On nth - power paranormal operators on Hilbert spaces

Suad Naji kadhim

Department of mathematics, College of science, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper we introduce a new class of operators on a Hilbert space. We call these operators in this class, nth-power paranormal operators. We study this class of operators and give some of their basic properties. **Keywords: paranormal operator , Hilbert space .**

0. Introduction.

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear operators on H.

Furuta [2] has defined a bounded linear operator T on a Hilbert space H as paranormal if $||T^2x|| \ge ||Tx||^2$ for every unit vector x in H.

In this paper we discuss a new class of operators as follow :

Let $T \in B(H)$, T is called nth - power paranormal operator if for some positive integer n, we have $||T^{2n}x|| \ge ||T^nx||^2$ for every unit vector x in H.

Moreover, we give a characterization of nth - power paranormal operator (see theorem (1.4)), and prove some important results about it.

Theorem 0 [4]:- Let $T \in B(H)$. If T is paranormal operator, then T^n is paranormal operator for each $n \in N$. **1.** nth - power paranormal operators.

Definition 1.1: Let $T \in B(H)$. T is called nth - power paranormal operator if for some positive integer n, we have $||T^{2n}x|| \ge ||T^nx||^2$, for every unit vector x.

Remark 1.2: One can see that every paranormal operator is 1th-power paranormal operator. But the converse is not necessary true in general. For example it T is any nilpotent operator of order m, i.e, $T^m=0$, then T is mth – power paranormal operator, but it is not necessarily paranormal operator.

We can by theorem (0), conclude the following result.

Corollary 1.3: Let T be a bounded linear operator. If T is nth - power paranormal operator, then T^n is paranormal operator for each $n \in \mathbb{N}$.

We start this section by the following main result which is characterized the nth - power paranormal operator.

Theorem 1.4 [2]: An operator T is nth –power paranormal operator if and only if $T^{*2n} T^{2n} - 2\lambda T^{*n} T^n + \lambda^2 I \ge 0$, for all $\lambda \ge 0$ and positive integer number n.

To prove theorem (1. 4) we need the following lemma.

Lemma 1.5 [3] : Let a and b two positive number, then $a^{\beta} b^{\mu} \le \beta a + \mu b$ holds for $\beta, \mu > 0$ such that $\beta + \mu = 1$.

The proof of theorem (1.4)

Assume that T is nth – power paranormal operator, then $||T^{2n}x|| \ge ||T^nx||^2$, $x \in H$, ||x|| = 1, $n \in N$. Thus

$$||T^{2n}(\frac{x}{||x||})|| \ge ||T^{n}(\frac{x}{||x||})||^{2}, ||x||=1, n \in \mathbb{N}, x \in \mathbb{H}.$$

So that,

$$(\frac{1}{||x||}) ||T^{2n}x|| \ge (\frac{1}{||x||^2}) ||T^nx||^2,$$

this implies that

$$||T^{2n}x|| ||x|| \ge ||T^nx||^2, x \in H, ||x||=1.$$

Hence,

But

$$\begin{array}{ll} < T^{2n}x , T^{2n}x >^{1/2} < x, x >^{1/2} \ge < T^n x , T^n x >. \\ \text{Therefore,} & < T^{*2n} T^{2n}x , x >^{1/2} < x, x >^{1/2} \ge < T^{*n} T^n x, x > \dots (1) \\ \text{But} & < T^{*2n} T^{2n}x , x >^{1/2} \text{ and } < x, x >^{1/2} \end{array}$$

are positive, therefore by using lemma (1.4) with $\beta = \mu = 1/2$.

Thus for each $\lambda > 0$, we have

$$\langle T^{*2n} T^{2n} x, x \rangle^{1/2} \langle x, x \rangle^{1/2} = \left(\frac{1}{\lambda} \langle T^{*2n} T^{2n} x, x \rangle\right)^{1/2} (\lambda \langle x, x \rangle)^{1/2}$$

$$\leq \frac{1}{2\lambda} \langle T^{*2n} T^{2n} x, x \rangle + \frac{\lambda}{2} \langle x, x \rangle.$$

Hence, by (1) we have

$$\frac{1}{2\lambda} < T^{*2n} T^{2n} x, x > + \frac{\lambda}{2} < x, x \ge < T^{*n} T^n x, x >.$$

Therefore,

$$<(\frac{1}{2\lambda}T^{*2n}T^{2n} - T^{*n}T^n + \frac{\lambda}{2}) x, x \ge 0 \dots$$
 (2)

This implies that

$$\frac{1}{2\lambda} T^{*2n} T^{2n} - T^{*n} T^n + \frac{\lambda}{2} \ge 0.$$

Therefore, $T^{*2n} T^{2n} - 2\lambda T^{*n} T^n + \lambda^2 \ge 0$ for all $\lambda > 0, n \in \mathbb{N}$ (3) The left side of (2) is zero and (3) again holds. Hence, $T^{*2n} T^{2n} - 2\lambda T^{*n} T^n + \lambda^2 \ge 0$, for each $\lambda > 0, n \in \mathbb{N}$.

