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Abstract  

        he aim of this paper is to design neural network to present a method to solve Singular perturbation problems 

(SPP) for Partial Differential Equations (PDE’s) with initial and boundary conditions by using network having one 

hidden layer with 5 hidden units (neurons) and one linear output unit, the sigmoid activation of each hidden units is 

tansigmoid. The neural network trained by the back propagation with different algorithms such as quasi-Newton, 

Levenberg-Marquardt, and Bayesian Regulation. Finally the results of numerical experiments are compared with the 

exact solution in illustrative examples to confirm the accuracy and efficiency of the presented scheme. 

Keywords: Singularly perturbed problems; Partial Differential Equations; Neural network; QuasiNewton; 

Levenberg-Marquardt, Bayesian  regulation. 

1.Introduction: 

           A singular perturbation problem is a problem which depends on a parameter (or parameters) in such a way 

that solutions of the problem behave nonuniformly as the parameter tends toward some limiting value of interest. 

The nature of the nonuniformity can vary from problem to problem. Such singular perturbation problems involving 

differential equations arise in many areas of interest including applied mechanics, fluid dynamics, celestial 

mechanics, wave propagation (electromagnetic, acoustic, etc.), quantum theory, aerodynamics, electrical networks, 

elasticity and statistical mechanics. In practice one seeks a uniformly valid, easily interpretable approximation to the 

nonuniformly behaving solution. 

          the methods can be used to study various singular perturbation boundary value problems involving partial 

differential equations. which was studied by [5] using a composite expansion approach, and the equation which was 

studied by [3]. ([7]1968, pp. 447-459) gives a clear exposition of these results. (The results can be easily given in 

terms of a direct multivariable approach.) Finally, O’Malley in [6] points out that the multivariable approach can be 

used to study the Oseen partial differential equations for the flow of a slightly viscous incompressible fluid past a 

semi-infinite fiat plate at zero angle of attack. 

         Singularly perturbed problems (SPP) in partial differential equations (PDE) are characterized by the presence 

of a small parameter that multiplies the highest derivative. These problems are stiff. Many methods have been 

developed so far solving Singularly perturbed boundary value problems (SPBVP) , nowadays there is a new way of 

computing denominated artificial intelligence which through different methods is capable of managing the 

imprecision's and uncertainties that appear when trying to solve problems related to the real world, offering strong 
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solution and of easy implementation. One of those techniques is known as Artificial Neural Networks 

(ANN).Inspired, in their origin, in the functioning of the human brain, and entitled with some intelligence. These are 

the combination of a great amount of elements of process– artificial neurons interconnected that operating in a 

parallel way get to solve problems related to aspects of classification. The construction of any given ANN we can 

identify, depending on the location in the network, three kind of computational neurons: input, output and hidden. 

2. Singularly Perturbed Problems 

        In this section we consider a system of partial differential equations (to gather with appropriate boundary 

conditions) in which the highest derivative is multiplied by a small, positive parameter (usually denoted by 𝜀 << 1). 

In what follows we give the general form of the 2nd order singularly perturbed problems (SPPs) of  partial 

differential equations (PDE) are: 

 𝐹(𝑥, 𝑦, 𝜀 ,
𝜕Ψ(𝑥,𝑦)

𝜕𝑥
, 
𝜕Ψ(𝑥,𝑦)

𝜕𝑦
,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 ,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥𝜕𝑦
,
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2 ) = 0 ,  x∈ [0 ,1] , y ∈ [0 ,1] and 0 < 𝜀 << 1                 (1) 

              with Dirichlet BCʼs or mixed BCʼs .[4],[8] 

3. Artificial Neural Network   

          An Artificial neural network (ANN) is a simplified mathematical model of the human brain, it can be 

implemented by both electric elements and computer software. It is a parallel distributed processor with large 

numbers of connections, it is an information processing system that has certain performance characters in common 

with biological neural networks. ANN have been developed as generalizations of mathematical models of human 

cognition or neural biology, based on the assumptions:  

1. Information processing occurs at many simple elements called neurons that is fundamental the operation of 

ANN's. 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight which, in a typical neural net, multiplies the  signal transmitted                                                         

. 

4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of eighted input signals) to 

determine its output signal [9]. 

