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Abstract 

The purpose of this paper is to characterize regional boundary gradient strategic sensors notions for 

different cases of regional boundary gradient observation to be achieved. Then, the characterizations based 

on how to a cross from internal gradient region to the boundary gradient region. Thus, the obtained results 

are applied in two dimensional linear infinite distributed systems in Hilbert space where the dynamics are 

governed by strongly continuous semi-group. Moreover, we give the relation between the regional gradient 

observability on a subregion 𝜔 of the spatial domain Ω with the regional boundary gradient observability 

on a subregion Г of the boundary 𝜕Ω of Ω. Finally, sufficient conditions of regional boundary gradient 

strategic sensors notions are explored, analyzed and discussed in connection with the regional boundary 

gradient of exact (weak) observability, positive definite observability operator and rank conditions.   
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1. Introduction 

One of the first steps in engineering designing is to identify its physical part. The physical part can be 

belong to a large array of system classes (Curtain & Pritchard 1978). So, we focus our interest on 

distributed parameter systems whose dynamics can be involves partial differential equations where the 

states depend not on time only but also on spatial variables (Curtain & Zwart 1995). The analysis of 

distributed parameter systems refers to a many concepts such as controllability and observability (El Jai & 

Amouroux 1988). The study of these concepts are related to the notions of sensors and actuators where the 

characterization of sensors and actuators are playing a fundamental role in the understanding of any real 

systems because they are intermediates between a system and it’s environment (El Jai & Pritchard 1988). 

The regional analysis is one of the most important notion of system theory, is focused on a state 

observation on a sub-region ω of the spatial domain Ω. These concepts are introduced and developed by El 

Jai et. al. as in ref.s (El Jai et al. 1994), (El Jai & El Yacoubi 1993), (Zerrik 1993), (Bourray et al. 2014) 

(Bourray et al. 2014), (Al-Saphory et al. ), (R. Al-Saphory & El Jai 2002) & (Al-Saphory & .El Jai 2001) 

and it has been extended to the case where the sub-region Г is a part of the boundary 𝜕Ω  of Ω in (Zerrik 

& Badraoui 2000) & (Zerrik et al. 1999). In the same direction one may be concerned with the regional 

gradient observability for a diffusion system where one is interested in knowledge of the state gradient only 

in a critical sub-region of the system domain without the knowledge of the state itself, this concepts has 
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been introduced by (Zerrik & Bourray 2003). Thus, the concept of regional strategic sensors which was 

introduced in (Al-Saphory & Al-Joubory 2013) gives a characterization of a regional strategic sensor to 

achieve of regional observability. In addition, the result in (Al-Saphory et al. 2015) has been extended to 

the regional gradient strategic sensors for various types of regional gradient observability. The introduction 

of this concept is motivated by real situations. This is the case, for example, of energy exchange problem, 

where the aim is to determine the energy exchanged between a casting plasma on a plane target which is 

perpendicular to the direction of the flow from measurements carried out by internal thermocouples (Figure 

1). 

 

Figure1. The Estimation Profile of Energy Exchanged on Γ. 

More precisely let the considered system with suitable state space, and suppose that the initial state 𝑦0 and 

its gradient 𝛻𝑦0 are unknowns. Suppose now that measurements are given by means of an output function 

(depending on the number and the structure of the sensors) (El Jai & Pritchard 1988). The problem 

concerns the reconstruction of the initial gradient 𝛻𝑦0 on the subregion 𝚪 of the system domain boundary 

𝜕Ω. 

The main objective of this paper is to extended these results in (Al-Saphory et al. 2015) to the case of 

regional boundary gradient strategic sensors for different cases of regional boundary gradient observation. 

More precisely, we discuss and analyze the relation between the regional gradient strategic sensors and the 

regional boundary gradient strategic sensors. This paper which organized as follows: 

Second section is present the problem statement and basic definitions with characterizations on the regional 

boundary gradient observability. Third section is devoted to the mathematical concepts of regional 

boundary gradient strategic sensors in various situations are studied and we develop an approach to cross 

internal region to the boundary region. In the last section we gives an application about different sensors 

locations. 

2. Regional Boundary Gradient Observability  

In this section, we present some notions and preliminary material as in (Zerrik & Bourray 2003). 

2.1 Problem Statement 

Let Ω be a regular bounded open subset of 𝑅𝑛 , with boundary 𝜕Ω and Г be sub-region of 𝜕Ω, [0,T], 

𝑇 > 0 be a time measurement interval. We denoted 𝑄 =  Ω × ]0, 𝑇[, 𝛴 = 𝜕Ω × ]0, 𝑇[. We considered 

distributed parabolic system is described by the following equation:             
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          {

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡),                                   𝑄

 𝑥(𝜉, 0) = 𝑥0(𝜉),                                                           Ω 

𝑥( 𝜂, 𝑡) = 0,                                                                   𝛴 

                               (1)  

with the measurement is given by the output function  

          𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡).                                                               (2) 

where 𝐴 = ∑
𝜕

𝜕𝑥𝑗
(𝑎𝑖𝑗

𝜕

𝜕𝑥𝑗
)𝑛

𝑖,𝑗=1   with  𝑎𝑖𝑗 ∈ 𝒟(�̅�) (domain of �̅�) is a second order linear differential 

operator, which is generated a strongly continuous semi-group (𝑆𝐴(𝑡))
𝑡≥0

on the Hilbert space 𝑋  and is 

self-adjoint with compact resolvent. Suppose that −𝐴  is elliptic, i.e., there exits 𝛼 > 0  such that  