Conversely, if
$$T^{*2n} T^{2n} - 2\lambda T^{*n} T^n + \lambda^2 \ge 0$$
, for each $\lambda > 0$, $n \in \mathbb{N}$, then
 $\frac{1}{2\lambda} T^{*2n} T^{2n} - T^{*n} T^n + \frac{\lambda}{2} \ge 0$.
Thus $\frac{1}{2\lambda} T^{*2n} T^{2n} + \frac{\lambda}{2} \ge T^{*n} T^n$.

Hence, for each $x \in H$, we have,

$$\frac{1}{2\lambda} < T^{*2n} T^{2n} x, x > + \frac{\lambda}{2} < x, x > \ge < T^{*n} T^n x, x >.$$

Now.

Put
$$\lambda = \left(\frac{\langle T^{*2n} T^{2n} x, x \rangle}{\langle x, x \rangle}\right)^{1/2}$$
, then
 $\frac{1}{2} \langle T^{*2n} T^{2n} x, x \rangle^{1/2} \langle x, x \rangle^{1/2} + \frac{1}{2} \langle T^{*2n} T^{2n} x, x \rangle^{1/2} \langle x, x \rangle^{1/2} \geq \langle T^{*n} T^n x, x \rangle.$
Hence,
 $\langle T^{*2n} T^{2n} x, x \rangle^{1/2} \langle x, x \rangle^{1/2} \langle x, x \rangle^{1/2} \geq \langle T^{*n} T^n x, x \rangle.$
Therefore,
 $\langle T^{2n} x, T^{2n} x \rangle^{1/2} \langle x, x \rangle^{1/2} \geq \langle T^n x, T^n x \rangle.$
So that
 $\|T^{2n} x\| \|x\| \ge \|T^n x\|^2$

Hence, for each unit vector $x \in H$ and positive integer number n, we have $||T^{2n}x|| \ge ||T^nx||^2.$

Thus T is nth - power paranormal operator.

Following results collects some of basic properties of nth-power paranormal operators.

proposition 1.6: If $T \in B(H)$ is nth - power paranormal operator, then

1- T^* is nth - power paranormal operator.

2- If T^{-1} exist then T^{-1} is nth - power paranormal operator.

3-If $S \in B$ (H) is unitary equivalent to T, then S is nth - power paranormal operator.

4- If M is a closed subspace of H such that M reduces T, then (T/M) is nth-power paranormal operator.

Proof:- Since T is nth-power paranormal operator, then for some positive integer n, we have $||T^{2n}x|| \ge ||T^nx||^2$ for every unit vector x in H.

1- For all x in H,

$$T^{2n}T^{*2n} - 2\lambda T^n T^{*n} + \lambda^2 \ge 0$$

$$\Leftrightarrow < (T^{2n}T^{*2n} - 2\lambda T^n T^{*n} + \lambda^2) \mathbf{x}, \mathbf{x} > \ge 0, \text{ for all } \lambda \in \mathbb{R}$$

$$\Leftrightarrow < T^{2n}T^{*2n} \mathbf{x}, \mathbf{x} > - 2\lambda < T^n T^{*n} \mathbf{x}, \mathbf{x} > + \lambda^2 < \mathbf{x}, \mathbf{x} > \ge 0$$

$$\Leftrightarrow < T^{*2n} \mathbf{x}, T^{*2n} \mathbf{x} > - 2\lambda < T^n \mathbf{x}, T^{*n} \mathbf{x} > + \lambda^2 < \mathbf{x}, \mathbf{x} > \ge 0.$$

 $||T^{*2n}||^2 - 2\lambda ||T^{*n}||^2 + \lambda^2 ||x||^2 \ge 0.$

By elementary properties of real quadratic forms: If a>0, b and c are real quadratic forms: If a>0, b and c are real quadratic forms: If a>0, b and c are real numbers then $at^2+bt+c\geq 0$ for every real t if and only if $b^2-4ac\leq 0$, we get

$$4||T^{*n}||^4 \le 4||T^{*2n}||^2||x||^2 \text{ for all } x \in \mathbf{H}.$$

$$||T^{*n}||^2 \le ||T^{*2n}||^2 ||x||$$
 for all $x \in H$.

