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Abstract  

This paper deals with the problem of Latin Square Design (LSD) test using Trapezoidal Fuzzy Numbers (Tfns.).  

The proposed test is analysed under various types of trapezoidal fuzzy models such as Alpha Cut Interval, 

Membership Function, Ranking Function, Total Integral Value and Graded Mean Integration Representation.  

Finally a comparative view of the conclusions obtained from various test is given.  Moreover, two numerical 

examples having different conclusions have been given for a concrete comparative study. 
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1. Introduction 

Fuzzy set theory [29] has been applied to many areas which need to manage uncertain and vague data.  Such 

areas include approximate reasoning, decision making, optimization, control and so on.  In traditional statistical 

testing [11], the observations of sample are crisp and a statistical test leads to the binary decision.  However, in 

the real life, the data sometimes cannot be recorded or collected precisely.  The statistical hypotheses testing 

under fuzzy environments has been studied by many authors using the fuzzy set theory concepts introduced by 

Zadeh [29].  Viertl [23] investigated some methods to construct confidence intervals and statistical tests for 

fuzzy data.  Wu [27] proposed some approaches to construct fuzzy confidence intervals for the unknown fuzzy 

parameter.  A new approach to the problem of testing statistical hypotheses is introduced by Chachi et al. [8].  

Mikihiko Konishi et al. [15] proposed a method of ANOVA for the fuzzy interval data by using the concept of 

fuzzy sets.  Hypothesis testing of one factor ANOVA model for fuzzy data was proposed by Wu [26, 28] using 

the h-level set and the notions of pessimistic degree and optimistic degree by solving optimization problems. 

Gajivaradhan and Parthiban analysed one-way ANOVA test using alpha cut interval method for trapezoidal 

fuzzy numbers [16] and they presented a comparative study of 2-factor ANOVA test under fuzzy environments 

using various methods [17] 

 Liou and Wang ranked fuzzy numbers with total integral value [14].  Wang et al. presented the method 

for centroid formulae for a generalized fuzzy number [25].  Iuliana Carmen BĂRBĂCIORU dealt with the 

statistical hypotheses testing using membership function of fuzzy numbers [12].  Salim Rezvani analysed the 

ranking functions with trapezoidal fuzzy numbers [20].  Wang arrived some different approach for ranking 

trapezoidal fuzzy numbers [25].  Thorani et al. approached the ranking function of a trapezoidal fuzzy number 

with some modifications [21].  Salim Rezvani and Mohammad Molani presented the shape function and Graded 

Mean Integration Representation for trapezoidal fuzzy numbers [19].  Liou and Wang proposed the Total 

Integral Value of the trapezoidal fuzzy number with the index of optimism and pessimism [14]. 

In this paper, we propose a new statistical fuzzy hypothesis testing of ANOVA for three factors of 

classifications (Latin Square Design-LSD) where we have the samples are in terms of fuzzy (trapezoidal fuzzy 

numbers) data.  The main idea in the proposed approach is, when we have some vague data about an experiment, 

what can be the result when the centroid point/ranking grades of those imprecise data are employed in hypothesis 

testing?  For this reason, we use the centroid/ranking grades of trapezoidal fuzzy numbers (tfns.) in hypothesis 

testing. 

 Suppose the observed samples are in terms of tfns., we can evenhandedly use the centroid/ranking 

grades of tfns. for statistical hypothesis testing.  In arriving the centroid/ranking grades of tfns., various methods 

are used to test which could be the best fit.  Therefore, in the proposed approach, the centroid point/ranking 

grades of tfns. are used in LSD.  Moreover we provide the decision rules which are used to accept or reject the 
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fuzzy null and alternative hypotheses.  In fact, we would like to counter an argument that the centroid/ranking 

graded data can be general enough to deal with 3-factor ANOVA method (LSD) under fuzzy environments.  In 

the decision rules of the proposed testing technique, we are not using degrees of optimism, pessimism and h-

level set which are used in Wu [26].  For better understanding, the proposed fuzzy hypothesis testing technique 

of LSD using tfns., two different kinds of numerical examples are illustrated at each models.  And the same 

concept can also be used when we have samples in terms of triangular fuzzy numbers [5, 26]. 

2. Preliminaries 

Definition 2.1. Generalized fuzzy number  

A generalized fuzzy number A  is described as any fuzzy subset of the real line , whose membership function 

 
A

μ x  satisfies the following conditions: 

i.  
A

μ x  is a continuous mapping from  to the closed interval  0, ω ,  0 ω 1  , 

ii.    
A

μ x  = 0, for all x - , a  , 

iii.    L A
μ x L x  is strictly increasing on  a, b , 

iv.    
A

μ x ω,  for all b, c ,  as ω is a constant and 0 < ω 1  , 

v.    R A
μ x R x  is strictly decreasing on  c, d , 

vi.    
A

μ x 0,  for all x d,    . 

where a, b, c, d are real numbers such that a < b c < d . 

 

Definition 2.2. A fuzzy set A  is called normal fuzzy set if there exists an element (member) ‘x’ such that 

 
A

μ x 1 . A fuzzy set A  is called convex fuzzy set if        1 2 1 2A A A
μ αx + 1 - α x min μ x , μ x

where  1 2x , x X and α 0, 1  .  The set   α
A

A x X μ x α    is said to be the α - cut  of a fuzzy 

set A . 

Definition 2.3. A fuzzy subset A  of the real line  with membership function  
A

μ x  such that 

   
A

μ x : 0, 1 , is called a fuzzy number if A  is normal, A  is fuzzy convex,  
A

μ x is upper semi-

continuous and  Supp A  is bounded, where     A
Supp A cl x :  μ x 0    and ‘cl’ is the closure 

operator. 

It is known that for fuzzy number A , there exists four numbers a, b, c, d  and two functions 

     
A A

L x ,  R x : 0, 1 , where    
A A

L x  and R x  are non-decreasing and non-increasing 

functions respectively.  Now, we can describe a membership function as follows: 

     
A A A

μ x L x  for a x b;  1 for b x c; R x  for c x d; 0 otherwise.       The functions 

 
A

L x  and  
A

R x  are also called the left and right side of the fuzzy number A  respectively [9].  In this 

paper, we assume that  A x dx < +





  and it is known that the α - cut  of a fuzzy number is 

    α
A

A x μ x α ,  for α 0, 1     and 

 

0 α

α 0, 1

A = cl A


 
  
 

, according to the definition of a fuzzy 

number, it is seen at once that every α - cut  of a fuzzy number is a closed interval.  Hence, for a fuzzy number 

A , we have       L UA α A α ,  A α      where      L A
A α inf x :  μ x α    and 

    U A
A α sup x :  μ x α   .  The left and right sides of the fuzzy number A  are strictly monotone, 
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obviously, LA  and UA  are inverse functions of  
A

L x  and  
A

R x  respectively.  Another important type 

of fuzzy number was introduced in [6] as follows: 

Let a, b, c, d  such that a < b c < d .  A fuzzy number A defined as    
A

μ x :  0, 1 , 

 
n n

A

x - a d - x
μ x for a x b; 1 for b x c;  for c x d; 0 otherwise.

b - a d - c

   
         
   

where 

n > 0,  is denoted by  
n

A a, b, c, d .  And  
n

x - a
L x

b - a

 
  
 

 and  
n

d - x
R x

d - c

 
  
 

 can also be 

termed as left and right spread of the TFN [Dubois and Prade in 1981].   