∑ 𝑎𝑖𝑗𝜉𝑖𝜉𝑗
𝑛
𝑖,𝑗=1 ≥ 𝛼 ∑ |𝜉𝑗|

2
,𝑛

𝑗=1   almost everywhere (a.e.) on Q , ∀𝜉 = (𝜉1, … , 𝜉𝑛) ∈ 𝑅𝑛 .  The operator 

𝐵 ∈ 𝐿(𝑅𝑝, 𝑋) and 𝐶 ∈ 𝐿(𝑋, 𝑅𝑞), depend on the structure of actuators and sensors (El Jai & Amouroux 

1988). The space 𝑋, 𝑈 and 𝒪 be separable Hilbert spaces where 𝑋 is the state space, 𝑈 = 𝐿2(0, 𝑇, 𝑅𝑝) is 

the control space and 𝒪 = 𝐿2(0, 𝑇, 𝑅𝑞) is the observation space where 𝑝 and 𝑞 are the numbers of 

actuators and sensors. Under the given assumption, the system (1) has a unique solution (Curtain & 

Pritchard 1978) & (Curtain & Zwart 1995) given as follows: 

          𝑥(𝜉 , 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉) + ∫ 𝑆𝐴(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
                   (3)                                       

The problem is that, how to give sufficient conditions for regional boundary gradient strategic sensors. 

These conditions which enable to achieve the regional boundary gradient observability with different type 

of strategic sensors depending on the domain region, dimensional systems and structure sensors. 

2.2 Definition and Characterizations 

In this sub-section we are recall and introduced some basic concepts about the regional boundary 

gradient observability and sensors structures. For this purpose, we give the linear autonomous system of (1) 

     {

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡),                              𝑄

𝑥(𝜉, 0) = 𝑥0(𝜉),                                      Ω  
𝑥(𝜂, 𝑡) = 0.                                              𝛴

                          (4)                                                             

The solution of (4) is given by the following form   

      𝑥(𝜉 , 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉),       ∀𝑡 ∈ [0, 𝑇]                                   (5)                                   

The measurements are obtained through the output function by using of zone, pointwise which may located 

in Ω (or ∂Ω) given by the following form ((El Jai & Pritchard 1988): 

      𝑦(. , 𝑡) = 𝐶𝑥(𝜉 , 𝑡)                                                                                   (6)  

 We first recall a sensor is defined by any couple (𝐷, 𝑓), where 𝐷 is spatial support represented by a 

nonempty part of Ω̅ and f represents the distribution of the sensing measurements on 𝐷.   
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Depending on the nature of 𝐷 and 𝑓, we could have various type of sensors. A sensor may be pointwise 

if 𝐷 = {𝑏} with b ∈ Ω̅ and 𝑓 = 𝛿(. −𝑏), where δ is the Dirac mass concentrated at b. In this case the 

operator C is unbounded and the output function (2) can be written in the following form  

         𝑦(𝑡) = 𝑥(𝑏, 𝑡)   

 A sensor may be zonal when 𝐷 ⊂ Ω̅ and 𝑓 ∈ 𝐿2(𝐷). In this case the output function (2) can be 

written by the form  

          𝑦(𝑡) = ∫ 𝑥(𝜉, 𝑡)𝑓(𝜉)𝑑𝜉
𝐷

  

 In the case of boundary zone sensor, we consider 𝐷𝑖 = Г𝑖 ⊂ 𝜕Ω and 𝑓𝑖 ∈ 𝐿2(Г𝑖), the output function 

(2) can be written as  

           𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡) = ∫ 𝑥(𝜂, 𝑡)
Г𝑖

𝑓𝑖(𝜂)𝑑𝜂      

 Now, we define the operator  

           𝐾: 𝑥 ∈ 𝑋 → 𝐾𝑥 = 𝐶𝑆𝐴(. )𝑥𝜖 𝒪                      

  we note that 𝐾∗: 𝒪 → 𝑋  is the adjoint operator of 𝐾 defined by  

           𝐾∗𝑦∗ = ∫ 𝑆𝐴
∗(𝑠)𝐶∗𝑦∗(𝑠)𝑑𝑠                          

𝑡

0
          

 Consider the operator  

           𝛻: {
𝐻1(Ω) → (𝐻1( Ω))𝑛  

 𝑥 → 𝛻𝑥 = (
𝜕𝑥

𝜕𝜉1
, … ,

𝜕𝑥

𝜕𝜉𝑛
)
  

and the adjoint of ∇ denotes by ∇∗ is given by 

          𝛻∗: {
(𝐻1( Ω))𝑛 → 𝐻1(Ω)  

 𝑥 → 𝛻∗𝑥 = 𝑣
  

where 𝑣 is a solution of the Dirichlet problem 

           {
∆𝑣 = −𝑑𝑖𝑣(𝑥)    𝑖𝑛 Ω         
𝑣 = 0                    𝑖𝑛   𝜕Ω    

 

 The trace operator of order zero is given by  

            𝛾0: 𝐻1(Ω) → 𝐻1/2(𝜕Ω)  

Thus, the extension of the trace operator of order zero which is denoted by 𝛾 is linear, subjective and 

continuous, defined as an operator  𝛾: (𝐻1(Ω))𝑛 → (𝐻1/2(𝜕Ω))𝑛 and the adjoints are respectively given 

by 𝛾0
∗, 𝛾∗. 
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 For Г ⊂ ∂Ω, we consider a gradient restriction operator 𝜒Г ∶ (𝐻1/2(𝜕Ω))𝑛 → 𝐻1/2(Г))𝑛,  and 

𝜒Г ∶ 𝐻
1

2(𝜕Ω) → 𝐻
1

2(Г), 

where the adjoint are respectively given by 𝜒Г
∗, 𝜒Г

∗. 