           There are two main connection formulas (types):feedback(recurrent) and feed-forward connections. Feedback 

is one type of connection where the output of one layer routes back to the input of a previous layer , or to the same 

layer. Feed-forward neural network(FFNN) does not have a connection back from the output to the input neurons. 

There are many different training algorithms, but the most often used training algorithm is the back propagation(BP) 

rule. ANN is trained to map a set of input data by iterative adjustment of the weights. Information from inputs is 

feedforward through the network to optimize the weights between neurons. optimization of the weights is made by 
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backward propagation of the error during training phase. The ANN reads the input and output values in the training 

data set and changes the value of the weighted links to reduce the difference between the predicted and 

target(observed)values. The error in prediction is minimized across many training cycles(iteration or epoch) until 

network reaches specified level of accuracy. A complete round of forward backward passes and weight adjustments 

using all input output pairs in the data set is called an epoch or iteration. In order to perform a supervised training we 

need a way of evaluating the ANN output error  between the actual and the expected outputs .A popular measure is 

the mean squared error MSE) or root mean squared error(RMSE) [10] 

4.Description of The Method  

          In this section we will illustrate how our approach can be used to find the approximate solution of the general 

form a second order of singular perturbation problems (S.P.P) 

                       𝐺(𝑥,⃗⃗⃗  𝜀, Ψ(𝑥)⃗⃗⃗⃗ , ∇ Ψ(𝑥)⃗⃗⃗⃗ ∇2 Ψ(𝑥)⃗⃗⃗⃗ ) = 0                                                                                               (2) 

Where a subject to certain boundary conditions (BCʼs) (for instance Dirichlet and / or Neumann conditions) 

and 0 < 𝜀 << 1 , (𝑥)⃗⃗⃗⃗ =  (𝑥1 , 𝑥2, …… , 𝑥𝑛)  ∈  𝑅𝑛 , 𝐷 ⊂  𝑅𝑛 denotes the domain and Ψ(x)⃗⃗  ⃗ is the solution to be 

computed. 

To obtain a solution to the above differential equation, the collocation method is adopted which assumes a  

discretization of the domain D and its boundary S into a set points �̂� and �̂�, respectively. The problem is then  

transformed into the following system of equations: 

                 𝐺(𝑥𝑖⃗⃗  ⃗, 𝜀, Ψt(𝑥𝑖⃗⃗  ⃗), ∇ Ψt(𝑥𝑖⃗⃗  ⃗), ∇
2Ψt(𝑥𝑖⃗⃗  ⃗)) = 0   ∀𝑥𝑖 ∈ �̂�                                                                           (3) 

Subject to the constraints imposed by the BCʼs . 

If 𝛹𝑡(𝑥𝑖⃗⃗⃗   𝑝 ) denotes a trial solution with adjustable parameters 𝑝 ⃗⃗⃗  , the problem is transformed to a discretize form   

                Min𝑝 ∑𝑥𝑖⃗⃗  ⃗∈�̂� ((𝐺(𝑥𝑖⃗⃗  ⃗, 𝜀, Ψt(𝑥𝑖⃗⃗  ⃗, 𝑝 ), ∇Ψt(𝑥𝑖⃗⃗  ⃗, 𝑝 ), ∇
2Ψt(𝑥𝑖⃗⃗  ⃗, 𝑝 )))

2                                                               (4) 

Subject to the constraints imposed by the BCʼs                                                      . 

        In the our proposed approach, the trial solution Ψt employs a feed forward neural network and the parameters 𝑝  

correspond to the weights and biases of the neural architecture. We choose a form for the trial function Ψt(𝑥𝑖⃗⃗  ⃗) such 

that it satisfies the BCʼs. This is achieved by writing it as a sum of two terms. 

             Ψt(𝑥𝑖⃗⃗  ⃗) = A(𝑥 ) + 𝐹(𝑥 , 𝑁(𝑥 , 𝑝 ))  

Where 𝑁(𝑥 , 𝑝 ) is a single-output feed forward neural network with parameters 𝑝  and n input units fed with the input 

vector 𝑥 . 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.1, 2016 

 

107 

         The term A(𝑥 ) contains no adjustable parameters and satisfies the boundary conditions. The second term F is 

constructed so as not to contribute to the BCʼs , since Ψt(𝑥 )  satisfy them. This term can be formed by using a ANN 

whose weights and biases are to be adjusted in order to  deal with the minimization problem. Our numerical result 

shows that our approach, which based on the above formulation is very effective and can be done in reasonable 

computing time to compute an accurate solutions. 

