Fully Stable Banach Algebra Module

MUNA JASIM MOHAMMED ALI, MANAL ALI

University of Baghdad - College of Science for women - Department of

Mathematics - Iraq -Baghdad

Abstract

The object of this paper is to introduce a class of module which is a fully stable Banach Algebra module.

Introduction

Given a Banachspace *E* is aBanach left *A*-module if *E* is a left *A*-module, and $||a.x|| \le ||a|| ||x|| (a \in A, x \in E)[1]$. Recall that a submodule N of an *R*-module *M* is said to be stable, if $f(N) \subseteq N$ for each *R*-homomorphism $f: N \to M$. In case each submodule of it is stable *M* is called a fully stable module [2], throughout this paper we introduce the concept of full stability for modules . A Banachalgebra module *M* is called fully stable Banach *A*-module if for every submodule *N* of *M* and for each multiplier $\theta: N \to M$ such that $\theta(N) \subseteq N$. Structure of fully stableBanach A- module in term of their elements is considered see(2.5) Studying Baer criterion gives another characterization of fully stable BanachA-module in proposition (2. 8)

1. Preliminaries

In this section the fundamental basic concepts and primitive results are given.

Definition (1.1) [2]

A submodule N of an R -module M is said to be stable, if $f(N) \subseteq N$ for each R -homomorphism $f: N \to M$, In case each submodule of it is stable, M is called a fully stable module.

Examples (1.2) [2]

a) The Z –module Z of all integers is not fully stable .For, define

 $\theta: 2Z \longrightarrow Zby\theta(2n) = 3n$ for each $n \in Z$

Clearly, θ is a Z -homomorphism .But $\theta(2Z) \not\subseteq 2Z$

b) Let M be an R -module . For any ideal I of R,

 $ann_M(I) = \{m \in M | Im = (0)\}$. Is a stable submodule of M

In fact, for any *R* –homomorphism $f: ann_M(I) \rightarrow M$

And each $m \in ann_M(I)$. Im = (0), If(m) = f(Im) = f((0)) = (0)

Hence $f(m) \in ann_M(I)$. Thus $ann_M(I)$ is stable submodule.

Recall that, a submodule N of an R -module M is said to be annihilator if $N = ann_M(I)$ for some ideal I of R. As in (b) by the a bove an R -module, in which all its submodules are annihilators is fully stable.

Following remark show us ,it issufficies to consider stability over a very restricted class of submodules.

[2] Remark (1.3)

Let M be an R -module. If every cyclic submodule of M is stable then M is fully stable module.

Proposition (1.4) [2]

An *R* –module *M* is fully stable if and only if for each *x*, yin *M*, $y \notin (x)$ implies $ann_R(x) \notin ann_R(y)$.

Corollary (1.5) [2]

Let *M* be a fully stable R –module .Then for each *x*, *y*in *M*,

 $ann_R(y) = ann_R(x)$ implies (x) = (y).

Definition (1.6) [2]

Let *M* be an *R*-module, and *N*be any submodule of *M*. We say that *N* satisfies Baer criterion if for every R-homomorphism $f: N \to M$, there exists an element $r \in R$ such that f(n) = rn for each $n \in N$ An R-module *M* is said to be satisfy Baer criterion if each submodule of *M* satisfies Baer criterion, that is for every submodule *N* of *M* and *R*-homomorphism $f: N \to M$, there exists an element r in *R* such that f(n) = rn for each $n \in N$ and R-homomorphism $f: N \to M$, there exists an element r in *R* such that f(n) = rn for each $n \in N$.

Note :- From above definition notice that every module which satisfies Baer criterion is fully stable.

In the following proposition and its corollary obtain another characterization of fully stable modules.

Proposition (1.7) [2]

Let *M* be an R-module. Then Baer criterion holds for cyclic submodules of M if and only if $ann_M(ann_R(x)) = (x)$ for each $x \in M$.

Corollary (1.8) [2]

An *R* -module *M* is fully stable if and only if $ann_M(ann_R(x)) = (x)$ for each x in M.

2. Main results

We see that we need first to define follows

Definition (2.1) [3]

A map from a left Banach A –module X in to a left Banach A –module Y (A is not necessarily commutative) is said a multiplier if it satisfies

T(a.x) = a.Tx for all $a \in A, x \in X$.

Definition (2.2) [4]

For a nonempty subset *M* in a left Banach *A* –module *X*, the annihilater $ann_A(M)$ of *M* is $ann_A(M) = \{a \in A : a. x = 0 \text{ for all } x \in M\}$.

Definition (2.3) [5]

Aleft Banach*A* –module *X* is called *n* –generated for $n \in N$ if there exists $x_1, ..., x_n \in X$ such that each $x \in X$ can represented as $x = \sum_{k=1}^{n} a_k \cdot x_k$ for some $a_1, ..., a_n \in A$. A cyclic module is just a 1-generated one.

Now, we start by introducing the concept of stability forBanach *A* –module.

Definition (2. 4)

Let X be Banach A – module, X is called fully stable Banach A – module if for every submodule N of X and for each multiplier $\theta: N \to X$ such that $\theta(N) \subseteq N$.

In the following proposition we discuss another characterization of fully stable modules .

