
Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

104

Design Collocation Neural Network to Solve Singular Perturbation

Problems for Partial Differential Equations

Khalid. M. Mohammed. Al-Abrahemee

Department of Mathematics, College of Education, University AL-Qadisiyha

Abstract

 he aim of this paper is to design neural network to present a method to solve Singular perturbation problems

(SPP) for Partial Differential Equations (PDE’s) with initial and boundary conditions by using network having one

hidden layer with 5 hidden units (neurons) and one linear output unit, the sigmoid activation of each hidden units is

tansigmoid. The neural network trained by the back propagation with different algorithms such as quasi-Newton,

Levenberg-Marquardt, and Bayesian Regulation. Finally the results of numerical experiments are compared with the

exact solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme.

Keywords: Singularly perturbed problems; Partial Differential Equations; Neural network; QuasiNewton;

Levenberg-Marquardt, Bayesian regulation.

1.Introduction:

 A singular perturbation problem is a problem which depends on a parameter (or parameters) in such a way

that solutions of the problem behave nonuniformly as the parameter tends toward some limiting value of interest.

The nature of the nonuniformity can vary from problem to problem. Such singular perturbation problems involving

differential equations arise in many areas of interest including applied mechanics, fluid dynamics, celestial

mechanics, wave propagation (electromagnetic, acoustic, etc.), quantum theory, aerodynamics, electrical networks,

elasticity and statistical mechanics. In practice one seeks a uniformly valid, easily interpretable approximation to the

nonuniformly behaving solution.

 the methods can be used to study various singular perturbation boundary value problems involving partial

differential equations. which was studied by [5] using a composite expansion approach, and the equation which was

studied by [3]. ([7]1968, pp. 447-459) gives a clear exposition of these results. (The results can be easily given in

terms of a direct multivariable approach.) Finally, O’Malley in [6] points out that the multivariable approach can be

used to study the Oseen partial differential equations for the flow of a slightly viscous incompressible fluid past a

semi-infinite fiat plate at zero angle of attack.

 Singularly perturbed problems (SPP) in partial differential equations (PDE) are characterized by the presence

of a small parameter that multiplies the highest derivative. These problems are stiff. Many methods have been

developed so far solving Singularly perturbed boundary value problems (SPBVP) , nowadays there is a new way of

computing denominated artificial intelligence which through different methods is capable of managing the

imprecision's and uncertainties that appear when trying to solve problems related to the real world, offering strong

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

105

solution and of easy implementation. One of those techniques is known as Artificial Neural Networks

(ANN).Inspired, in their origin, in the functioning of the human brain, and entitled with some intelligence. These are

the combination of a great amount of elements of process– artificial neurons interconnected that operating in a

parallel way get to solve problems related to aspects of classification. The construction of any given ANN we can

identify, depending on the location in the network, three kind of computational neurons: input, output and hidden.

2. Singularly Perturbed Problems

 In this section we consider a system of partial differential equations (to gather with appropriate boundary

conditions) in which the highest derivative is multiplied by a small, positive parameter (usually denoted by 𝜀 << 1).

In what follows we give the general form of the 2nd order singularly perturbed problems (SPPs) of partial

differential equations (PDE) are:

 𝐹(𝑥, 𝑦, 𝜀 ,
𝜕Ψ(𝑥,𝑦)

𝜕𝑥
,
𝜕Ψ(𝑥,𝑦)

𝜕𝑦
,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 ,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥𝜕𝑦
,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2) = 0 , x∈ [0 ,1] , y ∈ [0 ,1] and 0 < 𝜀 << 1 (1)

 with Dirichlet BCʼs or mixed BCʼs .[4],[8]

3. Artificial Neural Network

 An Artificial neural network (ANN) is a simplified mathematical model of the human brain, it can be

implemented by both electric elements and computer software. It is a parallel distributed processor with large

numbers of connections, it is an information processing system that has certain performance characters in common

with biological neural networks. ANN have been developed as generalizations of mathematical models of human

cognition or neural biology, based on the assumptions:

1. Information processing occurs at many simple elements called neurons that is fundamental the operation of

ANN's.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight which, in a typical neural net, multiplies the signal transmitted

.

4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of eighted input signals) to

determine its output signal [9].

 There are two main connection formulas (types):feedback(recurrent) and feed-forward connections. Feedback

is one type of connection where the output of one layer routes back to the input of a previous layer , or to the same

layer. Feed-forward neural network(FFNN) does not have a connection back from the output to the input neurons.