If  
n

A a, b, c, d , then[1-4], 

         n n
α L UA A α ,  A α a + b - a α,  d - d - c α ;  α 0, 1       

. 

When n = 1 and b = c , we get a triangular fuzzy number.  The conditions r = 1, a = b and c = d  imply the 

closed interval and in the case r = 1, a = b = c = d = t (some constant), we can get a crisp number ‘t’.  Since 

a trapezoidal fuzzy number is completely characterized by n = 1  and four real numbers a b c d   , it is 

often denoted as  A a, b, c, d .  And the family of trapezoidal fuzzy numbers will be denoted by  TF .  

Now, for n = 1we have a normal trapezoidal fuzzy number  A a, b, c, d  and the corresponding α - cut  

is defined by 

     αA a + α b - a ,  d - α d - c ;  α 0, 1 (2.4)     .  And we need the following results which can 

be found in [11, 13]. 

Result 2.1. Let   D = a, b ,  a b and a, b  , the set of all closed, bounded intervals on the real line 

.  

Result 2.2. Let    A = a, b  and B = c, d  be in D . Then A = B if a = c and b = d . 

3. Latin Square Design (LSD) 

A Latin square is an arrangement of the letters (varieties) in a square in such a way that each letter occurs once 

and only once in each row and each column.  A Latin square of n
th

 order is an arrangement of the symbols or 

letters in squares such that each symbol occurs once and only once in each row and column.  There will be ‘n’ 

rows, ‘n’ columns and ‘n’ varieties, every symbol appearing ‘n’ times in a Latin square.  In other words, we 

consider an agricultural experiment in which n
2
 plots are taken and arranged in the form of an n n square such 

that the plots in each row will be homogeneous as far as possible with respect to one factor of classification, say 

soil fertility and plots in each column will be homogeneous as far as possible with respect to another factor of 

classification, say seed quality.  Then ‘n’ treatments are given to these plots such that each treatment occurs only 

once in each row and only once in each column.  The various possible arrangements obtained in this manner are 

known as Latin squares of order ‘n’.  This design of experiment is called the Latin Square Design (LSD). 

4. ANOVA for three factors of classification 

Let the  2N n  variate values  ijx representing the yield of paddy, be classified according to three factors.  

Let the rows, columns and letters stand for the three factors, say soil fertility, seed quality and treatment 

respectively.  We wish to test the null hypothesis that the rows, columns and letters are homogenous viz., there is 

no difference in the yield of paddy between the rows (due to soil fertility), between the columns (due to seed 

quality) and between the letters (due to treatments).  Let ijx  be the variate value corresponding to the i
th 

row, j
th
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column and k
th

 letter.  Let ij2

1
x= x

n
 , i ij

j

1
x = x

n
  , j ij

i

1
x = x

n
  and kx be the mean of the values 

of 
ijx  corresponding to the k

th
 treatment.  Now, 

       i j k i j kij ijx x x x x x x x x x x x 2x .                  Therefore,

         
2 2 2 2 2

i j k i j kij ij

i j k i j

x x n x x n x x n x x x x x x 2x                  

 

By expanding this calculation, all the product terms vanish [16, 17], so we have 1 2 3 4Q = Q + Q + Q + Q .  

Also, we can prove that 1 2 3 4Q /(n-1), Q /(n-1), Q /(n-1), Q /(n-1)(n-2)  and 
2Q/(n -1)  are unbiased 

estimates of the population variance 
2σ  with degrees of freedom (n-1) , (n-1) , (n-1) , (n-1)(n-2)  and 

2(n -1) respectively.  If the sample population is assumed to be normal, all these estimates are independent.  

Therefore, each of 1 4[Q /(n-1)] / [Q /(n-1)(n-2)] , 2 4[Q /(n-1)] / [Q /(n-1)(n-2)] and 

3 4[Q /(n-1)] / [Q /(n-1)(n-2)]  follows a F-distribution with ((n-1),(n-1)(n-2))  degrees of freedom.  Then 

the F-tests are applied and the significance of difference between rows, columns and treatments is analysed.  And 

the descriptions of 1 2 3 4Q, Q , Q , Q  and Q  are given below. 

2 2 2

ij ijQ = x (T /n ) where T = x  ; 

n
2 2 2

1 i i ij

j=1

Q =(1/n) T (T /n ) where T = x  ; 

n
2 2 2

2 j j ij

i=1

Q =(1/n) T (T /n ) where T = x  ; 
2 2 2

3 kQ =(1/n) T (T /n )  where Tk is the sum of all 
ijx

’s receiving the k
th

 treatment and 4 1 2 3Q = Q (Q + Q + Q ) .  Also, 
i j k

i j k

T= T T T    . 

The ANOVA table for three factors of classification 

Latin square is useful when one wishes to remove from an analysis of data the effect of a factor which we are not 

interested in, but which is known to be significant.  Latin square designs are used in industrial, laboratory field, 

green house, educational, medical, marketing and sociological experimentation in addition to agricultural 

Source of 

Variation (S.V.) 

Sum of Squares 

(S.S.) 

Degree of 

Freedom (d.f.) 

Mean Square (M.S.) Variance Ratio (F) 

Between Rows 1Q  (n-1)  1 1M  = Q /(n-1)  

1

1
R

4

M
F

M



 
  
 

 

Between Columns 2Q  (n-1)  2 2M  = Q /(n-1)  

1

2
C

4

M
F

M



 
  
 

 

Between 

Treatments 3Q  (n-1)  3 3M  = Q /(n-1)  

1

3
T

4

M
F

M



 
  
 

 

Residual 4Q  (n-1)(n-2)  4 4M  = Q /(n-1)(n-2)  -- 

Total Q  
2(n -1)  -- -- 
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problems.  Some advantages of the LSD over other designs are (i) it controls more of the variation than the 

completely randomized block design [16] with a two way stratification (ii) The analysis is simple (iii) Even with 

missing data, the analysis remains relatively simple.  The assumption made in LSD model is that the interactions 

between treatments, row and column groupings are non-existent. 

5. Three-factor ANOVA test with tfns. using alpha cut interval method 

The fuzzy test of hypotheses of three-factor ANOVA model where the sample data are trapezoidal fuzzy 

numbers is given here.  Using the relation, we transform the fuzzy ANOVA model to interval ANOVA model.  