Notations:-

Let X a Banach A –module

$$1)N_x = \{n_x | n \in N, x \in X\}$$

$$K_y = \{k_y \mid k \in K, y \in X\}$$

2) $ann_A N_x = \{a \in A, a. n_x = 0, \forall n_x \in N_x\}$

$$ann_A K_y = \{a \in A, a. k_y = 0, \forall k_y \in K_y\}$$

Proposition (2.5)

X is fully stable Banach A –module if and only if for each $x, y \in X$

And N_x , K_y subsets of $X, y \notin N_x$ implies $ann_A(N_x) \notin ann_A(K_y)$.

Proof :-

Suppose that X is fully stable Banach A – module there exists $x, y \in X$ such that $y \notin N_x$ and $ann_A(N_x) \subseteq ann_A(K_y)$

Define $\theta : \langle N_x \rangle \longrightarrow X$ by $\theta(a, n_x) = a. k_y$, for all $a \in A$

if $a. n_x = 0$ then $a \in ann_A(N_x) \subseteq ann_A(K_y)$

This implies that $a \cdot k_v = 0$, hence θ is well define, clear θ

is a multiplier , because X is fully stable , there exsits an element $t \in A$ such that $\theta(m_x) = tm_x$ for each $m_x \in N_x$

In particular, $k_y = \theta(n_x) = tn_x \in N_x$

Which is a contradiction

Conversely, assume that there is a subset N_x of X and a multiplier $\theta : \langle N_x \rangle \longrightarrow X$ such that $\theta(N_x) \notin N_x$ then there exists an element $m_x \in N_x$ such that $\theta(m_x) \notin N_x$. Let $s \in ann_A(N_x)$ therefor $sn_x = 0$, $s\theta(m_x) = \theta(sm_x) = \theta(sm_x) = \theta(tsn_x) = \theta(0) = 0$.

Hence $ann_A(N_x) \subseteq ann_A(\theta(m_x))$, which is a contradiction.

Corollary (2.6)

Let X be a fully stable Banach A – module . Then for each x, y in X, $ann_A(K_y) = ann_A(N_x)$ implies $N_x = K_y$

Proof:-

Assume that there are two elements x, y in X such that $ann_A(N_x) = ann_A(K_y)$ and $N_x \neq K_y$

Then without loss of generality there is an element z_x in N_x not in K_y . By proposition (2.5) we have $ann_A(K_y) \not \leq ann_A(Z_x)$ but $ann_A(N_x) \subseteq ann_A(Z_x)$, hence, $ann_A(K_y) \not \leq ann_A(N_x)$ which is a contradiction

Definition (2. 7)

A Banach*A* –module *X* is said to satisfy Baer criterion if each submodule of *X* satisfies Baer criterion, that is for every submodule *N* of *X* and *A* – multiplier θ : $N \rightarrow X$, there exists an element *a* in *A* such that $\theta(n) = an$ for all $n \in N$.

In the following proposition and its corollary another characterization of fully stable BanachA -module is given.

Proposition (2.8)

Let X be a Banach A – module. Then Baer criterion holds for cyclic submodules of X if and only if $ann_X(ann_A(N_x)) = N_x$ for each $x \in X$.

Proof :-

Assume that Baer criterion holds. Let $y \in ann_x(ann_A(N_x))$

Define $\theta : \langle N_x \rangle \longrightarrow X$ by $\theta(a, n_x) = a, k_y$, for all $a \in A$

Let $a_1 . n_x = a_2 . n_x$

$$(a_1 - a_2)n_x = 0 , \quad a_1 - a_2 \in ann_A(N_x)$$
$$(a_1 - a_2) \in ann_A(K_y) \longrightarrow (a_1 - a_2)k_y = 0$$

 $a_1k_y = a_2k_y$

hence $,\theta$ is well define.

It is clear that clear θ is an A – multiplier. By the assumption, there exists an element $t \in A$ such that

$$\theta(m_x) = tm_x$$
 for each $m_x \in N_x$

In particular, $k_y = \theta(n_x) = tn_x \in N_x ann_x(ann_A(N_x)) \subseteq N_x$; hence $ann_x(ann_A(N_x)) =$. This implies that N_x

Conversely, assume that $ann_X(ann_A(N_x)) = N_x$

For each $N_x \subseteq X$. Then for each A – multiplier $\theta: N_x \to X$

And $s \in ann_A(N_x)$, we have $s\theta(n_x) = \theta(sn_x) = 0$

Thus $\theta(n_x) \in ann_x(ann_A(N_x)) = N_x$, then $\theta(n_x) = t n_x$ for some $t \in A$, thus Baer criterion is holds.

Corollary (2.9)

*X*isfully stable Banach*A* –module if and only if

 $ann_X(ann_A(N_x)) = N_x$ for each $x \in X$.

References

[1] Matthew David Peter Daws , Banach algebras of operators

The University of Leeds, School of Mathematics, Department of Pure Mathematics , (2004).

[2]M.S.ABBAS, On Fully Stable Modules , Ph. D , Thesis , University of Baghdad, Iraq, (1990).

[3]JANKO BRA^{*}CI^{*}C, Simple Multipliers on Banach Modules . University of Ljubljana, Slovenia, Glasgow Mathematical Journal Trust ,(2003).

[4]J. BRA^{*}CI^{*}C ,Local Operators onBanach Modules, University of Ljubljana, Slovenia,Mathematical Proceedings of the Royal Irish Academy,(2004).

[5] Antonio M.Cegarra, Projective Covers of Finitely

Generated Banach Modules and the Structure of Some Banach Algebras, O.Yu.Aristov, Russia, (2006).