There are many different training algorithms, but the most often used training algorithm is the back propagation(BP)

rule. ANN is trained to map a set of input data by iterative adjustment of the weights. Information from inputs is

feedforward through the network to optimize the weights between neurons. optimization of the weights is made by

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

106

backward propagation of the error during training phase. The ANN reads the input and output values in the training

data set and changes the value of the weighted links to reduce the difference between the predicted and

target(observed)values. The error in prediction is minimized across many training cycles(iteration or epoch) until

network reaches specified level of accuracy. A complete round of forward backward passes and weight adjustments

using all input output pairs in the data set is called an epoch or iteration. In order to perform a supervised training we

need a way of evaluating the ANN output error between the actual and the expected outputs .A popular measure is

the mean squared error MSE) or root mean squared error(RMSE) [10]

4.Description of The Method

 In this section we will illustrate how our approach can be used to find the approximate solution of the general

form a second order of singular perturbation problems (S.P.P)

 𝐺(𝑥,⃗⃗⃗ 𝜀, Ψ(𝑥)⃗⃗⃗⃗ , ∇ Ψ(𝑥)⃗⃗⃗⃗ ∇2 Ψ(𝑥)⃗⃗⃗⃗) = 0 (2)

Where a subject to certain boundary conditions (BCʼs) (for instance Dirichlet and / or Neumann conditions)

and 0 < 𝜀 << 1 , (𝑥)⃗⃗⃗⃗ = (𝑥1 , 𝑥2, …… , 𝑥𝑛) ∈ 𝑅𝑛 , 𝐷 ⊂ 𝑅𝑛 denotes the domain and Ψ(x)⃗⃗ ⃗ is the solution to be

computed.

To obtain a solution to the above differential equation, the collocation method is adopted which assumes a

discretization of the domain D and its boundary S into a set points �̂� and �̂�, respectively. The problem is then

transformed into the following system of equations:

 𝐺(𝑥𝑖⃗⃗ ⃗, 𝜀, Ψt(𝑥𝑖⃗⃗ ⃗), ∇ Ψt(𝑥𝑖⃗⃗ ⃗), ∇
2Ψt(𝑥𝑖⃗⃗ ⃗)) = 0 ∀𝑥𝑖 ∈ �̂� (3)

Subject to the constraints imposed by the BCʼs .

If 𝛹𝑡(𝑥𝑖⃗⃗⃗ 𝑝) denotes a trial solution with adjustable parameters 𝑝 ⃗⃗⃗ , the problem is transformed to a discretize form

 Min𝑝 ∑𝑥𝑖⃗⃗ ⃗∈�̂� ((𝐺(𝑥𝑖⃗⃗ ⃗, 𝜀, Ψt(𝑥𝑖⃗⃗ ⃗, 𝑝), ∇Ψt(𝑥𝑖⃗⃗ ⃗, 𝑝), ∇
2Ψt(𝑥𝑖⃗⃗ ⃗, 𝑝)))

2 (4)

Subject to the constraints imposed by the BCʼs .

 In the our proposed approach, the trial solution Ψt employs a feed forward neural network and the parameters 𝑝

correspond to the weights and biases of the neural architecture. We choose a form for the trial function Ψt(𝑥𝑖⃗⃗ ⃗) such

that it satisfies the BCʼs. This is achieved by writing it as a sum of two terms.

 Ψt(𝑥𝑖⃗⃗ ⃗) = A(𝑥) + 𝐹(𝑥 , 𝑁(𝑥 , 𝑝))

Where 𝑁(𝑥 , 𝑝) is a single-output feed forward neural network with parameters 𝑝 and n input units fed with the input

vector 𝑥 .

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

107

 The term A(𝑥) contains no adjustable parameters and satisfies the boundary conditions. The second term F is

constructed so as not to contribute to the BCʼs , since Ψt(𝑥) satisfy them. This term can be formed by using a ANN

whose weights and biases are to be adjusted in order to deal with the minimization problem. Our numerical result

shows that our approach, which based on the above formulation is very effective and can be done in reasonable

computing time to compute an accurate solutions.

4. Illustration of The Method

 We will consider a two - dimensional singular perturbation problems of partial differential equation (S.P.P).