Having the upper limit of the fuzzy interval, we construct upper level crisp ANOVA model and using the lower 

limit of the fuzzy interval, we construct the lower level crisp ANOVA model.  Thus, in this approach, two crisp 

ANOVA models are designated in terms of upper and lower levels.  Finally, we analyse the lower and upper 

level models using crisp two-factor ANOVA technique.  For lower level model, from α-cut intervals of Tfns. 

we have,  ij ij ija  + α b - a  where 0 i n; 0 j n     and for upper level model,

 ij ij ijd  - α d - c  where 0 i n; 0 j n    . The required formulae are given below: 

 

For lower level model: 
ij ij ij ijx =[a + α(b - a )] ; 

2 2

ij ij ij ijx [a + α(b - a )]  ;

ij ij ij ijT= x [a + α(b - a )]  ;

n

i ij ij ij

j=1

T [a + α(b - a )] ;

n

j ij ij ij

i=1

T [a + α(b - a )] ; kT = the 

sum of all 
ij ij ij[a + α(b - a )]  receiving the k

th
 treatment, 

i j k

i j k

T = T T T    .  And 

L 2 2 2

ijQ x (T /n )  ; 
L 2 2 2

1 iQ (1/n) T (T /n )  ; 
L 2 2 2

2 jQ (1/n) T (T /n )  ;

L 2 2 2

3 kQ (1/n) T (T /n )   and 
L L L L L

4 1 2 3Q Q - (Q + Q + Q ) α, α [0, 1].   

 

For upper level model: 
ij ij ij ijx =[d - α(d - c )] ; 

2 2

ij ij ij ijx [d - α(d - c )]  ;

ij ij ij ijT= x [d - α(d - c )]  ;

n

i ij ij ij

j=1

T [d - α(d - c )] ;

n

j ij ij ij

i=1

T [d - α(d - c )] ; kT = the sum 

of all ij ij ij[d - α(d - c )]  receiving the k
th

 treatment, 
i j k

i j k

T = T T T    .  Similarly,

U 2 2 2

ijQ x (T /n )  ; 
U 2 2 2

1 iQ (1/n) T (T /n )  ; 
U 2 2 2

2 jQ (1/n) T (T /n )  ;

U 2 2 2

3 kQ (1/n) T (T /n )   and 
U U U U U

4 1 2 3Q Q - (Q + Q + Q ) α, α [0, 1].   

The null hypothesis 0 1 2 nH :μ μ μ    against the alternative hypothesis A 1 2 nH :μ μ μ .     

0 A1 2 n 1 2 n
H : μ μ μ  against H : μ μ μ .                                      

L U L U L U L U

0 0 1 1 2 2 t n

L U L U L U L U

A A 1 1 2 2 t n

H ,H  : μ ,  μ μ ,  μ μ ,  μ  against 

    H ,H  : μ ,  μ μ ,  μ μ ,  μ

                  

                 

 

 

Between rows: 

The null hypothesis for lower level model:  

L L L L L L L L

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         

The null hypothesis for upper level model:  

U U U U U U U U

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         
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Between columns: 

The null hypothesis for lower level model:  

L L L L L L L L

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         

The null hypothesis for upper level model:  

U U U U U U U U

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         

Between treatments: 

The null hypothesis for lower level model:  

L L L L L L L L

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         

The null hypothesis for upper level model:  

U U U U U U U U

0 1 1 n A 1 1 nH : μ μ μ  against the alternative hypothesis H : μ μ μ .         

Decision rules  

Lower level model: 

(i) If 
L

Row tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
L

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
L

AH  is accepted. 

(ii) If 
L

Col. tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
L

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
L

AH  is accepted. 

(iii) If 
L

Treat. tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
L

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
L

AH  is accepted. 

 

Upper level model: 

(i) If 
U

Row tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
U

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
U

AH  is accepted. 

(ii) If 
U

Col. tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
U

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
U

AH  is accepted. 

(iii) If 
U

Treat. tF F  at ‘r’ level of significance with ((n-1),(n-1)(n-2))  degrees of freedom, then the 

null hypothesis 
L

0H  is accepted for certain value of  α 0,1 , otherwise the alternative 

hypothesis 
L

AH  is accepted. 

 

 

 

Example-1 

The following observed data are the yields (in kgs.) of paddy where iA ,  i=1, 2, 3, 4  denote the different 

methods of cultivation.  Due to some imprecise observations, the data recorded are in terms of trapezoidal fuzzy 

numbers.  We examine whether the different methods of cultivation have given significantly different yields. 
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Example-2 

The following is the effectiveness of three teaching methods A1, A2, and A3 from the achievement scores given 

below tabulated age and aptitude wise.  The collected data are in terms of trapezoidal fuzzy numbers due to some 

vague observations.  We perform the variance analysis taking A1, A2 and A3 into account to test whether there is 

a significant difference among the 3 teaching methods. 

  

 

 

 

 

Three-way ANOVA test using alpha cut interval method 

Example 5.1. Let us consider example-1, the interval form of given tfns. using α-cut  method is given below: 

 

 

 

The upper level model and lower level model [16, 17] can be constructed using the descriptions (3.1).  Here we 

have noted only the three-way ANOVA calculated results by omitting repeated tables and surplus 

explanations. 

For lower level model: 
L 2Q (47α -354α+2639) /16 , (n-1)=3 ; 

L 2

1Q (11α -146α+699) /16 , 

(n-1)=3 ; 
L 2

2Q (11α -34α+227) /16 , (n-1)=3 ; 
L 2

3Q (11α -146α+1371) /16 , (n-1)=3  and 

L 2

4Q (7α -14α+171) / 8 , (n-1)(n-2)=6 . 

Between rows: 

L 2
L 1
R L 2

4

M 11α -146α+699
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables, t(5%)F (3,6) 4.76 .  Here 

L

R t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is accepted at 5% level of significance.  The 

difference between rows is not significant. 

Between columns: 

L 2
L 2
C L 2

4

M 11α -34α+227
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables, t(5%)F (3,6) 4.76.

Here 
L

C t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is accepted at 5% level of significance.  The 

difference between columns is not significant. 

A3(22,23,25,27) A2(20,22,23,25) A1(15,17,18,20) A4(17,19,20,22) 
A1(16,18,19,21) A4(15,16,18,19) A3(19,21,23,24) A2(15,17,18,20) 
A2(17,19,20,22) A1(10,12,14,15) A4(14,16,17,19) A3(18,20,21,24) 
A4(13,15,16,17) A3(15,17,19,20) A2(19,21,22,24) A1(10,13,15,16) 

Aptitude 
Age 

Young Middle Old 

Low A1(77,79,82,85) A2(82,85,87,88) A3(77,80,82,85) 

Medium A2(87,90,92,95) A3(78,81,82,85) A1(76,79,81,84) 

High A3(86,87,90,94) A1(80,83,84,87) A2(85,88,89,92) 

A3[22+, 27-2] A2[20+2, 25-2] A1[15+2, 20-2] A4[17+2, 22-2] 

A1[16+2, 21-2] A4[15+, 19-] A3[19+2, 24-] A2[15+2, 20-2] 

A2[17+2, 22-2] A1[10+2, 15-] A4[14+2, 19-2] A3[18+2, 24-3] 

A4[13+2, 17-] A3[15+2, 20-] A2[19+2, 24-2] A1[10+3, 16-] 
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Between treatments: 

L 2
L 3
T L 2

4

M 11α -146α+1371
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (3,6) 4.76. Here 
L

T t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is rejected at 5% level of 

significance.  The difference between treatments is significant. There is a significant difference 

among the methods of cultivation. 