 Also,  if ω ⊂ Ω we consider the operator 

           𝜒𝜔: {
(𝐻1( Ω))𝑛 → (𝐻1( 𝜔))𝑛  
 𝑥      →      𝜒𝜔𝑥 = 𝑥 ∣𝜔 

  

It’s adjoint is denoted by 𝜒𝜔
∗  

 Finally, we introduced the operator 𝐻 = 𝜒Г𝛾𝛻𝐾∗ from 𝒪 into  (𝐻1/2(Г))𝑛  Now, let us denoted 

the system (4) together with the output (6) by (4)-(6). 

Definition 2.1: The systems (4)-(6) are said to be exactly regionally gradient observable on 𝜔 

(exactly 𝜔𝐺-observable), if              

          𝐼𝑚𝜒𝜔𝛻𝐾∗ = (𝐻1( 𝜔))𝑛  

Definition 2.2: The systems (4)-(6) are said to be weakly regionally gradient observable on 𝜔 

(weakly ωG-observable), if   

           𝐼𝑚𝜒𝜔𝛻𝐾∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐻1( 𝜔))𝑛  

Definition 2.3: The systems (4)-(6) are said to be exactly regionally boundary gradient observable on Г 

(exactly Г𝐺  –observable) if  

          𝐼𝑚 𝐻 = 𝐼𝑚𝜒Г𝛾𝛻𝐾∗ = (𝐻1/2(Г))𝑛  

Definition 2.4: The systems (4)–(6) are said to be weakly regionally boundary gradient observable on Г 

(weakly Г𝐺  –observable) if  

          𝐼𝑚𝐻̅̅ ̅̅ ̅̅ = 𝐼𝑚𝜒Г𝛾𝛻𝐾∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1/2(Г))𝑛  

Remark 2.5: The definition (2.4) is equivalent to say that the systems (4)-(6) are weakly Г𝐺  –observable 

if 

          𝑘𝑒𝑟  𝐻∗ = 𝑘𝑒𝑟 𝐾𝛻∗𝛾∗𝜒Г
∗ = {0}  

Proposition 2.6: The systems (4) -(6) are exactly Г𝐺-observable if and only if there exists c > 0 such that, 

for all 𝑥∗ ∈ (𝐻1/2(Г))𝑛, 

           ‖ 𝜒Г𝑥∗‖(𝐻1/2(Г))𝑛 ≤ 𝑐‖𝐾𝛻∗𝛾∗𝜒Г
∗𝑥∗‖𝒪                        (7)                                                                

Proof: The proof of this property is deduced from the following general result (Curtain & Pritchard 1978). 

Let 𝐸, 𝐹, 𝐺 be reflexive Banach space and 𝑓 ∈ 𝐿(𝐸, 𝐺), 𝑔 ∈ 𝐿(𝐹, 𝐺), then the following properties are 

equivalent: 

a. 𝐼𝑚 𝑓 ⊂ 𝐼𝑚 𝑔. 

b. There exists  c > 0   such that  ‖𝑓∗𝑥∗‖𝐸∗ ≤ 𝑐‖𝑔∗𝑥∗‖𝐹∗ , ∀𝑥∗ ∈ 𝐺∗.   
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If we apply this result, considered 𝐸 = 𝐺 = (𝐻1/2(Г))𝑛 , 𝐹 = 𝒪, 𝑓 = 𝐼𝑑(𝐻1/2(Г))𝑛 and  𝑔 = 𝜒Г𝛾𝛻𝐾∗. We 

obtain the considered inequality (7).□ 

Remark 2.7: From the previous proposition 2.6, we can get the following results: 

1. The regional state reconstruction will be more precise than the boundary of the domain 𝜕Ω if we 

estimate the state in whole the boundary domain. 

2. From (7) there exists a reconstruction error operator that gives the estimation �̃�0 of the initial state 

 𝑥0 in Г,  and if we put 𝑒 = 𝑥0 − �̃�0 , we have  

          ‖𝑒‖𝐻1/2(Г) ≤ ‖𝑒‖𝐻1/2(𝜕Ω)  

and then 

          ‖𝑥0 − �̃�0‖𝐻1/2(Г) ≤ ‖𝑥0 − �̃�0‖𝐻1/2(𝜕Ω)  

where, 𝑥0 is the exact state of the system and �̃�0 is the estimated state of the system.  

3. If a system is exactly observable in ∂Ω then it is regionally exactly observable in Г. 

Now, we can deduced that : 

Proposition 2.8: If a system is exactly regionally boundary observable (exactly ГB-observable) then it is 

exactly ГG-observable. 

Proof: Since the system is exactly ГB-observable then there exists 𝛾 > 0 such that ∀𝑥0 ∈  𝐿2(Г), we have, 

           ‖𝑥0‖𝐿2(Г) ≤ 𝛾‖𝐾𝛾0
∗𝜒Г

∗𝑥0‖𝐿2(0,𝑇,𝒪),   ∀𝛾 > 0 

since (𝐿2(Г))𝑛 ⊂ 𝐿2(Г), then   

          ‖𝛻𝑥0‖(𝐿2(𝜕Ω))𝑛 = ‖𝑥0‖(𝐿2(Г))𝑛 ≤ ‖𝑥0‖𝐿2(Г)  , ∀ 𝑥0 ∈  𝐿2(Г) where, 

          𝐿2(Г) = {𝑥0 : ∫ |𝑥0|2 
Г

< ∞} and                                                

(𝐿2(Г))𝑛 = {𝛻𝑥0 = 𝑔𝑖 : ∫ |𝑔𝑖|
2 

Г
< ∞, 𝑔𝑖 =

𝜕𝑥0

𝜕𝜉𝑖
 ∀𝑖 = 1,2, … }.                                  (8) 