4. Illustration of The Method 

      We will consider a two - dimensional singular perturbation problems of partial differential equation  (S.P.P).  

                   𝜀  
𝜕2𝛹(𝑥,𝑦)

𝜕𝑥2  = 𝑓(
𝜕𝛹(𝑥,𝑦)

𝜕𝑥
,
𝜕𝛹(𝑥,𝑦)

𝜕𝑦
,
𝜕2𝛹(𝑥,𝑦)

𝜕𝑦2 ,
𝜕2𝛹(𝑥,𝑦)

𝜕𝑥𝜕𝑦
, 𝑥, 𝑦 )                                                               (5) 

x ∈ [0 ,1] , y ∈ [0 ,1] with Dirichlet BC: 

𝛹(0 , 𝑦) =  𝑓0(𝑦), 𝛹 (1 , 𝑦) =  𝑓1(𝑦), 𝛹(𝑥 ,0) =  𝑔0(𝑥)𝑎𝑛𝑑 𝛹 (𝑥 ,1) =  𝑔1(𝑥)    

  , 𝑤ℎ𝑒𝑟𝑒 𝑓0 , 𝑓1 , 𝑔0 𝑎𝑛𝑑 𝑔1      are continuous function. 

        The trial solution is written as    Ψt(x ,y) = A(x ,y) + x(1 − x) y(1 − y) N(x ,y, 𝑝 )                                  (6) 

where A(x ,y) is chosen so as to satisfy the BC, namely: 

𝐴(𝑥 , 𝑦) =  (1 −  𝑥)𝑓0 (𝑦) +  𝑥 𝑓1 (𝑦) + (1 −  𝑦){𝑔0 (𝑥)– [(1 −  𝑥)𝑔0 (0) +  𝑥𝑔0 (1)]} +  

                                         𝑦{𝑔1 (𝑥) – [(1 −  𝑥) 𝑔1 (0)  + 𝑥𝑔1 (1)]}                                                                   (7) 

         For mixed boundary conditions of the form: 

𝛹(0 , 𝑦)  =  𝑓0(𝑦), 𝛹(1 , 𝑦)  =  𝑓1(𝑦), 𝛹(𝑥 ,0)  =  𝑔0 (𝑥) 𝑎𝑛𝑑 (𝜕𝛹(𝑥 ,1)/𝜕𝑦)  =  𝑔1(𝑥)   

(i.e., Dirichlet on part of the boundary and Neumann elsewhere), the trial solution can be written as    

  Ψt (𝑥 , 𝑦)  =  𝐵(𝑥 , 𝑦)  +  𝑥(1 −  𝑥)𝑦[𝑁(𝑥 , 𝑦, 𝑝 )  −  𝑁(𝑥 ,1, 𝑝 )  − [
𝜕𝑁(𝑥 ,1,𝑝 )

𝜕𝑦
]                                             (8) 

And B(x ,y) is again chosen so as to satisfy the BCʼs: 

𝐵(𝑥 , 𝑦) =  (1 −  𝑥)𝑓0(𝑦) +  𝑥 𝑓1(𝑦) + 𝑔0(𝑥)– [(1 −  𝑥)𝑔0(0) +  𝑥𝑔0(1)]

+  𝑦{𝑔1(𝑥)– [(1 −  𝑥)𝑔1(0) +  𝑥𝑔1(1)]}                                                        (9) 

Note that the second term of the trial solution does not affect the boundary conditions. 

In all the above PDE problems the error that should be minimized is given by: 

𝐸[𝑝 ]  = ∑ { 
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 + 
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2 −𝑛
𝑖=1 𝑓(

𝜕Ψ(𝑥,𝑦)

𝜕𝑥
, 
𝜕Ψ(𝑥,𝑦)

𝜕𝑦
, 𝑥, 𝑦, 𝜀 )}2                                                             (10)   

                                                  

Where(𝑥𝑖 , 𝑦𝑖) are points in [0,1] × [0,1] [10]. 
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7. Solution of Singular perturbation of Partial Differential Equations        

          We will consider a two - dimensional singular perturbation problems of partial differential equation  (S.P.P).  

with Dirichlet conditions or Neumann conditions. All the subsequent problems were defined on the domain [0,1] × 