For upper level model: 
U 2Q (87α -566α+2703) /16 , (n-1)=3 ; 

U 2

1Q (27α -158α+659) /16 , 

(n-1)=3; U 2

2Q (19α -62α+187) /16 , (n-1)=3 ; 
U 2

3Q (11α -206α+1451) /16 , (n-1)=3  and 

U 2

4Q (15α -70α+203) / 8 , (n-1)(n-2)=6 . 

Between rows: 

U 2
U 1
R U 2

4

M 27α -158α+659
F

M 15α -70α+203
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (3,6) 4.76 .  

Here 
U

R t(5%)F F , α,α [0,1].   The null hypothesis 
U

0H is accepted at 5% level of significance.  The 

difference between rows is not significant. 

Between columns: 

U 2
U 4
C U 2

2

M 15α -70α+203
F

M 19α -62α+187
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (6,3) 8.94.

Here 
U

C t(5%)F F , α,α [0,1].   The null hypothesis 
U

0H is accepted at 5% level of significance.  The 

difference between columns is not significant. 

Between treatments: 

U 2
U 3
T U 2

4

M 11α -206α+1451
F

M 15α -70α+203
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (3,6) 4.76. Here 
U

T t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is rejected at 5% level of 

significance.  The difference between treatments is significant. There is a significant difference 

among the methods of cultivation. 

Hence, from the decisions obtained from both lower and upper level models, we conclude that there is a 

significance difference among the methods of cultivation. 

Example 5.2. Let us consider example-2, the interval form of given tfns. using α-cut  method is given below: 

 

 

 

 

 

For lower level model: 
L 2Q (36α -114α+1304) / 9 , (n-1)=2 ; 

L 2

1Q (6α -60α+350) / 9 , (n-1)=2 ; 

L 2

2Q (18α -132α+248) / 9 , (n-1)=2 ; 
L 2

3Q (6α +78α+674) / 9 , (n-1)=2  and 
L 2

4Q (6α +32) / 9 , 

(n-1)(n-2)=2. 

Aptitude 
Age 

Young Middle Old 

Low [77+2, 85-3] [82+3, 88-] [77+3, 85-3] 

Medium [87+3, 95-3] [78+3, 85-3] [76+3, 84-3] 

High [86+, 94-4] [80+3, 87-3] [85+3, 92-3] 
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Between rows: 

L 2
L 1
R L 2

4

M 6α -60α+350
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (2,2) 19.00 .  Here 

L

R t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is accepted at 5% level of significance.  The 

difference between rows is not significant. 

Between columns: 

L 2
L 2
C L 2

4

M 18α -132α+248
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (2,2) 19.00.

Here 
L

C t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is accepted at 5% level of significance.  The 

difference between columns is not significant. 

Between treatments: 

L 2
L 3
T L 2

4

M 6α +78α+674
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (2,2) 19.00.

Here 
L

T t(5%)F F , α,α [0,1].   The null hypothesis 
L

0H is rejected at 5% level of significance.  The 

difference between treatments is significant. There is a significant difference among the three teaching 

methods. 

For upper level model: 
U 2Q (44α -114α+1296) / 9 , (n-1)=2 ; 

U 2

1Q (14α -132α+342) / 9 , 

(n-1)=2; 
U 2

2Q (14α -114α+366) / 9 , (n-1)=2 ; 
U 2

3Q (14α +126α+546) / 9 , (n-1)=2  and 

U 2

4Q (2α +6α+42) / 9 , (n-1)(n-2)=2 . 

Between rows: 

U 2
U 1
R U 2

4

M 14α -132α+342
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (2,2) 19.00 .  

Here 
U

R t(5%)F F , α,α [0,1].   The null hypothesis 
U

0H is accepted at 5% level of significance.  The 

difference between rows is not significant. 

Between columns: 

U 2
U 2
C U 2

4

M 14α -114α+366
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2,2) 19.00.

Here 
U

C t(5%)F F , α,α [0,1].   The null hypothesis 
U

0H is accepted at 5% level of significance.  The 

difference between columns is not significant. 

Between treatments: 

U 2
U 3
T U 2

4

M 14α +126α+546
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables, 

t(5%)F (2,2) 19.00. Here 
U

T t(5%)F < F , α,α [0,1].  The null hypothesis 
L

0H is accepted at 5% level of 

significance.  The difference between treatments is not significant. The difference among the three 

teaching methods is not significant. 

Here, the obtained decisions through lower and upper level models do not provide parallel discussion.  In lower 

level model, between treatments, the null hypothesis is rejected and in the upper level model, between 

treatments, the null hypothesis is accepted.  Hence we cannot conclude a solid decision from those oscillatory 

decisions between lower and upper level models between treatments.  Therefore, α-cut interval method fails to 

provide unique results in upper and lower level models [16, 17] when it is experimented through LSD (3-factor 

ANOVA test).   
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To overcome this issue, we provide a new technique in LSD when the test is performed under fuzzy 

environments.  More generally, the CRD, RBD and LSD are independent of origin which implies that the 

arithmetic operations such as addition/subtraction/multiplication or division by non-zero quantity can be 

performed among the observed data uniformly for all entries in order to simplify the large numerical calculations 

while the observed data are numerically large.  This indicates that ANOVA test stands on the magnitude ratio 

among each data which are to be analysed.  The core idea in this paper is, when the test is conducted using 

natural and vague observations such as fuzzy numbers for instance, we may use ranking grades for all observed 

fuzzy numbers by using unique method without damaging the magnitude ratios among the fuzzy samples.  In 

fact, the ranking grades of all fuzzy numbers using fuzzy analytic method are crisp in nature and we perform the 

LSD test as usual and better decisions can be obtained. 

6. Wang’s centroid point and ranking method 

Wang et al. [25] found that the centroid formulae proposed by Cheng are incorrect and have led to some 

misapplications such as by Chu and Tsao.  They presented the correct method for centroid formulae for a 

generalized fuzzy number  A= a, b, c, d; w as 

   
       

0 0

1 dc - ab w c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

        
                         

                                                                                                                           

                                                                                                                      - - - (6.1) 

And the ranking function associated with A is             
2 2

0 0
R A x  + y (6.2)     

For a normalized TFN, we put w = 1 in equations (6.1) so we have, 

   
       

0 0

1 dc - ab 1 c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

        
                         

                

                                                                                                                         - - - (6.3) 

And the ranking function associated with A is          
2 2

0 0
R A x  + y (6.4)  .   

