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Abstract 

 We study an SIR epidemic model with a specific non linear incidence rate function. The stability of the 

disease-free equilibrium and the endemic equilibrium are found and an appropriate Dulac function was 

constructed for investigating the global stability of an endemic equilibrium. We illustrate the theoretical results 

by carrying numerical simulation. 
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1. Introduction 

Epidemiology is the study of the distribution and determinants of health related states or events in specified 

populations, and the application of this study to control health problems [12]. The term epidemiology is derived 

from Greek words that can be translated into the phrase "the study of that which is upon the people". In the study 

of epidemiological model incidence rate plays an important role. An incidence rate is defined as the number of 

new health related events or cases of a disease in a population exposed to the risk in a given time period. 

Epidemic models with nonlinear incidence rate have been studied and developed by many authors. In order to 

model this disease transmission process several authors employ the incidence functions: The earliest one is the 

bilinear incidence rate SI used by Kermack and Mckendrick [11] in 1927, where  , S and I denote the 

transmission rate, the number of susceptible population and the infectious population respectively. In 1978, 

Capasso and Serio [5] introduced a saturated incidence rate 
1

I

I



 
by research of the Cholera epidemic spread in 

Bari. Also in 1978, May and Anderson [1] proposed the saturated incidence rate
1

SI

S



 
. The general incidence 

rate 
1

p

q

I S

I




was proposed by Liu et. al. [13-14] in 1986-87, Derick and Ven Den Driessche [6] in 1993, etc. 

Ruan and Wang [10] studied an epidemic model with a specific nonlinear incidence rate 
2

21

I S

I




and presented a 

detailed quantitative analysis and bifurcation analysis and Bogdanov-Takens bifurcation for the model in 2003. 

Kar and Batabyal [17] proposed an SIR model with non-monotonic incidence rate in 2010 suggested by Xiao 

and Ruan [22] incorporating with a treatment function proposed by Wang [21] and so on. In this paper, we drive 

a model which includes a specific nonlinear incidence rate with the psychological or inhibitory effect measuring 

parameters.  

The paper is organized as follows: In the next section, we present the model diagram and formulation of 

mathematical model. In section 3 we drive the disease free equilibrium and the endemic equilibrium with 

stability conditions. Finally, we give some numerical simulations and concluding in section 4, closed paper. 
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2. The  Basic Mathematical Model 

The model we analyze in this chapter is considered under the framework of the following nonlinear 

ordinary differential equations: 

 

 
 

Figure 2.1: The Model Diagram 
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                                                    (2.1) 

where, S(t), I(t), R(t) denote the number of susceptible, infected, recovered individuals respectively; a is the 

recruitment rate of the population, d is the natural death rate of the population,  is the proportionality 

constant, is the rate at which recovered individuals lose immunity and return to susceptible class, m is the 

natural recovery rate of the infective individuals, 1 and 2 are the parameter measures of the psychological or 

inhibitory effect.  

The incidence rate
2

1 21

SI

S I



 
, where I measures the infecting force of the disease 

and
2

1 2

1

1 S I 
 describes the psychological or inhibitory effect of the behavioral change to the susceptible 

individuals when the number of infective individuals is very large. Notice that if 1 0  the incidence rate 

becomes 
2

21

SI

I




and if 

2 0  it becomes
11

SI

S




, when

1 and
2 are both equal to zero the incidence rate 

becomes the bilinear incidence rate. 

 

3. Equilibrium Points and Stability 
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 We first consider the existence of equilibria of system (2.1). For any values of parameters, model (2.1) 

always has a disease-free equilibrium
0 = ( , 0, 0)

a
E

d
. To find the positive equilibria, set 

2

* 2

1

( )(1 )
,

( )

d m I
S

d m

 


  

*R
( )

mI

d



 and I is given as a root of the quadratic equation 2 0.aI bI c    

where, 
2[ ( )]a d d m   , 1[{ ( )}{( ) }]

m
b d m d m

d


     


,

1[( )( ) ]c a d d m a     . 

Clearly, the above equation will have a positive root if
1 0   and

0 1R  , where
0R is the basic reproduction 

number given as follows: 0

1

.
( )( )

a
R

a d d m




  
 

Now 

1

1

*

2
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d d m

  
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where, 2 21

1 2 1 0

( )
[ {1 }{( ) }] 4 ( ) ( )[1 ].

d m m
d m d d m a d R

d

  
           

 
 

 

Theorem 3.1 The plane /S I R b d    is a manifold of system (2.1) which is attracting in the first octant. 

Proof. Summing up the three equations in (2.1) and denoting ( ) ( ) ( ) ( )N t S t I t R t    we have 

=
dN

a dN
dt

 .                                                       (3.1) 

It is clear that  ( /)N t a d  is a solution of equation (3.1) and for any 
0( ) 0,N t    the general solution 

of the equation (3.1) is  

 0( )

0

1
[ ( ( )) ]

d t t
N a a dN t e

d

 
   .       

Thus  

lim ( )
t

a
N t

d

                                              

This implies the conclusion. 