[0,1] and in order to perform training we consider a mesh points obtained by considering ten  equidistant points of 

the domain [0,1] of each variable. In analogy with the previous cases the neural network architecture was considered 

to be FFNN with two inputs (accepting the coordinates x and y of each point), 5 hidden units and one linear output 

unit, the sigmoid activation of each hidden units is tansigmoid .For every entries x and y , the input neurons makes 

no changes in its inputs, so the input to the hidden neurons is: 

                         𝑁𝑒𝑡 𝑗 =  𝑥 𝑤 𝑗1 +  𝑦 𝑤𝑗2  +  𝐵𝑗  , 𝑗 =  1,2, …… ,𝑚                                                                    (11) 

Where 𝑤 𝑗1and 𝑤 𝑗2 are a weights from the input layer to the 𝑗𝑡ℎ unit in the hidden layer, 𝐵𝑗is an 𝑗𝑡ℎ bias for the 𝑗𝑡ℎ 

unit in the hidden layer. The output in the hidden neurons is : 

                  𝑍𝑗 =  𝑆(𝑛𝑒𝑡𝑗) , 𝑗 =  1,2, …… ,𝑚.                                                                                                               (12) 

The output neuron make no changes in its input, so the input to the output neuron is equal to output:  

                  𝑁 = ∑ 𝑉𝑗
𝑚
𝑗=1  𝑍𝑗                                                                                                                             (13) 

8. Numerical Examples 

            In the section we report some numerical results and the solution of a number of model problems of SPP of 

PDE. In all cases we used a three-layer FFNN having two input units, one hidden layer with 5 hidden units 

(neurons) and one output unit, and the sigmoid activation of each hidden units is tansigmoid (ridge basis function). 

For each test problem, the analytical solution Ψa(𝑥 ) was known in advance, therefore we test the accuracy of the 

obtained solutions by computing the deviation: 

                                ∆Ψ(𝑥 ) = |Ψ𝑡(𝑥 ) − Ψ𝑎(𝑥 ) |                                                                                                      (14) 

 

Example (8.1): [2] 

          Consider the following 2
nd

 order nonlinear of two-dimensional wave equation for the 

function 𝛹 (𝑥, 𝑦). 

       𝜀2   
𝜕2Ψ(𝑥,𝑦)

𝜕𝑥2 − 
𝜕2Ψ(𝑥,𝑦)

𝜕𝑦2 = −Ψ3  with BC′s (Dirishlit case): 
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Ψ(0, y) = 0 , Ψ(1, y) = 1 , Ψ(x, 0) = tanh
x

ε√2
, Ψ(x, 1) = tanh

x

ε√2
   and   0 < 𝜀 << 1, the equation has a static 

solution, called a kink. The ANN trained using a grid of ten equidistant points in 𝑥 ∈[0,1] , 𝑦 ∈[0,1]   and gave 

=10
-6

. Figure (8.1) display the analytic and neural solutions with different training algorithm. The neural results 

with different  types of training algorithm such as: trainlm, trainbfg, trainbr, introduced in Table (1) and its errors 

gave in Table (8.2), Table (8.3) gave the initial weight and bias of the design network, Table (8.4) gave the 

performance of the train with epoch and time. 

 

Table 8.1: Analytic and Neural solution of example  

 

 Table 8.2 : Accuracy of solutions for example 

The error E(x)  | yt(x) ya(x) | w h e r e  yt(x) computed by the following training 

algorithm 

Trainbr Trainbfg Trainlm 

0.999940691198154 3.43419479520435e-08 5.24231058562918e 

5.93087123457181e-05 5.63628699268293e-09 3.23644355759711e 

5.93086228459772e-05 1.53627075505369e-08 1.48499612606656e 

5.93085333462362e-05 0.000582614031081619 4.28101456506624e 

5.93084438463842e-05 2.52406424650076e-08 2.35823701899562e 

5.93083543465323e-05 1.59691355694491e-06 2.81216740560808e 

5.93082648467913e-05 3.26282752816098e-07 3.30038623097551e 

5.93081753469393e-05 6.98719855307672e-08 8.51213530772554e 

5.93080858470874e-05 1.92161263790069e-07 8.28928001794793e 

5.93079963473464e-05 2.29496135872864e-07 3.91545467159915e 

5.93079068476055e-05 2.40693963426963e-07 1.52841530542958e 

 

  