Let i jA  and A  be two fuzzy numbers,    i j i j(i) R A R A  then A A        i j(ii) R A R A  

i jthen A A    and    i j i j(iii) R A =R A  then A A . 

Example 6.1. Let we consider example 1, using the above relations (6.3) and (6.4), we obtain the ranks of tfns. 

which are tabulated below: 

 

 

 

 

The ANOVA table values of tfns. using Wang’s Centroid Point: 

Here, Q=155.12 ; 1Q  =38.5624 , n-1=3 ; 2Q  =11.674 , n-1=3 ; 3Q  =83.5525 , n-1=3 ;

4Q  =21.3307, (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 3.61 , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F .The null hypothesis 

0H is accepted at 5% level of significance. The difference between rows is not significant.  Col.F 1.09 , 

t (5%)F (3,6) = 4.76 . And Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.

The difference between columns is not significant.  Treat.F 7.82 , t (5%)F (3,6) = 4.76 . And Treat. t(5%)F > F .

 iR A ;  i = 1, 2, 3, 4.  

A3(24.2895) A2(22.5034) A1(17.5043) A4(19.5039) 
A1(18.5041) A4(17.0058) A3(21.7185) A2(17.5043) 
A2(19.5039) A1(12.7215) A4(16.5046) A3(20.8130) 
A4(15.2053) A3(17.7195) A2(21.5035) A1(13.4231) 
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The null hypothesis 0H is rejected at 5% level of significance.The difference between treatments is 

significant.  There is a significant difference among the methods of cultivation. 

Example 6.2. Let we consider example 2, using the above relations (6.3) and (6.4), we obtain the ranks of tfns. 

which are tabulated below: 

 

 

 

 

 

 

 

 

The ANOVA table values of tfns. using Wang’s Centroid Point: 

Here, Q=138.9865 ; 1Q  =34.1185 , n-1=2 ; 2Q  =27.9829 , n-1=2 ; 3Q  =72.5893 , n-1=2 ;

4Q  =4.2958, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 7.9423 , 
t (5%)F (2,2) = 19.00 .  And 

Row t(5%)F < F .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

Col.F 6.5140 , 
t (5%)F (2,2) = 19.00 . And 

Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level 

of significance.The difference between columns is not significant.  Treat.F 16.8978 , 
t (5%)F (2,2) =19.00

. And 
Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference 

between treatments is not significant.  The difference among the three teaching methods is not significant. 

7. Rezvani’s ranking function of Tfns. 

The centroid of a trapezoid is considered as the balancing point of the trapezoid.  Divide the trapezoid into three 

plane figures.  These three plane figures are a triangle (APB), a rectangle (BPQC) and a triangle (CQD) 

respectively.  Let the centroids of the three plane figures be 1 2 3G , G  and G  respectively.  The incenter of 

these centroids 1 2 3G , G  and G  is taken as the point of reference to define the ranking of generalized 

trapezoidal fuzzy numbers.  The reason for selecting this point as a point of reference is that each centroid point 

are balancing points of each individual plane figure and the incenter of these centroid points is much more 

balancing point for a generalized trapezoidal fuzzy number.  Therefore, this point would be a better reference 

point than the centroid point of the trapezoid. 

 

 

 

 

 

 

 

 

 

 

Consider a generalized trapezoidal fuzzy number  A= a, b, c, d; w .  The centroids of the three plane figures 

are: 

1 2 3

a+2b w b+c w 2c+d w
G , ,  G ,  and G , (7.1)

3 3 2 2 3 3

     
        
     

 

Aptitude 
 iR A ;  i = 1, 2, 3.  

Young Middle Old 

Low A1(80.78899) A2(85.41768) A3(81.00099) 

Medium A2(91.00088) A3(81.50086) A1(80.001) 

High A3(89.36464) A1(83.50084) A2(88.50079) 
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Equation of the line 1 3G G is 
w

y = 
3

 and 2G  does not lie on the line 1 3G G .  Therefore, 1 2 3G , G  and G  

are non-collinear and they form a triangle.  We define the incenter  0 0
I x , y  of the triangle with vertices 

1 2 3G , G  and G  of the generalized fuzzy number  A= a, b, c, d; w  as [20] 

 0 0A

a+2b b+c 2c+d w w w
α β γ α β γ

3 2 3 3 2 3
I x , y ,  (7.2)

α + β + γ α + β + γ

            
               

              
 
  

     
2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w

where α ,β ,γ
6 3 6

 
    

 

And ranking function of the trapezoidal fuzzy number  A= a, b, c, d; w which maps the set of all fuzzy 

numbers to a set of all real numbers i.e. R: A     
 is defined as   

2 2

0 0
R A x  + y (7.3)   

which is the Euclidean distance from the incenter of the centroids.  For a normalized TFN, we put w = 1 in 

equations (1), (2) and (3) so we have, 

1 2 3

a+2b 1 b+c 1 2c+d 1
G , ,  G ,  and G , (7.4)

3 3 2 2 3 3

     
        
     

 

 

 0 0A

a+2b b+c 2c+d 1 1 1
α β γ α β γ

3 2 3 3 2 3
I x , y ,  (7.5)

α + β + γ α + β + γ

            
               

              
 
  

     
2 2 2

c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1
where α ,β  and γ

6 3 6

 
    

And ranking function of the trapezoidal fuzzy number  A= a, b, c, d; 1 is defined as

 
2 2

0 0
R A x  + y (7.6)  . 

Three-way ANOVA test using Rezvani’s ranking function 

We now analyse the three-way ANOVA test by assigning rank for each normalized trapezoidal fuzzy numbers 

and based on the ranking grades the decisions are observed. 

Example 7.1. Let us consider example 1, using the above relations (7.4), (7.5) and (7.6), we get the ranks of 

each Tfns. iA as below: 

 

 

 

 

 

 

The ANOVA table values of tfns. using Rezvani’s Centroid Point: 

Here, Q=141.412 ; 1Q  =34.0609 , n-1=3 ; 2Q  =10.6819 , n-1=3 ; 3Q  =77.5438 , n-1=3 ;

4Q  =19.1256 , (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 3.56 , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F .The null hypothesis 

 iR A ;  i = 1, 2, 3, 4.  

A3(24.0046) A2(22.5038) A1(17.5049) A4(19.5044) 
A1(18.5047) A4(17.0051) A3(22.0029) A2(17.5049) 
A2(19.5044) A1(13.0056) A4(16.5052) A3(20.5055) 
A4(15.5033) A3(18.0038) A2(21.504) A1(14.0045) 
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0H is accepted at 5% level of significance. The difference between rows is not significant.  Col.F 1.12 , 

t (5%)F (3,6) = 4.76 . And 
Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.