 𝜀
𝜕2𝛹(𝑥,𝑦)

𝜕𝑥2 = 𝑓(
𝜕𝛹(𝑥,𝑦)

𝜕𝑥
,
𝜕𝛹(𝑥,𝑦)

𝜕𝑦
,
𝜕2𝛹(𝑥,𝑦)

𝜕𝑦2 ,
𝜕2𝛹(𝑥,𝑦)

𝜕𝑥𝜕𝑦
, 𝑥, 𝑦) (5)

x ∈ [0 ,1] , y ∈ [0 ,1] with Dirichlet BC:

𝛹(0 , 𝑦) = 𝑓0(𝑦), 𝛹 (1 , 𝑦) = 𝑓1(𝑦), 𝛹(𝑥 ,0) = 𝑔0(𝑥)𝑎𝑛𝑑 𝛹 (𝑥 ,1) = 𝑔1(𝑥)

 , 𝑤ℎ𝑒𝑟𝑒 𝑓0 , 𝑓1 , 𝑔0 𝑎𝑛𝑑 𝑔1 are continuous function.

 The trial solution is written as Ψt(x ,y) = A(x ,y) + x(1 − x) y(1 − y) N(x ,y, 𝑝) (6)

where A(x ,y) is chosen so as to satisfy the BC, namely:

𝐴(𝑥 , 𝑦) = (1 − 𝑥)𝑓0 (𝑦) + 𝑥 𝑓1 (𝑦) + (1 − 𝑦){𝑔0 (𝑥)– [(1 − 𝑥)𝑔0 (0) + 𝑥𝑔0 (1)]} +

 𝑦{𝑔1 (𝑥) – [(1 − 𝑥) 𝑔1 (0) + 𝑥𝑔1 (1)]} (7)

 For mixed boundary conditions of the form:

𝛹(0 , 𝑦) = 𝑓0(𝑦), 𝛹(1 , 𝑦) = 𝑓1(𝑦), 𝛹(𝑥 ,0) = 𝑔0 (𝑥) 𝑎𝑛𝑑 (𝜕𝛹(𝑥 ,1)/𝜕𝑦) = 𝑔1(𝑥)

(i.e., Dirichlet on part of the boundary and Neumann elsewhere), the trial solution can be written as

 Ψt (𝑥 , 𝑦) = 𝐵(𝑥 , 𝑦) + 𝑥(1 − 𝑥)𝑦[𝑁(𝑥 , 𝑦, 𝑝) − 𝑁(𝑥 ,1, 𝑝) − [
𝜕𝑁(𝑥 ,1,𝑝)

𝜕𝑦
] (8)

And B(x ,y) is again chosen so as to satisfy the BCʼs:

𝐵(𝑥 , 𝑦) = (1 − 𝑥)𝑓0(𝑦) + 𝑥 𝑓1(𝑦) + 𝑔0(𝑥)– [(1 − 𝑥)𝑔0(0) + 𝑥𝑔0(1)]

+ 𝑦{𝑔1(𝑥)– [(1 − 𝑥)𝑔1(0) + 𝑥𝑔1(1)]} (9)

Note that the second term of the trial solution does not affect the boundary conditions.

In all the above PDE problems the error that should be minimized is given by:

𝐸[𝑝] = ∑ {
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 +
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2 −𝑛
𝑖=1 𝑓(

𝜕Ψ(𝑥,𝑦)

𝜕𝑥
,
𝜕Ψ(𝑥,𝑦)

𝜕𝑦
, 𝑥, 𝑦, 𝜀)}2 (10)

Where(𝑥𝑖 , 𝑦𝑖) are points in [0,1] × [0,1] [10].

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

108

7. Solution of Singular perturbation of Partial Differential Equations

 We will consider a two - dimensional singular perturbation problems of partial differential equation (S.P.P).

with Dirichlet conditions or Neumann conditions. All the subsequent problems were defined on the domain [0,1] ×

[0,1] and in order to perform training we consider a mesh points obtained by considering ten equidistant points of

the domain [0,1] of each variable. In analogy with the previous cases the neural network architecture was considered

to be FFNN with two inputs (accepting the coordinates x and y of each point), 5 hidden units and one linear output

unit, the sigmoid activation of each hidden units is tansigmoid .For every entries x and y , the input neurons makes

no changes in its inputs, so the input to the hidden neurons is:

 𝑁𝑒𝑡 𝑗 = 𝑥 𝑤 𝑗1 + 𝑦 𝑤𝑗2 + 𝐵𝑗 , 𝑗 = 1,2, …… ,𝑚 (11)