Out of suggested FFNN yt(x) for different training algorithm Analytic 

solution 

input 

input 

Trainbr Trainbfg Trainlm ya(x) [9] y x 

0.999940691198154 -3.43419479520435e-08 -5.24231058562918e-09 0 0.0 0.0 

0.999940691287654 0.999999994363713 0.999999996763556 1 0.1 0.1 

0.999940691377154 1.00000001536271 1.00000000148500 1 0.2 0.2 

0.999940691466654 0.999417385968918 0.999999957189854 1 0.3 0.3 

0.999940691556154 0.999999974759358 1.00000023582370 1 0.4 0.4 

0.999940691645654 1.00000159691356 0.999999718783259 1 0.5 0.5 

0.999940691735153 1.00000032628275 0.999999966996138 1 0.6 0.6 

0.999940691824653 0.999999930128015 1.00000008512135 1 0.7 0.7 

0.999940691914153 0.999999807838736 1.00000008289280 1 0.8 0.8 

0.999940692003653 0.999999770503864 1.00000003915455 1 0.9 0.9 

0.999940692093152 0.999999759306037 0.999999984715847 1 1.0 1.0 
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Table 8.3:The performance of the train with epoch and time 

MSE Time Epoch 
Performance of 

train 

Train 

Function 

1.395830396203114e-14 0:00:10 700 3.38-31 Trainlm 

3.085835639098749e-08 0:00:13 745 2.44-14 Trainbfg 

0.090898311008054 0:00:19 2053 3.53-9 Trainbr 

 

Table 8.4 : Initial weight and bias of the network for different training algorithm 

 

 

 

 

 

 

  

 

 

 

 

                                                                                                                          

 

 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

0.0320 0.4843 0.8908 0.7298 

0.6147 0.8449 0.7690 0.9823 

0.3624 0.2094 0.9283 0.5814 

0.0495 0.5523 0.0170 0.5801 

0.4896 0.6299 0.8627 0.1209 

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

    0.5972     0.1040     0.0567     0.3596     

    0.2999     0.7455     0.3358     0.5219     

    0.1341     0.7363     0.2089     0.1757     

    0.2126     0.5619     0.6754     0.9052     

    0.8949     0.1842     0.9121     0.4685     

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

    0.2393     0.8397 0.6616     0.0830     

    0.5789     0.5326 0.1710       0.5170     

    0.8669     0.5539 0.5905     0.9386     

    0.4068     0.6801 0.9419     0.4406     

    0.1126     0.3672 0.4519     0.6559     
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Figure 8.1: analytic and neural solution of example  using : trainlm , trainbfg and trainbr training     algorithm 

 

Example (8.2) [1] 

          Consider the nonlinear singular perturbation problems of partial differential equation      𝜀𝑥𝛹2
𝑥𝑥 = 𝑥3 − 𝛹𝑦    

where  𝛹 = 𝛹 (𝑥, 𝑦) with BC′s (mixed boundary conditions case): 𝛹(0, 𝑦) = 0 , 𝛹(1, 𝑦) = 𝑡𝑎𝑛ℎ𝑦 , 𝛹(𝑥, 0) =

0  , 𝛹𝑥  (𝑥, 1) = 2.2848𝑥2𝑎𝑛𝑑   0 < 𝜀 ≪1, whose analytical form is 𝛹(𝑥) =  𝑥3  𝑡𝑎𝑛ℎ𝑦. The ANN trained using a 

grid of ten equidistant points in 𝑥 ∈[0,1] , 𝑦 ∈[0,1]   and gave 𝜀 = 1/36 . Figure (8.2) display the analytic and neural 

solutions with different training algorithm. The neural results with different  types of training algorithm such as: 

trainlm, trainbfg, trainbr, introduced in Table (8.5) and its errors gave in Table (8.6), Table (8.7) gave the initial 

weight and bias of the design network, Table (8.8) gave the performance of the train with epoch and time. 