The difference between columns is not significant.  Treat.F 8.10 , 
t (5%)F (3,6) = 4.76 . And 

Treat. t(5%)F > F .

The null hypothesis 0H is rejected at 5% level of significance.The difference between treatments is 

significant.  There is a significant difference among the methods of cultivation. 

Example 7.2. Let us consider example 2, using the above relations (7.4), (7.5) and (7.6), we get the ranks of 

each tfns. iA as below: 

 

 

 

 

 

 

The ANOVA table values of tfns. using Rezvani’s Centroid Point: 

Here, Q=134.9991; 1Q  =28.677 , n-1=2 ; 2Q  =21.5099 , n-1=2 ; 3Q  =80.1468 , n-1=2 ;

4Q  =4.6654, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 6.1467 , 
t (5%)F (2,2) = 19.00 .  And 

Row t(5%)F < F .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

Col.F 4.6105 , t (5%)F (2,2) = 19.00 . And 
Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level 

of significance.The difference between columns is not significant.  Treat.F 17.1790 , 
t (5%)F (2,2) =19.00

. And Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference 

between treatments is not significant.  The difference among the three teaching methods is not significant. 

 

8. Graded mean integration representation (GMIR) 

Let  A= a, b, c, d; w be a generalized trapezoidal fuzzy number, then the GMIR [19] of A  is defined by

 
   -1 -1w w

0 0

L h R h
P A h dh /  hdh

2

 
  

 
  . 

Theorem 8.1. Let  A= a, b, c, d; 1  be a TFN with normal shape function, where a, b, c, d are real numbers 

such that a < b c < d .  Then the graded mean integration representation (GMIR) of A is

 
 

 
a + d n

P A b - a - d + c
2 2n + 1

  . 

Proof : For a trapezoidal fuzzy number  
n

A= a, b, c, d; 1 , we have  
n

x - a
L x

b - a

 
  
 

 and 

 
n

d - x
R x

d - c

 
  
 

Then,     
n

1
-1 n

x - a
h = L h a + b - a h

b - a

 
  

 
; 

   
n

1
-1 n

d - x
h = R h d - d - c h

d - c

 
  

 
 

Aptitude 
 iR A ;  i = 1, 2, 3.  

Young Middle Old 

Low A1(80.5015) A2(85.9993) A3(81.0011) 

Medium A2(91.001) A3(81.5011) A1(80.0011) 

High A3(88.5023) A1(83.501) A2(88.501) 
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       
 

   

1 1
1 1

n n

0 0

1
P A h a + b - a h d - d - c h dh / hdh

2

a + d1 n 1             = b - a - d + c /
22 2 2n + 1

       

  
   

  

  
 

 
 

 
a + d n

Thus, P A b - a - d + c
2 2n + 1

   Hence the proof. 

Result 8.1. If n =1 in the above theorem, we have  
a + 2b + 2c + d

P A
6

  

Three-way ANOVA using GMIR of tfns. 

Example 8.1. Let us consider example 1, using the result-8.1 from above theorem-8.1, we get the GMIR of 

each tfns. iA  which are tabulated below: 

 

 

 

 

 

The ANOVA table values of tfns. using GMIR: 

Here, Q=149.1048 ; 1Q  =36.62 , n-1=3 ; 2Q  =11.28 , n-1=3 ; 3Q  =80.90 , n-1=3 ; 4Q  =20.31 ,

(n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA table noted in 

section-4.  Now, RowF 3.60 , 
t (5%)F (3,6) = 4.76 .  And 

Row t(5%)F < F .The null hypothesis 0H is 

accepted at 5% level of significance. The difference between rows is not significant.  Col.F 1.11 , 

t (5%)F (3,6) = 4.76 . And 
Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.

The difference between columns is not significant.  Treat.F 7.96 , t (5%)F (3,6) = 4.76 . And Treat. t(5%)F > F .

The null hypothesis 0H is rejected at 5% level of significance.The difference between treatments is 

significant.  There is a significant difference among the methods of cultivation. 

Example 8.2. Let us consider example 2, using the result-8.1 from above theorem-8.1, we get the GMIR of 

each tfns. iA  which are tabulated below: 

 

 

 

 

 

 

 

The ANOVA table values of tfns. using GMIR: 

Here, Q=137.0430 ; 1Q  =31.7466 , n-1=2 ; 2Q  =25.1174 , n-1=2 ; 3Q  =75.7284 , n-1=2 ;

4Q  =4.4506, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 7.1331 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

Col.F 5.6436 , t (5%)F (2,2) = 19.00 . And Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level 

 iP A ;  i = 1, 2, 3, 4.  

A3(24.1667) A2(22.5) A1(17.5) A4(19.5) 
A1(18.5) A4(17) A3(21.8333) A2(17.5) 
A2(19.5) A1(12.8333) A4(16.5) A3(20.6667) 

A4(15.3333) A3(17.8333) A2(21.5) A1(13.6667) 

Aptitude 
 iP A ;  i = 1, 2, 3.  

Young Middle Old 

Low A1(80.6667) A2(85.6667) A3(81) 

Medium A2(91) A3(81.5) A1(80) 

High A3(89) A1(83.5) A2(88.5) 
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of significance.The difference between columns is not significant.  Treat.F 17.0153 , 
t (5%)F (2,2) =19.00

. And 
Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference 

between treatments is not significant.  The difference among the three teaching methods is not significant. 

 

9. Three-way ANOVA model using membership function 

Proposition 9.1. (a) If  A a, b, c, d; w is a generalized trapezoidal fuzzy number and ‘k’ be a scalar with 

k 0, y = kA then y = kA  is a fuzzy number with  ka, kb, kc, kd; w .(b)If  A a, b, c, d; w is a 

generalized trapezoidal fuzzy number and ‘k’ be a scalar with k < 0, y = kA then y = kA  is a fuzzy number 

with  kd, kc, kb, ka; w . 

Proof:  (a) When k 0 , with the transformation y = kA  we can find the membership function of fuzzy set 

y = kA  by α-cut  method.  Now, the α-cut  interval of A is    α L UA A α ,A α   
. That is 

   α

α α
A a+ b - a ,d - d - c  

w w

 
  
 

.  The lo α-cut of A is    L

α
A α a+ b - a

w
  and the upper level 

α-cut of A is    U

α
A α d - d - c

w
 .  Hence,    

α α
A a+ b - a ,d - d - c  

w w

 
 
 

. 

