(𝑛) = 𝑎𝑛for 

all 𝑛 ∈ 𝑁. 

In the following proposition and its corollary another characterization of fully stable Banach𝐴 −module is given. 

Proposition (2.8)  

Let 𝑋 be a Banach 𝐴 −module .Then Baer criterion holds for cyclic submodules of 𝑋 if and only if 

𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) =  𝑁𝑥   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋. 

Proof :- 

Assume that Baer criterion holds. Let  𝑦 ∈ 𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) 

Define   𝜃: < 𝑁𝑥 >⟶ 𝑋     by   𝜃(𝑎. 𝑛𝑥) = 𝑎. 𝑘𝑦         ,for all 𝑎 ∈ 𝐴 

Let 𝑎1. 𝑛𝑥 = 𝑎2. 𝑛𝑥 

(𝑎1 − 𝑎2)𝑛𝑥 = 0  ,       𝑎1 − 𝑎2 ∈ 𝑎𝑛𝑛𝐴(𝑁𝑥) 

( 𝑎1 − 𝑎2) ∈ 𝑎𝑛𝑛𝐴(𝐾𝑦) ⟶       (𝑎1 − 𝑎2)𝑘𝑦 = 0      

 𝑎1𝑘𝑦 = 𝑎2𝑘𝑦 

hence ,𝜃  is well define. 

It is clear that clear 𝜃   is an𝐴 − multiplier. By the assumption, there exists an element 𝑡 ∈ 𝐴   such that 

 𝜃(𝑚𝑥) = 𝑡𝑚𝑥      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑚𝑥 ∈ 𝑁𝑥 

This implies that   .In particular,𝑘𝑦 = 𝜃(𝑛𝑥) = 𝑡𝑛𝑥 ∈ 𝑁𝑥𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) ⊆  𝑁𝑥  ;   ℎ𝑒𝑛𝑐𝑒 𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) =

 𝑁𝑥 

Conversely, assume that  𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) =  𝑁𝑥 

For each  𝑁𝑥 ⊆ 𝑋.Then for each 𝐴 − multiplier𝜃: 𝑁𝑥 → 𝑋 

And s ∈ 𝑎𝑛𝑛𝐴(𝑁𝑥),we have 𝑠𝜃(𝑛𝑥) = 𝜃(𝑠𝑛𝑥) = 0 

Thus  𝜃(𝑛𝑥) ∈ 𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) =  𝑁𝑥    ,  then 𝜃(𝑛𝑥) =  𝑡 𝑛𝑥  for some 𝑡 ∈ 𝐴,thus Baer criterion is holds. 

Corollary (2.9) 

𝑋isfully stable Banach𝐴  −module if and only if 

   𝑎𝑛𝑛𝑋(𝑎𝑛𝑛𝐴(𝑁𝑥)) =  𝑁𝑥   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋. 

References 
[1]  Matthew David Peter Daws , Banach algebras of operators  
The University of Leeds, School of Mathematics, Department of Pure Mathematics , (2004). 

[2]M.S.ABBAS,On Fully Stable Modules , Ph. D ,Thesis , University of Baghdad, Iraq,(1990). 

[3]JANKO  BRAˇCIˇC,Simple Multipliers onBanachModules .University of Ljubljana,Slovenia,GlasgowMathematical 

Journal Trust ,(2003). 

[4]J. BRAˇCIˇC ,Local Operators onBanach Modules, University of Ljubljana, Slovenia,Mathematical Proceedings of the 

Royal Irish Academy,(2004). 

[5]Antonio M.Cegarra, Projective Covers of Finitely  

Generated Banach Modules and the Structure of Some Banach Algebras, O.Yu.Aristov,Russia,(2006). 

http://www.iiste.org/