Where 𝑤 𝑗1and 𝑤 𝑗2 are a weights from the input layer to the 𝑗𝑡ℎ unit in the hidden layer, 𝐵𝑗is an 𝑗𝑡ℎ bias for the 𝑗𝑡ℎ

unit in the hidden layer. The output in the hidden neurons is :

 𝑍𝑗 = 𝑆(𝑛𝑒𝑡𝑗) , 𝑗 = 1,2, …… ,𝑚. (12)

The output neuron make no changes in its input, so the input to the output neuron is equal to output:

 𝑁 = ∑ 𝑉𝑗
𝑚
𝑗=1 𝑍𝑗 (13)

8. Numerical Examples

 In the section we report some numerical results and the solution of a number of model problems of SPP of

PDE. In all cases we used a three-layer FFNN having two input units, one hidden layer with 5 hidden units

(neurons) and one output unit, and the sigmoid activation of each hidden units is tansigmoid (ridge basis function).

For each test problem, the analytical solution Ψa(𝑥) was known in advance, therefore we test the accuracy of the

obtained solutions by computing the deviation:

 ∆Ψ(𝑥) = |Ψ𝑡(𝑥) − Ψ𝑎(𝑥) | (14)

Example (8.1): [2]

 Consider the following 2
nd

 order nonlinear of two-dimensional wave equation for the

function 𝛹 (𝑥, 𝑦).

 𝜀2
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 −
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2 = −Ψ3 with BC′s (Dirishlit case):

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

109

Ψ(0, y) = 0 , Ψ(1, y) = 1 , Ψ(x, 0) = tanh
x

ε√2
, Ψ(x, 1) = tanh

x

ε√2
 and 0 < 𝜀 << 1, the equation has a static

solution, called a kink. The ANN trained using a grid of ten equidistant points in 𝑥 ∈[0,1] , 𝑦 ∈[0,1] and gave

=10
-6

. Figure (8.1) display the analytic and neural solutions with different training algorithm. The neural results

with different types of training algorithm such as: trainlm, trainbfg, trainbr, introduced in Table (1) and its errors

gave in Table (8.2), Table (8.3) gave the initial weight and bias of the design network, Table (8.4) gave the

performance of the train with epoch and time.

Table 8.1: Analytic and Neural solution of example

 Table 8.2 : Accuracy of solutions for example

The error E(x)  | yt(x) ya(x) | w h e r e yt(x) computed by the following training

algorithm

Trainbr Trainbfg Trainlm

0.999940691198154 3.43419479520435e-08 5.24231058562918e

5.93087123457181e-05 5.63628699268293e-09 3.23644355759711e

5.93086228459772e-05 1.53627075505369e-08 1.48499612606656e

5.93085333462362e-05 0.000582614031081619 4.28101456506624e

5.93084438463842e-05 2.52406424650076e-08 2.35823701899562e

5.93083543465323e-05 1.59691355694491e-06 2.81216740560808e

5.93082648467913e-05 3.26282752816098e-07 3.30038623097551e

5.93081753469393e-05 6.98719855307672e-08 8.51213530772554e

5.93080858470874e-05 1.92161263790069e-07 8.28928001794793e

5.93079963473464e-05 2.29496135872864e-07 3.91545467159915e

5.93079068476055e-05 2.40693963426963e-07 1.52841530542958e

Out of suggested FFNN yt(x) for different training algorithm Analytic

solution

input

input

Trainbr Trainbfg Trainlm ya(x) [9] y x

0.999940691198154 -3.43419479520435e-08 -5.24231058562918e-09 0 0.0 0.0

0.999940691287654 0.999999994363713 0.999999996763556 1 0.1 0.1

0.999940691377154 1.00000001536271 1.00000000148500 1 0.2 0.2

0.999940691466654 0.999417385968918 0.999999957189854 1 0.3 0.3

0.999940691556154 0.999999974759358 1.00000023582370 1 0.4 0.4

0.999940691645654 1.00000159691356 0.999999718783259 1 0.5 0.5

0.999940691735153 1.00000032628275 0.999999966996138 1 0.6 0.6

0.999940691824653 0.999999930128015 1.00000008512135 1 0.7 0.7

0.999940691914153 0.999999807838736 1.00000008289280 1 0.8 0.8

0.999940692003653 0.999999770503864 1.00000003915455 1 0.9 0.9

0.999940692093152 0.999999759306037 0.999999984715847 1 1.0 1.0

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

110

Table 8.3:The performance of the train with epoch and time

MSE Time Epoch
Performance of

train

Train

Function

1.395830396203114e-14 0:00:10 700 3.38-31 Trainlm

3.085835639098749e-08 0:00:13 745 2.44-14 Trainbfg

0.090898311008054 0:00:19 2053 3.53-9 Trainbr

Table 8.4 : Initial weight and bias of the network for different training algorithm