To prove that ‖𝑥0‖(𝐿2(Г))𝑛 ≤ 𝑐‖𝐾𝛻∗𝛾∗𝜒Г
∗𝑥0‖𝐿2(0,𝑇,𝒪).  Thus, from (8) and since a system is exactly 

ГB-observable, then  

there exists 𝛾 > 0 and 𝑐 > 0 which allow to choose 𝛾 =
1

𝑐
  where 𝑐 is given by 

            𝑐 =
‖𝐾𝛾0

∗�̃�Г
∗𝑥0‖

𝒪

‖𝐾𝛻∗𝛾∗𝜒Г
∗𝑥0‖

𝒪

                                                        (9) 

 and then 

           ‖𝑥0‖(𝐿2(Г))𝑛 ≤ ‖𝑥0‖𝐿2(Г) ≤ 𝛾‖𝐾𝛾0
∗𝜒Г

∗𝑥0‖𝒪                                (10)  

 substitute (9) in (10), we obtain  

           ‖𝑥0‖(𝐿2(Г))𝑛 ≤ ‖𝐾𝛻∗𝛾∗𝜒Г
∗𝑥0‖𝒪. 

Therefor, this system is exactly ГG-observable  with γ = 1.□ 

3. Boundary Gradient Strategic Sensors 

The purpose of this section is to link the regional boundary gradient observability notion with the sensors 
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structure. Consider now the system (4) observed by 𝑞 sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  , which may be pointwise or 

zonal. 

3.1 Г𝐺-Strategic Sensors 

Definition 3.1:A sensor (𝐷, 𝑓) is boundary gradient strategic on Г (Г𝐺-strategic) if the observed system 

is weakly Г𝐺-observable.  

Definition 3.2: A suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  are boundary gradient strategic on Г if there exists at least 

one sensor (𝐷1 , 𝑓1) which is weakly Г𝐺-observable. 

Corollary 3.3: A sensor is Г𝐺-strategic if the corresponding observed system is exactly Г𝐺  –observable.  

Proof: Since the system is exactly Г𝐺  –observable, then we have  

          𝐼𝑚 𝐻 = 𝐼𝑚𝜒Г𝛾𝛻𝐾∗ = (𝐻1/2(Г))𝑛.  

From decomposition subspace of direct sum in Hilbert space, we represent (𝐻1/2(𝜕Ω))𝑛 by the unique 

form [6] 

          𝑘𝑒𝑟𝜒Г + 𝐼𝑚𝜒Г
∗𝜒Г𝛾𝛻𝐾∗ = (𝐻1/2(𝜕Ω))𝑛  

we obtain  

          𝑘𝑒𝑟 𝐾(𝑡) 𝛻∗𝛾∗𝜒Г
∗ = {0}  

this is equivalent to 

          𝐼𝑚 𝜒Г𝛾𝛻𝐾∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝐻1/2(Г))𝑛.       

Finally, we can deduce this system is weakly Г𝐺–observable and therefore this sensor is Г𝐺-strategic.□ 

Corollary 3.4: A sensor is Г𝐺-strategic if and only if the operator 𝑁Г = 𝐻𝐻∗ is positive definite. 

Proof: Since a sensor is Г𝐺-strategic this means that a system is weakly Г𝐺- observable. Let  𝑥∗ ∈

(𝐻
1

2(Г))𝑛 such that 

          < 𝑁𝜔𝑥∗, 𝑥∗ >(𝐻1/2(Г))𝑛= 0   then ‖𝐻∗𝑥∗‖𝒪 = 0 

 and therefore 𝑥∗ ∈ 𝑘𝑒𝑟𝐻∗, thus, 𝑥∗ = 0, i.e., 𝑁𝜔 is positive definite. 

 Conversely, let 𝑥∗ ∈ (𝐻1/2(Г))𝑛 such that 

          𝐻∗𝑥∗ = 0, then < 𝐻∗𝑥∗, 𝐻∗𝑥∗ >𝒪= 0 

and thus, 

         < 𝑁𝜔𝑥∗, 𝑥∗ >(𝐻1/2(Г))𝑛= 0. 

Hence 𝑥∗ = 0 thus the system is weakly Г𝐺- observable and therefore a sensor is Г𝐺-strategic.□  

Thus, from previous corollaries we can obtain the following results: 

Remark 3.5: We can deduce that: 

1. If the system is exactly Г𝐺–observable then the system is weakly Г𝐺–observable and therefore the 

sensor is Г𝐺-strategic. 

2. A sensor which is regional boundary gradient strategic in Г𝐺
1   (Г𝐺

1 -strategic sensor) for a system where 

Г𝐺
1 ⊂ Г𝐺 , is regional boundary gradient strategic sensor in Г𝐺

2 (Г𝐺
2 -strategic sensor) for any Г𝐺

2 ⊂ Г𝐺
1 .  
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3.2 Crossing Approach from Internal to Boundary Case 

In this approach we deal with the regional boundary gradient strategic sensors in Г (Г𝐺-strategic sensor) as 

an internal regional gradient strategic sensors. In this case, we introduced the following extension operator 

(Zerrik & Bourray 2003) 

 Let  ℜ: (𝐻1/2(𝜕Ω))𝑛 → (𝐻1(Ω))𝑛, which is continuous and linear defined by  

           𝛾ℜℎ(𝜉, 𝑡) = ℎ(𝜉, 𝑡), ∀ℎ(𝜉, 𝑡) ∈ (𝐻1/2(𝜕Ω))𝑛                                    (11)   

 Let 𝐸 = ⋃ 𝐵(𝑥, 𝑟)𝑥∈Г  and �̅�𝑟 = 𝐸 ∩ Ω, where 𝐵(𝑥, 𝑟) is a ball of radius r, (r > 0 is an 

arbitrary and sufficiently small real) and centered in 𝑥(𝜉, 𝑟) and Г is a part of ω̅r (Figure 2).  