It is clear that the limit set of system (2.1) is on the plane S + I + R = a/d. Thus, we focus on the 

reduced system 

1

1 2 1 1

2

( )

( ) ( , )
( ) ( )

( ) ( , )

a
dI I R

dI d d m I F I R
dt d a I dI dR

dR
mI d R F I R

dt


   

    
     


   


                                                             (3.2)  

        

In order to study the properties of the disease-free equilibrium 0E  and the endemic equilibrium *E , we rescale 

(3.2) by 

, , ( )x I y R T d t
d d

 
   

 
        

2
( )

1 ( )

pxdx
A x y ux

dT qx r x y

dy
wx y

dT


    

   

 


                                                     (3.3) 

 

where 
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2

2 1

2

1 11
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d d d d d md a m
p q r A u w

d a d a d d d dd a
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Here 

0 (0, 0)E  is the 

disease free equilibrium and the unique positive equilibrium * *( , )x y  of the system (3.3). * *( , )x y  exists if 

0u Ap  and is given by   

*2 *[(1 )( )] ( ) 0qux w p ru x u Ap                                                                                                  (3.4) 

Therefore  

* 2[(1 )( )]

2

w ru p
x

qu

   
  ,  * *y wx .  

Where, 2

2 [(1 )( )] 4 ( )w p ru qu u Ap       

The Jacobian matrix corresponding to
0 (0, 0)E  is 

0

0

1

Ap u
M

w

 
  

 
 

The Jacobian matrix corresponding to * *( , )x y is 

2 2

2 2

* * * * *

* * 2 * * 2
1

[ (2 1) (2 ) 1] [ 1]

[1 (1 ) ] [1 (1 ) ]

1

px qx w A qx r px qx Ar

M qx x w r qx x w r

w
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 

       
 
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We have that  

 

2

2

* * *

1 * * 2

[ (1 ) 2 (1 )(1 )]
( )

[1 (1 ) ]

px q w x Aqx Ar w
det M

qx x w r
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

  
 

The sign of 
1( )det M is the sign of the  

2* *

1 (1 ) 2 (1 )(1 )P q w x Aqx Ar w       .                                                                                        (3.5) 

Now u (3.5)+(1+w) (3.4), we have 

2 *

1 2
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Now substituting 
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2
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x
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2 2 2

1 2 2

1
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Since

2 2 2 2

2 2

2

2 4
(1 )( ) 4 (1 ) 0

1 (1 )

Aqu A q u
w p ru qu Ar

w w

 
        

  
, when 1.Ar   

Therefore, 
1 0P  , and hence 

1( )det M  is positive for any set of parameters. 

 

2

2

* * *

1 * * 2

[ (1 2 ) (2 ) 1]
( ) 1

[1 (1 ) ]

px qx w A qx r
Trac M

qx r w x

   
 
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So the sign 1( )Trac M is determined by  

4 3 22 * * 2 2 * *

2 { (1 2 ) 2 (1 )} {2 (1 ) (1 ) } {2(1 ) (1 2 )} 1P q x p w q w rx q Ap w r x w r p Ar x               (

3.6) 

After some algebraic calculation using (3.4) and (3.6) we get, 3 *

2 3 4u vP P x P  , where 
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2 2 2 2 2 2

4

2 3
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Therefore 
3P and 

4P  are positive for any set of parameters with Ap u . So when the point * *( , )x y  exists, it is 

locally stable if *

4 3x P P . 

Thus we have the following theorem. 

 

 Theorem 3.2 

(i) When the basic reproduction number
0 1R  , there exists no positive equilibrium of the system (3.3) and 

in that case the only disease free equilibrium (0, 0) is a stable node. 

(ii) When
0 1R  , there exists a unique positive equilibrium of the system (3.3) and in that case (0, 0) is an 

unstable saddle point. Also the condition for which the unique positive equilibrium will be locally 

stable if *

4 3x P P . 

 

Global Stability. 

 

Theorem3.3 System (3.2) does not have non trivial periodic orbits. 

Proof. Consider system (3.2) for 0I   and 0R  : Take a Dulac function 

1 2 1 2( ) ( )
( , )

d a I dI dR
D I R

dI

    



 

1 2 1 2 1 1

1 2

( )( ) [(2 )( ) ( )( ) ]
( ) ( ) 1 0.

d d a I d m I d m
DF DF

I R dI

          
     

   
The 

conclusion follows. 

 

4. Numerical Simulation and Conclusion 

 

Case I. When 1 23, 0.2, 0.3, 0.1, 0.7, 0.1, 0.5a d m           , then the basic reproduction 

number
0 2.57142857 1R   , all three components ( ), ( )S t I t  and ( )R t , approach to their steady state values 

as t  , the disease become endemic (Figure 4.1). 

 

Case II. Again, if we take 1 215, 0.01, 0.5, 0.7, 0.1, 0.5, 0.9a d m           , then the basic 

reproduction number 0 0.7841825 1R   component ( )S t  approaches to its steady state value while ( )I t  and 

( )R t approach to zero as t  , the disease dies out (Figure 4.2). 

 

By rescaling, the system (3.3) reduces to 

2

0.4
(15 ) 2.34

1 0.28 0.04( )

1.67

dx x
x y x

dT x x y

dy
x y

dT


       


 


                                                                            (4.1) 

By rescaling, the system (3.3) we see that ( ) 0u pA  , and hence there exists the unique positive 

equilibrium * 1.73949302x   and * 2.90495334y  . For the above choice of parameters 

3 26.5371813P  and 4 222.752042P  , 4 3 8.39396014P P  and therefore the sufficient condition for local 

stability i.e. *

4 3x P P is satisfied here.  
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Figure 4.1: The plot represents that the disease endemic 
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Figure 4.2: The plot represents that the disease dies out 

 

Using the numerical simulations, we conclude that the basic reproduction number plays an important role to 

control the disease. When 0 1R 
 
disease dies out and the disease free equilibrium is globally attractive. When 

0 1R  the endemic equilibrium is globally stable, i.e. epidemic occurs. We also see that 0R depend on the 

parameter
1  explicit 

2  but  
1  

and
2  

play important role in numerical simulations.
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