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

0.0320 0.4843 0.8908 0.7298

0.6147 0.8449 0.7690 0.9823

0.3624 0.2094 0.9283 0.5814

0.0495 0.5523 0.0170 0.5801

0.4896 0.6299 0.8627 0.1209

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

 0.5972 0.1040 0.0567 0.3596

 0.2999 0.7455 0.3358 0.5219

 0.1341 0.7363 0.2089 0.1757

 0.2126 0.5619 0.6754 0.9052

 0.8949 0.1842 0.9121 0.4685

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

 0.2393 0.8397 0.6616 0.0830

 0.5789 0.5326 0.1710 0.5170

 0.8669 0.5539 0.5905 0.9386

 0.4068 0.6801 0.9419 0.4406

 0.1126 0.3672 0.4519 0.6559

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

111

Figure 8.1: analytic and neural solution of example using : trainlm , trainbfg and trainbr training algorithm

Example (8.2) [1]

 Consider the nonlinear singular perturbation problems of partial differential equation 𝜀𝑥𝛹2
𝑥𝑥 = 𝑥3 − 𝛹𝑦

where 𝛹 = 𝛹 (𝑥, 𝑦) with BC′s (mixed boundary conditions case): 𝛹(0, 𝑦) = 0 , 𝛹(1, 𝑦) = 𝑡𝑎𝑛ℎ𝑦 , 𝛹(𝑥, 0) =

0 , 𝛹𝑥 (𝑥, 1) = 2.2848𝑥2𝑎𝑛𝑑 0 < 𝜀 ≪1, whose analytical form is 𝛹(𝑥) = 𝑥3 𝑡𝑎𝑛ℎ𝑦. The ANN trained using a

grid of ten equidistant points in 𝑥 ∈[0,1] , 𝑦 ∈[0,1] and gave 𝜀 = 1/36 . Figure (8.2) display the analytic and neural

solutions with different training algorithm. The neural results with different types of training algorithm such as:

trainlm, trainbfg, trainbr, introduced in Table (8.5) and its errors gave in Table (8.6), Table (8.7) gave the initial

weight and bias of the design network, Table (8.8) gave the performance of the train with epoch and time.

Table 8.1: Analytic and Neural solution of example

Out of suggested FFNN yt(x) for different training algorithm Analytic solution input input

Trainbr Trainbfg Trainlm ya(x) y x

4.56688528378790e-08 0.000224407840321146 0 0 0.0 0.0

9.96281078508055e-05 9.97397206456204e-05 0.000152482739437603 9.96679946249559e-05 0.1 0.1

0.00141383040288997 0.00157897241662771 0.00157900256179935 0.00157900256179923 0.2 0.2

0.00773922476914355 0.00786548252912827 0.00786544053619307 0.00786544053619296 0.3 0.3

0.0243135236274035 0.0242859231890898 0.0243167335843344 0.0243167335843344 0.4 0.4

0.0577777918795295 0.0577650918700320 0.0577646446575011 0.0577646446575012 0.5 0.5

0.115979026806775 0.116002672980570 0.116044083480389 0.116002706471576 0.6 0.6

0.207322652879927 0.207089632491337 0.207298147551187 0.207298147551187 0.7 0.7

0.339971096178481 0.339593008636608 0.339750466600117 0.339986826377139 0.8 0.8

0.522187234157924 0.522181612636510 0.522214715517693 0.522181147375089 0.9 0.9

0.761593023636695 0.761594439747984 0.761594155955765 0.761594155955765 1.0 1.0

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

112

 Table 8.2 : Accuracy of solutions for example

The error E(x)  | yt(x) ya(x) | w h e r e yt(x) computed by the following training