Table 8.1: Analytic and Neural solution of example  

Out of suggested FFNN yt(x) for different training algorithm Analytic solution input input 

Trainbr Trainbfg Trainlm ya(x)  y x 

4.56688528378790e-08 0.000224407840321146 0 0 0.0 0.0 

9.96281078508055e-05 9.97397206456204e-05 0.000152482739437603 9.96679946249559e-05 0.1 0.1 

0.00141383040288997 0.00157897241662771 0.00157900256179935 0.00157900256179923 0.2 0.2 

0.00773922476914355 0.00786548252912827 0.00786544053619307 0.00786544053619296 0.3 0.3 

0.0243135236274035 0.0242859231890898 0.0243167335843344 0.0243167335843344 0.4 0.4 

0.0577777918795295 0.0577650918700320 0.0577646446575011 0.0577646446575012 0.5 0.5 

0.115979026806775 0.116002672980570 0.116044083480389 0.116002706471576 0.6 0.6 

0.207322652879927 0.207089632491337 0.207298147551187 0.207298147551187 0.7 0.7 

0.339971096178481 0.339593008636608 0.339750466600117 0.339986826377139 0.8 0.8 

0.522187234157924 0.522181612636510 0.522214715517693 0.522181147375089 0.9 0.9 

0.761593023636695 0.761594439747984 0.761594155955765 0.761594155955765 1.0 1.0 
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 Table 8.2 : Accuracy of solutions for example 

The error E(x)  | yt(x) ya(x) | w h e r e  yt(x) computed by the following training 

algorithm 

Trainbr Trainbfg Trainlm 

4.56688528378790e-08 0.000224407840321146 0 

3.98867741503440e-08 7.17260206645198e-08 5.28147448126467e-05 

0.000165172158909262 3.01451715215440e-08 1.17310675062932e-16 

0.000126215767049406 4.19929353165371e-08 1.11022302462516e-16 

3.20995693092047e-06 3.08103952445793e-05 2.77555756156289e-17 

1.31472220283105e-05 4.47212530743646e-07 1.45716771982052e-16 

2.36796648009352e-05 3.34910053439996e-08 4.13770088135701e-05 

2.45053287400154e-05 0.000208515059850062 1.94289029309402e-16 

1.57301986578040e-05 0.000393817740530766 0.000236359777022188 

6.08678283509079e-06 4.65261420834473e-07 3.35681426043566e-05 

1.13231907017397e-06 2.83792219168966e-07 3.33066907387547e-16 

 

Table 8.3:The performance of the train with epoch and time 

MSE Time Epoch 
Performance of 

train 

Train 

Function 

5.590383501806196e-09 0:00:3 274 5.20-33 Trainlm 

2.271632801249358e-08 0:00:4 266 4.03-30 Trainbfg 

4.076584251008042e-09 0:00:12 1005 1.81-10 Trainbr 
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Table 8.4 : Initial weight and bias of the network for different training algorithm 

 

 

 

 

 

 

  

 

 

 

 

                                                                                                                          

 

 

 

Figure 8.1: analytic and neural solution of example  using : trainlm , trainbfg and trainbr training                       

algorithm 

Weights and bias for trainlm 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

0.4845   0.2057 0.3664   0.0862     

    0.1518     0.3883     0.6850     0.3692     

    0.7819     0.5518 0.7894     0.5979     

    0.1006     0.2290     0.2060     0.3677     

    0.2941     0.6419     0.7719     0.0867     

Weights and bias for trainbfg 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

 0.4306 0.0684 0.1386  0.1749     

    0.9616     0.4363 0.9011     0.5989     

    0.7624     0.1739     0.2212     0.9394     

    0.0073     0.0261     0.3760     0.4827     

    0.6800     0.9547 0.2649     0.5238     

Weights and bias for trainbr 

Net.B{1} Net.LW{2,1} Net.IU{1,1} Net.IW{1,1} 

0.3164 0.7283 0.0487 0.5486 

0.6996 0.1758 0.2748 0.5527 

0.6253 0.3604 0.2431 0.2415 

0.5431 0.1888 0.9564 0.1542 

0.4390 0.0012 0.8187 0.9357 
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9.  Conclusion  

          This paper present new technique to solve 2
nd

 order of two diminution of singular perturbed problems of 

partial differential equations by  using artificial neural network which have the singularly perturbed ,the suggested 

architecture of the ANN is efficient and more accurate than other numerical method and the practical results show 

which contain up to a few hundred weights the Levenberg-Marquardt algorithm (trainlm) will have the fastest 

convergence, then trainbfg and then trainbr. However, "trainbr" it does perform well on function approximation on 

problems, in contrast to his performance in the solution of singular perturbation problems of ordinary differential 

equations. The performance of the various algorithms can be affected by the accuracy required of the approximation.        
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