 T^* is nth - power paranormal operator.

2- Since T is nth-power paranormal operator, then

 $\|T^{2n}x\| \|x\| \ge \|T^nx\|^2$ For each x, $\|x\| = 1$, $n \in N$. Thus, $\frac{\|x\|}{\|T^nx\|} \ge \frac{\|T^nx\|}{\|T^{2n}x\|}$

Now replace x by $(T^{-1})^{2n} x$ then

$$|x|| ||(T^{-1})^{2n}x|| \ge ||(T^{-1})^nx||^2.$$

for each $x \in H$, $n \in N$. This shows that T^{-1} is nth - power paranormal operator.

3- Since S is unitary equivalent to T, then S= UTU^{*}. Therefore, $\|S^{n}x\|^{2} = \|U T^{n}U^{*}x\|^{2}$ $\leq \|U\|^{2} \|T^{n}(U^{*}x)\|^{2}$ (Since T^{n} is paranormal) $= \|U (T^{n}(U^{*}x))\|^{2}$ $\leq \|U T^{2n}(U^{*}x)\|$ $\leq \|S^{2n}x\|$

4- Let $x \in M$. Then we have $||(T/M)^n x||^2 = ||(T^n/M)x||^2 = ||T^n x||^2 \le ||T^{2n}x|| ||x||$ $= ||(T^{2n}/M)x|| ||x|| = ||(T/M)^{2n}x|| ||x||.$ This implies that (T/M) is nth - power paranormal operator.

Theorem 1.7: If a nth - power paranormal operator T commutes with an isometric operator S, then TS is nth-power paranormal operator.

Proof:- let A=TS, We have for any real number λ that, $A^{*2n} \ A^{2n} - 2\lambda A^{*n} A^n + \lambda^2 I =$ $S^{*n}T^{*n}S^{*n}T^{*n}T^nS^n - 2\lambda S^{*n}T^{*n}T^nS^n + \lambda^2 I.$ But $T^nS^n = S^nT^n$ and $S^{*n}S^n = I$, we have $A^{*2n} \ A^{2n} - 2\lambda A^{*n} \ A^n + \lambda^2 I =$ $T^{*2n}T^{2n} - 2\lambda T^{*n}T^n + \lambda^2 I \ge 0$, so that A is nth - power paranormal operator.

Theorem 1. 8:- Let T be a nth-power paranormal operator ,then $||T^{3n}x|| \ge ||T^{2n}x|| ||T^nx||$

for each x, $\|x\| = 1$, $n \in N$.

Proof :-

 $\overline{\|T^{3n}\mathbf{x}\|} = \|T^n \mathbf{x}\| \|T^{2n}\left(\frac{T^n \mathbf{x}}{\|T^n \mathbf{x}\|}\right)\|$

$$\geq \|T^{n}x\| \| T^{n}\left(\frac{T^{n}x}{||T^{n}x||}\right)$$

$$= \frac{1}{||T^{n}x||} \|T^{2n}x\|^{2}$$

$$= \frac{||T^{2n}x||}{||T^{n}x||} \|T^{2n}x\|$$

$$\geq \frac{||T^{2n}x||}{||T^{n}x||} \|T^{n}x\|^{2}$$

$$= \|T^{2n}x\| \|T^{n}x\| .$$

As we desired .

Theorem 1-9 :- Let T be a weighted shift with non zero weights $\{\alpha_n\}$ (n=1,2,...). Then T is a mth-power paranormal operator if and only if

 $|\alpha_n| |\alpha_{n+1}| \dots |\alpha_{n+m-1}| \leq |\alpha_{n+m}| |\alpha_{n+m+1}| \dots |\alpha_{n+2m-1}| \text{ for } n=1,2,3...$

<u>Proof</u>:- Let $\{e_n\}_{n=1}^{\infty}$ be an orthnonmal basis of a Hilbert space H.

 $\|^2$

Suppose T is a mth-power paranormal operator then T^m is paranormal operator Therefore $||T^m e_n||^2 \le ||T^{2m} e_n||$ (n=1,2,3,....).