 

Figure 2. The Domain Ω, Subregion �̅�𝑟 and the Region Г. 

3.3 Г𝐺-strategic sensors and �̅�𝑟𝐺
-strategic sensors 

In this subsection we explain the link between the Г𝐺-strategic sensor and the regionally gradient strategic 

sensor on �̅�𝑟 (�̅�𝑟𝐺
-strategic sensor). 

Remark 3.6: From the above results we link the internal regional gradient observability in �̅�𝑟 to the 

boundary gradient case on Г, so we can deduced the following corollary. 

Corollary 3.7: If a sensor is �̅�𝑟𝐺
– strategic then it is Г𝐺-strategic. 

Proof: Since the sensor is �̅�𝑟𝐺
– strategic in �̅�𝑟, this mean that the system is weakly �̅�𝑟𝐺

– observable in 

�̅�𝑟. 

Thus, the system is weakly Г𝐺– observable (Zerrik & Bourray 2003) 

Therefor, the sensor is Г𝐺-strategic.□ 

Corollary 3.8: A sensor is Г𝐺-strategic if the system is exactly �̅�𝑟𝐺
–observable. 

Proof:  Let 𝑥(𝜉, 𝑡) ∈ (𝐻1/2(Г))𝑛 and �̅�(𝜉, 𝑡) be an extension to (𝐻1/2(𝜕Ω))𝑛. By using equation (11) 

and trace theorem there exists ℜ�̅�(𝜉, 𝑡) ∈ (𝐻1(Ω))𝑛, with bounded support such that  

           𝛾ℜ�̅�(𝜉, 𝑡) = �̅�(𝜉, 𝑡).  

Since the system is exactly �̅�𝑟𝐺
–observable, then the system is weakly �̅�𝑟𝐺

–observable (Al-Saphory et al. 

2015). 

 since a system is weakly �̅�𝑟𝐺
–observable then a system is weakly Г𝐺–observable (Al-Saphory R. (2002) 

& ( Zerrik & Bourray 2003) . Thus, a sensor is Г𝐺-strategic.□ 

Remark 3.9: We can deduce that: 

1. If the system is exactly �̅�𝑟𝐺
–observable then it is exactly Г𝐺–observable.  
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i.e., there exists an operator 𝜒�̅�𝑟
𝛻𝐾∗: 𝒪 → (𝐻1(𝜔𝑟))𝑛 given by 

          𝐻�̅�𝑟
𝑦(. , 𝑡) = 𝜒�̅�𝑟

𝛻𝐾∗𝑦(. , 𝑡) = 𝜒�̅�𝑟
ℜ�̅�(𝜉, 𝑡).  

Hence, 

          𝜒Г (𝛾𝜒�̅�𝑟
𝛻𝐾∗𝑦(. , 𝑡)) = 𝑥(𝜉, 𝑡). 

Where 𝑥(𝜉, 𝑡) ∈ (𝐻1/2(Г))𝑛 and �̅�(𝜉, 𝑡) be an extension to (𝐻1/2(𝜕Ω))𝑛. 

2. If the system is weakly �̅�𝑟𝐺
–observable then it is weakly Г𝐺–observable.  

3. An extension of these results can be applied for different cases of regional exponential general 

observability (Al-Saphory & Jaafar 2015). And, to the regional exponential reduced observability in 

distributed parameter systems (Al-Saphory & Al-Mullah 2015 ).   

The concept of boundary gradient strategic on Г can be characterized by the following main result may be 

called rank conditions: 

assume that there exists a complete set of eigenfunctions (𝜑𝑛𝑗)𝑛∈𝐼 & 𝑗=1,..,𝑟𝑛
 of  𝐴 in 𝐻1(Ω) associated 

with eigenvalue 𝜆𝑛  of multiplicities 𝑟𝑛  and 𝑟𝑛 = 𝑠𝑢𝑝𝑛∈𝐼 𝑟𝑛   is finite. For �̅� = (𝑥1, … , 𝑥𝑛−1)  and  

�̅� = (𝑛1, … , 𝑛𝑛−1). Suppose that the function 𝜓�̅�𝑗(�̅�) = 𝜒Г𝛾𝛻𝜑𝑛𝑗(𝑥), 𝑛 ∈ 𝐼 , form a complete set in 

(𝐻1/2(Г))𝑛. 

Theorem 3.10: Assume that 𝑠𝑢𝑝 𝑟𝑛 = 𝑟 < ∞, then the suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞, Г𝐺-strategic sensor if 

and only if  

𝑞 ≥ 𝑟, 𝑟𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛    ∀𝑛 ≥ 1, 𝑤ℎ𝑒𝑟𝑒 𝐺𝑛 = (𝐺𝑛)𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑟𝑛 

and  

          (𝐺𝑛)𝑖𝑗 = {
∑

𝜕𝜓�̅�𝑗

𝜕𝑥𝑘
(𝑏𝑖)

𝑚
𝑘=1   in the pointwise case

∑ <
𝜕𝜓�̅�𝑗

𝜕𝑥𝑘
,𝑛

𝑘=1 𝑓𝑖 >𝐿2(𝐷𝑖)        in the zonal case 

  