algorithm

Trainbr Trainbfg Trainlm

4.56688528378790e-08 0.000224407840321146 0

3.98867741503440e-08 7.17260206645198e-08 5.28147448126467e-05

0.000165172158909262 3.01451715215440e-08 1.17310675062932e-16

0.000126215767049406 4.19929353165371e-08 1.11022302462516e-16

3.20995693092047e-06 3.08103952445793e-05 2.77555756156289e-17

1.31472220283105e-05 4.47212530743646e-07 1.45716771982052e-16

2.36796648009352e-05 3.34910053439996e-08 4.13770088135701e-05

2.45053287400154e-05 0.000208515059850062 1.94289029309402e-16

1.57301986578040e-05 0.000393817740530766 0.000236359777022188

6.08678283509079e-06 4.65261420834473e-07 3.35681426043566e-05

1.13231907017397e-06 2.83792219168966e-07 3.33066907387547e-16

Table 8.3:The performance of the train with epoch and time

MSE Time Epoch
Performance of

train

Train

Function

5.590383501806196e-09 0:00:3 274 5.20-33 Trainlm

2.271632801249358e-08 0:00:4 266 4.03-30 Trainbfg

4.076584251008042e-09 0:00:12 1005 1.81-10 Trainbr

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

113

Table 8.4 : Initial weight and bias of the network for different training algorithm

Figure 8.1: analytic and neural solution of example using : trainlm , trainbfg and trainbr training

algorithm

Weights and bias for trainlm

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

0.4845 0.2057 0.3664 0.0862

 0.1518 0.3883 0.6850 0.3692

 0.7819 0.5518 0.7894 0.5979

 0.1006 0.2290 0.2060 0.3677

 0.2941 0.6419 0.7719 0.0867

Weights and bias for trainbfg

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

 0.4306 0.0684 0.1386 0.1749

 0.9616 0.4363 0.9011 0.5989

 0.7624 0.1739 0.2212 0.9394

 0.0073 0.0261 0.3760 0.4827

 0.6800 0.9547 0.2649 0.5238

Weights and bias for trainbr

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1}

0.3164 0.7283 0.0487 0.5486

0.6996 0.1758 0.2748 0.5527

0.6253 0.3604 0.2431 0.2415

0.5431 0.1888 0.9564 0.1542

0.4390 0.0012 0.8187 0.9357

http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)

Vol.6, No.1, 2016

114

9. Conclusion

 This paper present new technique to solve 2
nd

 order of two diminution of singular perturbed problems of

partial differential equations by using artificial neural network which have the singularly perturbed ,the suggested

architecture of the ANN is efficient and more accurate than other numerical method and the practical results show

which contain up to a few hundred weights the Levenberg-Marquardt algorithm (trainlm) will have the fastest

convergence, then trainbfg and then trainbr. However, "trainbr" it does perform well on function approximation on

problems, in contrast to his performance in the solution of singular perturbation problems of ordinary differential

equations. The performance of the various algorithms can be affected by the accuracy required of the approximation.

References

[2] Carl M. Bender, a novel approach to Boundary Layer Problems,1989.

[1] Abdul - Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory, Nonlinear Physical Science

Springer Dordrecht Heidel berg London N ewYor k,2009.

[3] G. E. LaTTa , Singular perturbation problems, Ph.D. thesis, Calif. Inst. of Tech., Pasadena,Calif,1951.

[4] M. Jianzhong , " Some Singular Singularly Perturbed Problem", M.Sc. Thesis, Calgary, Alberta ,1997.

[5] N. LEVINSON, The first boundary value problem 𝜀∇u + A(x, y)𝑢𝑥 + B(x, y)𝑢𝑦 + C(x, y)u =D(x, y) for small 𝜀

Ann. Math., 51, pp. 428-445 ,1950.

[6] R. E. O’MLLFY, JR.,A boundary value problem for certain nonlinear second order differential equations with a

small parameter, Arch. Rational Mech. Anal., 29, 1968.

[7] R. E. O’MLLFY, JR., Topics of singular perturbation, Advances in Math., 2, pp. 365-470 ,1968.

[8] Roos Hans-G., Stynes Martin And Tobiska Lutz, " Robust Numerical Methods for Singularly Perturbed

Differential Equations" , Computational Science & Engineering, Vol. 2012, 2012

[9] Tawfiq L . N. M. , Ali M. H., " Fast Feed Forward Neural Networks to Solve Boundary Value Problems", Lap

lambert Academic Publishing , 2012.

[10] Tawfiq,L.N.M., On Design and Training of Artificial Neural Networks for Solving Differential Equations

".PH.D Thesis,52-65,2004.

http://www.iiste.org/
http://www.springer.com/mathematics/computational+science+%26+engineering?SGWID=0-10045-0-0-0