So,      
α α

y = kA ka+ kb - ka ,  kd - kd - kc  
w w

 
 
 

. So,  
α

kb - ka y - ka.
w

  

y - ka
α w ;ka y kb---(1)

kb - ka

 
    

 
and  

α
kd - kc kd - y

w
  

y - kd
α w ;kc y kd---(2)

kc - kd

 
    

 
From (1) and (2), we have the membership function of y = kA  as 

follows: 

 
y

y - ka y - kd
μ y w  for ka y kb;  w for kb y kc; w  for kc y kd;  

kb - ka kc - kd

and 0, otherwise.---(3)

   
         

     

Similarly we can prove (b) if y = kA , k 0  then y =  kd, kc, kb, ka; w is a fuzzy number with 

membership function, 

 
y

y - kd y - ka
μ y w  for kd y kc;  w for kc y kb; w  for kb y ka;  

kc - kd kb - ka

and 0, otherwise.---(4)

   
         

     

And for a normalized trapezoidal number, we put w = 1 in equations (3) and (4). 

 

Calculation of membership function of tfns. 

The membership grades for a normalized TFN  y a, b, c, d; 1  is calculated by the relation [12]

 

 
b c d

y

a b cSupp y

y - b y - d
μ y dy = dy + dy + dy (9.2)

b - a c - d

   
    

   
     

Example 9.1. Let us consider example 1, since for a normalized tfn A ,  
A

μ : X 0,1 , we transform the 

tfns. in problem (1) by multiplying each members with “0.01” using proposition-9.1 and the membership grade 

of 1
st
 entry A3(0.22, 0.23, 0.25, 0.27; 1) will be 
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 

 
i

i

0.23 0.25 0.27

A

0.22 0.23 0.25Supp A

y - 0.23 y - 0.27
μ y dy = dy + dy + dy =0.025 I

0.01 0.02

   
   

   
     

Similarly we can calculate the membership grades of all other entries using

 

 
i

i

A

Supp A

μ y dy = I  for the given 

tfns. which has been tabulated below. 

 

 

 

 

 

 

 

The ANOVA table values of tfns. using membership grades: 

Here, Q=0.00035 ; 1Q  =0.0000375 , n-1=3 ; 2Q  =0.0000375 , n-1=3 ; 3Q  =0.0001375 , n-1=3 ;

4Q  =0.0001375 , (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the 

ANOVA table noted in section-4.  Now, RowF 1.83 , 
t (5%)F (6,3) = 8.94 .  And 

Row t(5%)F < F .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

Col.F 1.83 , 
t (5%)F (6,3) = 8.94 . And 

Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of 

significance.The difference between columns is not significant.  Treat.F 2 , 
t (5%)F (3,6) = 4.76 . And 

Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference between 

treatments is not significant.  The difference between the methods of cultivation is not significant. 

Example 9.2. Let us consider example 2, since for a normalized tfn A ,  
A

μ : X 0,1 , we transform the 

tfns. in problem (2) by multiplying each members with “0.01” using proposition-9.1 and the membership grade 

are tabulated below: 

 

 

 

 

 

 

 

 

 

The ANOVA table values of tfns. using membership grades: 

Here, Q=0.00125 ; 1Q  =0.00005 , n-1=2 ; 2Q  =0.00087 , n-1=2 ; 3Q  =0.00022 , n-1=2 ;

4Q  =0.00012, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 2.4 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F .The null hypothesis 

0H is accepted at 5% level of significance. The difference between rows is not significant.  Col.F 7.25 , 

t (5%)F (2,2) = 19.00. And Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.

The difference between columns is not significant.  Treat.F 1.833 , t (5%)F (2,2) =19.00 . And 

Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference between 

treatments is not significant.  The difference among the three teaching methods is not significant. 

 

 
i

i

A

Supp A

μ y dy = I  

A3(0.025) A2(0.01) A1(0.01) A4(0.01) 
A1(0.01) A4(0.02) A3(0.015) A2(0.01) 
A2(0.01) A1(0.015) A4(0.01) A3(0.015) 
A4(0.005) A3(0.015) A2(0.01) A1(0.01) 

Aptitude  

 
i

i

A

Supp A

μ y dy = I  

Young Middle Old 

Low A1(0.035) A2(0.01) A3(0.02) 

Medium A2(0.02) A3(0.01) A1(0.02) 

High A3(0.045) A1(0.01) A2(0.01) 
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10. LIOU and WANG’S centroid point method 

Liou and Wang [14] ranked fuzzy numbers with total integral value.  For a fuzzy number defined by definition 

(2.3), the total integral value is defined as 

       α

T R LI A αI A 1 - α I A (10.1)    

   
 

   
 

R LA A

Supp A Supp A

where I A R x dx---(10.2)  and  I A L x dx ---(10.3)   are the right and 

left integral values of A  respectively and 0 α 1  . 

(i)  α 0,1 is the index of optimism which represents the degree of optimism of a decision maker. (ii) If 

α 0 , then the total value of integral represents a pessimistic decision maker’s view point which is equal to 

left integral value.  (iii) If α 1 , then the total integral value represents an optimistic decision maker’s view 

point and is equal to the right integral value.(iv)If α 0.5 then the total integral value represents a moderate 

decision maker’s view point and is equal to the mean of right and left integral values.  For a decision maker, the 

larger the value of α  is, the higher is the degree of optimism.   

 

 

The ANOVA test using LIOU and WANG’S centroid point method: 

Example 10.1. Let us consider example 1, using the above equations (10.1), (10.2) and (10.3), we get the 

centroid point of first member as follows: 

     
23 27

3 3L R

22 25

x - 27
I A x - 22 dx 1/ 2;    I A dx 1

2

 
    

 
   α

3TTherefore I A (1+α) / 2 . 

Similarly we can find  α
iTI A ;  for i = 1, 2, 3, 4.  and the calculated values are tabulated below:  

 

 

 

 

 

The ANOVA table values of tfns. using LIOU and WANG’S centroid point method: 

Here, 
2Q=(144α -104α+47)/64 ;

2

1Q =(56α -40α+11)/64 , n-1=3 ;
2

2Q =(8α +11)/64 , n-1=3 ;

2

3Q =(24α -24α+11)/64 , n-1=3 ;
2

4Q =(28α -20α+7)/32 , (n-1)(n-2)=6 and variance ratio of  F can be 

calculated as per the description of the ANOVA table noted in section-4.  Now, 

2

Row 2

56α -40α+11
F ;  0 α 1

28α -20α+7
   , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F  α, α [0,1]  .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

2

Col. 2

8α +11
F ;0 α 1

28α -20α+7
   , 

t (5%)F (3,6) = 4.76 . And
Col. t(5%)F < F  α, α [0,1]  .The null 

hypothesis 0H is accepted at 5% level of significance.The difference between columns is not significant.  

2

Treat. 2

24α -24α+11
F ;0 α 1

28α -20α+7
   , t (5%)F (3,6) = 4.76 . And Treat. t(5%)F < F  α, α [0,1].  The null 

hypothesis 0H is accepted at 5% level of significance.The difference between treatments is not significant.

  The difference between the methods of cultivation is not significant. 

Example 10.2. Let us consider example 2, using the above equations (10.1), (10.2) and (10.3), we get the 

centroid points of tfns. as follows: 

 α
iTI A ;  i=1, 2, 3, 4.  