Proof: First, we know that if a system is weakly Г𝐺  –observable then is equivalent to [𝐾𝛻∗𝛾∗𝑋Г
∗𝑥∗ =

0 ⟹ 𝑥∗ = 0] which allows to say that the sequence of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 is Г𝐺-strategic if and only if  

          {𝑥∗ ∈ (𝐻1/2(Г))𝑛| < 𝐻𝑦 , 𝑥∗ >(𝐻1/2(Г))𝑛= 0, ∀𝑦 ∈ 𝒪} = {0} 

Suppose that the suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞   is Г𝐺-strategic on Г, but for a certain 𝑛 ∈ 𝑁, 𝑟𝑎𝑛𝑘 𝐺𝑛  𝑟𝑛, 

then there exists a vector  𝑥𝑛 = (𝑥𝑛1
, 𝑥𝑛2

, … , 𝑥𝑛𝑟𝑛
)𝑡𝑟 ≠ 0,  such that  𝐺𝑛𝑥𝑛  0.  

So, we can construct a nonzero  𝑥0 ∈ 𝐻1/2(Г)   considering   < 𝑥0, 𝜓𝑝𝑗 >𝐻1/2(Г)= 0  if 𝑝 ≠ 𝑛 , and  

< 𝑥0, 𝜓𝑛𝑗 >𝐻1/2(Г)= 𝑥𝑛𝑗 , 1 ≤ 𝑗 ≤ 𝑟𝑛. 

Let  𝑥0 = ∑ 𝑥𝑛𝑗
𝑟𝑛
𝑗=1 𝜓𝑛𝑗, 𝑋0 = (𝑥0, 𝑥0, … , 𝑥0)  then: 

          < 𝐻𝑦, 𝑥0 >(𝐻1/2(Г))𝑛= ∑ <𝑛
𝑘=1 𝜒Г𝛾0

𝜕

𝜕𝜉𝑘
(𝐾∗𝑦), 𝜒Г

∗𝑥0 >𝐻1/2(Г)    

                           = ∑ <𝑛
𝑘=1

𝜕

𝜕𝜉𝑘
(�̃�(𝑇), 𝛾0𝜒Г

∗𝑥0 >𝐿2(𝜕Ω)  
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where �̃� is the solution of the following system: 

          {

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴∗�̃�(𝜉, 𝑡) + ∑ 𝑓𝑖𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1             𝑄

�̃�(𝜉, 0) = 0                                                                Ω

�̃�(𝜂, 𝑡) = 0                                                                 𝛴

                                               (12) 

 Consider the system: 

       {

𝜕𝜓

𝜕𝑡
(𝜉, 𝑡) = −𝐴𝜑(𝜉, 𝑡)                                                 𝑄

𝜓(𝜉, 0) = 𝛾0
∗𝜒Г

∗𝑥0                                                       Ω

𝜓(𝜂, 𝑡) = 0                                                                     𝛴

                                                              (13)   

multiply (12) by 
𝜕𝜓

𝜕𝜉𝑘
 and integrate on 𝑄, we obtain: 

∫
𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡=∫ 𝐴∗�̃�(𝜉, 𝑡)

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡 

                         +∫ (∑ 𝛿𝑏𝑖
𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)𝑑𝜉𝑑𝑡

𝑄
       

but we have 

∫
𝜕𝜑

𝜕𝜉𝑘
(𝜉, 𝑡)

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡∫ [

𝜕𝜑

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉]

0

𝑇

𝜕Ω
+∫ 𝐴

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡 

                      ∫
𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝜕Ω
 + ∫ 𝐴

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡 

then 

 ∫
𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝜕Ω
 ∫ 𝐴

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝑄
+ ∫ 𝐴∗�̃�(𝜉, 𝑡)

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)𝑑𝜉

𝑄
𝑑𝑡   + ∫ (∑ 𝛿𝑏𝑖

𝑦𝑖(𝑇 −
𝑞
𝑖=1𝑄

𝑡))
𝜕𝜓

𝜉𝑘
(𝜉, 𝑡)𝑑𝜉𝑑𝑡. 

Integrating by parts we obtain 

∫
𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝜕Ω
= − ∫

𝜕𝑥(𝜂,𝑡)

𝜕𝑣𝐴∗𝜋

𝜕𝜓

𝜕𝜉𝑘
(ƞ, 𝑡)𝑑𝜂𝑑𝑡 + ∫

𝜕

𝜕𝑣𝐴∗
(

𝜕𝜓

𝜕𝜉𝑘
(𝜂, 𝑡)𝑑𝜂𝑑𝑡)

𝜋
�̃�(ƞ, 𝑡)𝑑𝜂𝑑𝑡 

+ ∫ (∑ 𝛿𝑏𝑖
𝑦𝑖(𝑇 − 𝑡)

𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)𝑑𝜉𝑑𝑡

𝑄
 

the boundary conditions give 

         ∫
𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)�̃�(𝜉, 𝑡)𝑑𝜉

𝜕Ω
 ∫ (∑ 𝛿𝑏𝑖

𝑦𝑖(𝑇 − 𝑡)
𝑞
𝑖=1 )

𝜕𝜓

𝜕𝜉𝑘
(𝜉, 𝑡)𝑑𝜉𝑑𝑡

𝑄
. 