Note that $\|\operatorname{Ten}\| = \| \propto_n e_{n+1} \| = \| \propto_n |$

Here

 $T^m \mathbf{e}_n = \boldsymbol{\propto}_n \boldsymbol{\propto}_{n+1} \dots \boldsymbol{\propto}_{n+(m-1)} \mathbf{e}_{n+m}$

And

 $T^{2m} \mathbf{e}_{n} = \alpha_{n} \alpha_{n+1} \dots \alpha_{n+(m-1)} \alpha_{n+m} \dots \alpha_{n+(2m-1)} \mathbf{e}_{n+2m}.$ For m=1,2,..... But $\|T^{m} \mathbf{e}_{n}\|^{2} \le \|T^{2m} \mathbf{e}_{n}\|$ (n=1,2,....),

and so

$$\begin{split} |\boldsymbol{\alpha}_n|^2 |\boldsymbol{\alpha}_{n+1}|^2 \dots |\boldsymbol{\alpha}_{n+m-1}|^2 \leq |\boldsymbol{\alpha}_n| \mid \boldsymbol{\alpha}_{n+1} \mid \dots \mid \boldsymbol{\alpha}_{n+m-1} \mid \mid \boldsymbol{\alpha}_{n+m}| \dots |\boldsymbol{\alpha}_{n+2m-1}|.\\ \text{Therefore, for } n=&1,2,3,\dots,\\ |\boldsymbol{\alpha}_n\mid |\boldsymbol{\alpha}_{n+1}| \dots |\boldsymbol{\alpha}_{n+m-1}| \leq |\boldsymbol{\alpha}_{n+m}| \mid \boldsymbol{\alpha}_{n+m+1}| \dots |\boldsymbol{\alpha}_{n+2m-1}| \,. \end{split}$$

Conversely,

$$\begin{split} & \text{Suppose} \ | \alpha_n | \ | \alpha_{n+1} | \ \dots \ | \ \alpha_{n+m-1} | \le | \ \alpha_{n+m} | \ | \ \alpha_{n+m+1} | \ \dots \ | \alpha_{n+2m-1} | \\ & \text{for} \quad n=1,2,3,\dots \ \text{.Then we have} \\ & \| \mathcal{T}^{2m} e_n \| - \| \mathcal{T}^m e_n \|^2 \ = \| \ \alpha_n \ \alpha_{n+1} \ \dots \ \alpha_{n+m-1} \ \alpha_{n+m} \ \dots \ \alpha_{n+2m-1} \ e_{n+m} \| \\ & \quad - \| \alpha_n \ \alpha_{n+1} \ \dots \ \alpha_{n+m-1} \ e_{n+m} \|^2 \\ & \quad = | \alpha_n | \ | \alpha_{n+1} | \ \dots \ | \ \alpha_{n+m-1} | \ (| \ \alpha_{n+m} | \ \dots \ | \alpha_{n+2m-1} | - | \alpha_n | \ \dots \ | \ \alpha_{n+m-1} |) \ge 0. \\ & \text{Therefore} \ , \qquad \| \mathcal{T}^m e_n \|^2 \le \| \mathcal{T}^{2m} e_n \| \qquad (n=1,2,\dots) \ , \end{split}$$

and so T is a mth – power paranormal operator.

Recall that $T \in B(H)$ is called n-normal operator if $T^n T^* = T^* T^n$ for some positive integer n.

It is well known that every normal operator is paranormal operator. In the next

Theorem we prove that every n-normal operator is nth-power paranormal operator-

Theorem 1.11: - Every n-normal operator T in B(H) is nth-power paranormal operator.

Proof: - since T is n-normal operator, there Tⁿ is normal operator (see [1]). Thus we have, since $\|T^n x\| = \|T^{*n} x\| \qquad \forall x ,$ $\|T^n x\|^2 = \langle T^n x, T^n x \rangle$ $= \langle T^{*n}(T^n x) , x \rangle$ $\leq \|T^{*n}(T^n x)\| \| x \|$ $= \|T^n(T^n x)\| \| x\|$ $= \|T^{2n} x\| \| x\|.$

Therefore, T is nth-power paranormal operator.

References

[1] S.A. ALzuraiqi , A.B. patel : on n-normal operators . General mathematic notes – vol 1 , no.2 (2010).61-73.

[2] T.Ando : on operators with norm condition . Aeta sci.math .(Szeged).33(1972), 169-178.

[3] T. Furuta : invitation to Linear operators , taylor and francis , London , new York 2002.

[4] T.Furuta : on the class of paranormal operators . Proc . Japan Acad .43(1967). 594-598.