A3(1+)/2 A2(1) A1(1) A4(1) 

A1(1) A4(1/2) A3(2-)/2 A2(1) 

A2(1) A1(2-)/2 A4(1) A3(2+)/2 

A4(2-)/2 A3(2-)/2 A2(1) A1(3-2)/2 
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The ANOVA table values of tfns. using LIOU and WANG’S centroid point method: 

Here, 
2Q=(13α -7α+2)/2 ;

2

1Q  =(9α -3α+1)/6 , n-1=2 ; 
2

2Q  =(16α -12α+99)/6 , n-1=2 ; 

2

3Q  =(13α -7α+1)/6 , n-1=2 ;
2

4Q  =(α +α+1)/6, (n-1)(n-2)=2 and variance ratio of  F can be calculated 

as per the description of the ANOVA table noted in section-4.  Now, 

2

Row 2

9α -3α+1
F ;0 α 1

α +α+1
   , 

t (5%)F (2,2) = 19.00 .  And 
Row t(5%)F < F , α, α [0,1]  .The null hypothesis 0H is accepted at 5% level 

of significance. The difference between rows is not significant.  

2

Col. 2

16α -12α+3
F ;0 α 1

α +α+1
   , 

t (5%)F (2,2) = 19.00 . And
Col. t(5%)F < F , α, α [0,1]  .The null hypothesis 0H is accepted at 5% level of 

significance.The difference between columns is not significant.  

2

Treat. 2

13α -7α+1
F ;0 α 1

α +α+1
   , 

t (5%)F (2,2) =19.00. And
Treat. t(5%)F < F , α, α [0,1].  The null hypothesis 0H is accepted at 5% level of 

significance.The difference between treatments is not significant.  The difference among the three 

teaching methods is not significant. 

11. The proposed method 

As per the description in Salim Rezvani’s ranking method, we presented a different kind of centroid point and 

ranking function of tfns.  The incenter  0 0A
I x , y  of the triangle [Fig. 1] with vertices 1 2 3G , G  and G  of 

the generalized TFN  A= a, b, c, d; w is given by, 

 0 0A

a+2b b+c 2c+d w w w
α β γ α β γ

3 2 3 3 2 3
I x , y ,  (11.3)

α + β + γ α + β + γ

            
               

              
 
  

     
2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w

where α ,β  ,γ
6 3 6

 
    

And the ranking function of the generalized TFN  A= a, b, c, d; w  which maps the set of all fuzzy numbers 

to a set of real numbers is defined as   0 0R A x y (11.2)   .  For a normalized TFN, we put w = 1 in 

equations (1) and (2) so we have, 

Aptitude 
 α

iTI A ;  i=1, 2, 3.  

Young Middle Old 

Low A1(2+)/2 A2(3-4)/2 A3(3/2) 

Medium A2(3/2) A3(3/2) A1(3/2) 

High A3(1+3)/2 A1(3/2) A2(3/2) 
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 0 0A

a+2b b+c 2c+d 1 1 1
α β γ α β γ

3 2 3 3 2 3
I x , y ,  (9.3)

α + β + γ α + β + γ

            
               

              
 
  

     
2 2 2

c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1
where α ,β  and γ

6 3 6

 
    

And for  A= a, b, c, d; 1 ,   0 0R A x y (11.4)    

 

The proposed method for three-way ANOVA test 

Example 11.1. Let us consider example 1, using the above relations (11.3) and (11.4), we get the ranks of each 

tfns. iA  which are tabulated below: 

 

 

 

 

 

The ANOVA table values of tfns. using proposed method: 

Here, Q=24.53 ; 1Q =5.91, n-1=3 ; 2Q =1.85 , n-1=3 ; 3Q =13.46 , n-1=3 ; 4Q =3.32 , (n-1)(n-2)=6

and variance ratio of  F can be calculated as per the description of the ANOVA table noted in section-4.  Now, 

RowF 3.58 , 
t (5%)F (3,6) = 4.76 .  And 

Row t(5%)F < F .The null hypothesis 0H is accepted at 5% level of 

significance. The difference between rows is not significant.  Col.F 1.13 , 
t (5%)F (3,6) = 4.76 . And

Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference between 

columns is not significant.  Treat.F 8.16 , t (5%)F (3,6) = 4.76.  And Treat. t(5%)F > F The null hypothesis 0H

is rejected at 5% level of significance.The difference between treatments is significant.  The difference 

between the methods of cultivation is significant. 

Example 11.2. Let us consider example 2, using the above relations (11.3) and (11.4), we get the ranks of each 

tfns. iA  which are tabulated below: 

 

 

 

 

 

 

The ANOVA table values of tfns. using proposed method: 

Here, Q=23.4122 ; 1Q  =4.9520 , n-1=2 ; 2Q  =3.7702 , n-1=2 ; 3Q  =13.8733 , n-1=2 ;

4Q  =0.8168, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA 

table noted in section-4.  Now, RowF 6.0627 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F .The null 

hypothesis 0H is accepted at 5% level of significance. The difference between rows is not significant.  

Col.F 4.6158 , t (5%)F (2,2) = 19.00 . And Col. t(5%)F < F .The null hypothesis 0H is accepted at 5% level 

 iR A ;  i = 1, 2, 3, 4.  

A3(9.99422) A2(9.36553) A1(7.2843) A4(8.11679) 
A1(7.70055) A4(7.07784) A3(9.16054) A2(7.2843) 
A2(8.11679) A1(5.41287) A4(6.86806) A3(8.53549) 
A4(6.44827) A3(7.49491) A2(8.94928) A1(5.8296) 

Aptitude 
 iR A ;  i = 1, 2, 3.  

Young Middle Old 

Low A1(33.533) A2(35.8141) A3(33.7383) 

Medium A2(37.9035) A3(33.9375) A1(33.3218) 

High A3(36.8657) A1(34.7703) A2(36.8524) 
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of significance.The difference between columns is not significant.  
Treat.F 16.9851 , 

t (5%)F (2,2) =19.00

. And 
Treat. t(5%)F < F .The null hypothesis 0H is accepted at 5% level of significance.The difference 

between treatments is not significant.  The difference among the three teaching methods is not significant. 

 

12. Conclusion 

The decisions obtained from various methods are tabulated below for the null hypothesis. 

Here, using α -cut interval method, the decision for acceptance of null hypothesis is parallel from lower level 

(L) and upper level (U) models. However, for example-2 the acceptance of null hypothesis oscillates between 

lower and upper level models so, α -cut method fails to provide a strong decision in LSD.  The membership 

function and Liou & Wang’s method (L&W) do not provide reliable results as they accept the null hypotheses 

for all cases.  Moreover from the proposed method, the observed decisions for example-1 and example-2 provide 

parallel conclusions which are similar to ranking grades of Wang, Rezvani and GMIR. 
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