Thus, 

         ∫ 𝜓(𝜉, 𝑡)
𝜕𝑥

𝜕𝜉𝑘
(𝜉, 𝑇)𝑑𝜉

𝜕Ω
= − ∑ ∫

𝜕𝜓

𝜕𝜉𝑘
(𝑏𝑖 , 𝑡)

𝑇

0

𝑞
𝑖=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡  

and we have 

         < 𝜒Г𝛾𝛻𝐾∗, 𝑥0 >(𝐻1/2(Г))𝑛= ∑ ∫
𝜕�̃�

𝜕𝜉𝑘
(𝜉, 𝑡)𝜓(𝜉, 𝑡)𝑑𝜉

Ω
𝑛
𝑘=1   
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                               = − ∑ ∫ ∑
𝜕𝜓

𝜕𝜉𝑘
(𝑏𝑖 , 𝑡)𝑛

𝑘=1
𝑇

0

𝑞
𝐾=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡  

but 

         𝜓(𝜉, 𝑡) = ∑ 𝑒−𝜆𝑝(𝑇−𝑡)∞
𝑝=1 ∑ < 𝑥0, 𝜓𝑝𝑗 >𝐿2(𝜔)

𝑟𝑝

𝑗=1
𝜓𝑝𝑗. 

Then, 

        ∑
𝜕𝜓

𝜕𝜉𝑘
(𝑏𝑖 , 𝑡)𝑛

𝑘=1 = ∑ 𝑒−𝜆𝑝(𝑇−𝑡)∞
𝑝=1 ∑ < 𝑥0, 𝜑𝑝𝑗 >𝐿2(𝜔)

𝑟𝑝

𝑗=1
∑

𝜕𝜓

𝜕𝜉𝑘

𝑛
𝑘=1 (𝑏𝑖) 

                    = ∑ 𝑒𝜆𝑝(𝑇−𝑡)(𝐺𝑝𝑥𝑝)𝑖
∞
𝑝=1  

therefore, 

      < 𝜒Г𝛾𝛻𝐾∗𝑦, 𝑥0 >(𝐻1/2(Г))𝑛= − ∑ ∫ ∑ 𝑒𝜆𝑝(𝑇−𝑡)(𝐺𝑝𝑥𝑝)∞
𝑝=1

𝑇

0

𝑞
𝐾=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡 

thus, 

     < 𝜒Г𝛾𝛻𝐾∗𝑦, 𝑥0 >(𝐻1/2(Г))𝑛= − ∑ ∫ 𝑒𝜆𝑛(𝑇−𝑡)(𝐺𝑛𝑥𝑛)𝑖
𝑇

0

𝑞
𝑖=1 𝑦𝑖(𝑇 − 𝑡)𝑑𝑡 = 0.  

This is true for all  𝑦 ∈ 𝐿2(𝑜, 𝑇: 𝑅𝑞), then  𝑋0 ∈ 𝑘𝑒𝑟 𝐻∗ which contradicts the assumption that the suite 

of sensor is  Г𝐺-strategic.□ 

Corollary 3.11: If the systems (4)-(6) are exactly Г𝐺  –observable, then the rank condition in theorem 

(3.10) is satisfied and the sensor is Г𝐺-strategic. 

Remark 3.12: From the above  results, we can deduce that: 

1. The theorem 3.10 implies that the required number of sensors is greater than or equal to the largest 

multiplicity of the eigenvalues. 

2. By infinitesimally deforming the domain, the multiplicity can be reduced to one (El Jai & El Yacoubi 

1993). Consequently,  Г𝐺-observability can be achieved using only one sensor. 

3. We can show that various sensors which are not gradient strategic in usual sense for the system but may 

be Г𝐺-strategic and achieve the Г𝐺-observability as in (Al-Saphory 2002)  

 

4. Applications to Sensors Locations 

In this section, we explore various results related to different types of measurements and we consider a two 

dimensional diffusion system defined on Ω =]0, 𝑎1[×]0, 𝑎2[ by 

    {

𝜕𝑥

 𝜕𝑡
(𝜉1, 𝜉2, 𝑡) =

𝜕2𝑥

𝜕𝜉1
2 (𝜉1, 𝜉2, 𝑡) +

𝜕2𝑥

𝜕𝜉2
2 (𝜉1, 𝜉2, 𝑡)                  𝑄

𝑥(𝜉1, 𝜉2, 0) = 𝑥0(𝜉1, 𝜉2)                                                       Ω

𝑥(𝜉, 𝜂, 𝑡) = 0                                                                          𝛴 

                                                        (16)                                                                              

Let Г =]0, 𝑎1[× {𝑎2}, the eigenfunctions and the eigenvalues of the system (16) are given by: 

     𝜑𝑖𝑛𝑚(𝜉1, 𝜉2) =
2

√𝑎1𝑎2
𝑠𝑖𝑛 𝑛𝜋

𝜉1

𝑎1
𝑠𝑖𝑛 𝑚𝜋

𝜉2

𝑎2
                                                                (17)  
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associated with eigenvalue   

           𝜆𝑛𝑚 = −(
𝑖2

𝑎1
2 +

𝑗2

𝑎2
2)𝜋2                                                               (18)  

if we suppose that  
𝑎1

2

𝑎2
2 ∉ 𝑄, then multiplicity of 𝜆𝑖𝑗  is 𝑟𝑖𝑗 = 1 and then one sensor (𝐷, 𝑓) my be 

sufficient to achieve Г𝐺-observable of the observed systems. Now, the result bellow give information on 

the location of internal or boundary (pointwise and zone) Г𝐺-strategic. 

4.1 Case of Zone Sensor 

We applying the previous results which are established and discussed the characterization of sensors in the 

case of (internal and boundary) zone sensor. 

4.1.1 Internal Zone Sensor 

Consider the system (16) with the output can by written by the form  

         𝑦(𝑡) = ∫ 𝑥
𝐷

(𝜉1, 𝜉2, 𝑡)𝑓(𝜉1, 𝜉2)𝑑𝜉1𝑑𝜉2,  

with the zone sensor is located inside the domain Ω, over the supports 𝐷 =]𝜉1 − 𝑙1, 𝜉1 + 𝑙1[×]𝜉2 − 𝑙2, 𝜉2 +

𝑙2[⊂ Ω  (Figure 3). We have  

 

Figure 3: Location of internal zone sensor 𝐷. 

Corollary 4.1:  If  the function 𝑓 is symmetric with respect to the point 𝜉0 = (𝜉01
, 𝜉02

) then the sensor 

(𝐷, 𝑓) is  not  Г𝐺-strategic if one of these conditions are satisfied: 

1. 
𝜉01

𝑎1
∈ 𝑄 and 

𝜉02

𝑎2
∈ 𝑄. 

2. There exist 𝑖0, 𝑗0 ∈ 𝑁 such that 
𝑖0𝜉01

𝑎1
 and  

𝑗0𝜉02

𝑎2
∈ 𝑄 

4.1.2 Boundary Zone Sensor 

Here the measurements are given by the output 𝑦(𝑡) = ∫ 𝑥
Г0

(𝜉, 𝑡)𝑓(𝜉)𝑑𝜉, with Г0 is an open part of ∂Ω 

(Figure 4). In the case where   and  )(2  Lf , the sensor ),( fD  may be located on the 

boundary in  ],[
11 000 ll  { 2a } then we have 
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Figure 4:  Locations of boundary zone sensors Г0, Γ̅. 

Corollary 4.2: 

1. One side case: Suppose that the sensor ),( fD  is located on    ],[
11 000 ll  { 2a }

  and f is symmetric with respect to ,
101    then the sensor (Г0, 𝑓) is not  ГG-strategic if  

10 /
1

an   𝑄 for every ....,,1, Jmn   

2. Two side case:  Suppose that  the sensor ),( fD   is located on  ],0[ 101
l {0}   {0} 

],0[ 202
l    and 

1

f  is symmetric with respect to 
101    and the function 

2

f  is 

symmetric with respect to 
202   , then the sensor (Г0, 𝑓) is not  Г𝐺 -strategic if  

10
/

1
an  and  

20
/

2
am 𝑄  for every ,...,,1, Jmn   where Γ̅ = 𝛤1  𝛤2. 

This shows that the regional boundary gradient observability depends on the geometry of the sensors 

support and measurements function. 

4.2  Case of Pointwise Sensor  

In this subsection we discuss and characterize the sensors in the case of (internal and boundary) pointwise 

sensors. 

4.2.1 Internal Pointwise Sensor 

In this case the out put function is given by 

        𝑦(𝑡) = ∫ 𝑥
𝐷

(𝜉1, 𝜉2, 𝑡)𝛿(𝜉1 − 𝑏1, 𝜉2 − 𝑏2)𝑑𝜉1𝑑𝜉2                                                         (19) 

with 𝑏 = (𝑏1 , 𝑏2) ∈ Ω is location of pointwise sensor  (Figure 5). 
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Figure 5: Locations of Internal pointwise sensors 𝑏, 𝜎. 

Corollary 4.3:  

1. Internal pointwise case: If 
11 / anb  and 22 / amb 𝑄 for every Jmn ...,,1,  , then, the sensor 

(𝑏, 𝛿𝑏) is not Г𝐺-strategic. 

2. Filament case: Suppose that the observation is given by the filament sensor where )(Im  
 

is 

symmetric with respect to the line ),( 21 bbb  , if 
11 / abn  and  22 / amb  𝑄  for every 

Jmn ...,,1,  ,  then, the sensor (𝜎, 𝛿𝜎) is not Г𝐺-strategic. 

4.2.2 Boundary Pointwise Sensor 

Here we have 𝑏 = (𝑏1 , 𝑏2) ∈ 𝜕Ω with 𝑏 = (𝑏1 ,0) or 𝑏 = (0 , 𝑏2) (Figure 6). 

 

Figure 6: Location of boundary pointwise sensor 𝑏. 

Corollary 4.4: The sensor (𝑏, 𝛿𝑏) is not Г𝐺-strategic if 22 / amb 𝑄 for every Jm ...,,1 .  

This shows that there are some sensor locations to be avoided. We note that in real applications a sensor is 

considered as pointwise if the support area of measurement distribution is very small with respect to system 

domain. 

Remark 4.5: These results can be extended to the following:  

(1) Case of Neumann or mixed boundary conditions (El Jai & Pritchard 1988 ) & (Al-Saphory et al.2001 ).  

(2) Case of disc domain with circular strategic sensor in various case of pointwise zone internal or 

boundary as in (Al-Saphory & El Jai 2002) & (Al-Saphory & El Jai 2001). 

5. Conclusions 

We have been characterize of regional boundary gradient strategic sensors notion in order to achieves 
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regional boundary gradient observability. Also, we have introduced the links between the regional 

boundary gradient strategic sensor on Г with a regional exactly gradient observability in ω.  Thus, we 

have been shown that there exists a link between the exactly regional gradient observability on ω and 

weakly regional boundary gradient observability on Г. Many interesting results concerning the choice of 

sensors structure are given and illustrated in specific situations. Various questions still open and is under 

consideration. For example, these result can be extended to the regional exponential general or reduced 

observability notions (Al-Saphory & Al-Mullah. 2015), (Al-Saphory & Jaafar  2015), observability or 

controllability notions for linear or non-linear (parabolic or hyperbolic) as in (Bourray et al. 2014),  

(Al-Saphory et al.  2010), (Ben Hadid 2012) and (Boutoulout et al. 2010, 2013).   
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