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Abstract  

Fifth order boundary value problems have been solved using B-spline functions. In this paper, we 

propose a simple method for solving fifth order boundary value problems that gives better results than 

B-spline based method. The effectiveness of the proposed method is tested on several problems.  
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1. Introduction 

The fifth order boundary value problems occur in mathematical modeling of viscoeleastic flows viz-a-viz 

in various branches of physical sciences and engineering [1-5]. In this paper, we consider the following 

class of boundary value problems. 

 
(5) ( ) ( , )y x f x y a x b= < <         (1) 

      subject to the boundary conditions 

y(a)=A1,  y'(a)=A2,   y'’(a)=A3,   y(b)=B1,  y’(b)=B2 

 f is a real continuous nonlinear function of x and y; and Ai (i=1,2,3), Bi(i=1,2) are real constants. 

There are various methods available in literature that include iterative method [6], spectral Galerkin and 

collocation [7, 8], decomposition [9], B-spline functions of different order [1-5]. Details about B-splines 

can be found in [10, 11]. It is assumed that a unique solution y(x) exists and is analytic in the given 

interval. The studies related to existence and uniqueness of solutions of such boundary value problems 

are discussed in [12, 13]. We derive successive relations for obtaining higher derivatives at some point 

x=x0 ∈ [a, b] and then express solution as the linear combination of basic polynomials. Without loss of 

generality and because of simplicity, we can take x0 as zero if the desired interval is [0, 1]. Then using 

Taylor series we may write the solution y(x) as follows.  

2 3 ( )1 1 1 1
( ) (0) '(0) ''(0) '''(0) .... (0) ...

1! 2! 3! !

n ny x y y x y x y x y x
n

= + + + + + +   (3) 

In (3), some of the derivatives i.e., y
(i)

(0), i=5,6,…, may be the functions of some of y(0), y’(0), y’’(0), 

y
(3)

(0), y
(4)

(0). Using other boundary conditions, we obtain the value of these unknowns. The method is 

illustrated using some examples from the literature [1].  
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2. Numerical Results 

 

In this section, we test the effectiveness of our proposed method by applying it on the problems discussed 

in [1]. 

 

2.1 Problem 1: Consider the following equation. 

(5) ( ) ( ) 15 10 0 1

(0) 0, '(0) 1, ''(0) 0, (1) 0, '(1)

x xy x y x e xe x

y y y y y e

= − − < <

= = = = = −
   (4) 

 

Solution:  Taking x→0 in (4), we get y(5)(0)=-15. 

Differentiating (4) once, we have 

(6) ( ) '( ) 15 10 10x x xy x y x e e xe= − − −       

Putting x=0 gives 

(6) (0) 24y = −          (5) 

Differentiating (4) twice, we have 

(7) (2)( ) ( ) 15 20 10x x xy x y x e e xe= − − −       

Putting x=0 in this equation, we get 

(7) (0) 35y = −          (6) 

Performing the successive differentiation in (4) and then putting x=0, we have the following recursive 

relation for n
th 
derivative 

( ) ( 5)(0) (0) 15 10( 5) 5n ny y n n−= − − − ≥      (7) 

We write (7) in the following form (k=1,2,3,…) 

 
(5 ) (0) (0) 5 (5 2)ky y k k= − −        (8a) 

(5 1) (0) '(0) 5 (5 )ky y k k+ = −        (8b) 

(5 2) (0) ''(0) 5 (5 2)ky y k k+ = − +        (8c) 

(5 3) (3)(0) (0) 5 (5 4)ky y k k+ = − +        (8d) 

(5 4) (4)(0) (0) 5 (5 6)ky y k k+ = − +        (8e) 

It may be noted that y(3)(0) and y(4)(0) are unknowns and their values will be found using boundary 

conditions. 

We write the solution in the following form 
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2 3 ( )1 1 1 1
( ) (0) '(0) ''(0) '''(0) .... (0) ...

1! 2! 3! !

n ny x y y x y x y x y x
n

= + + + + + +   (9) 

It can be written as follows 

(5 ) (5 1) (5 2) (5 3) (5 4)
5 5 1 5 2 5 3 5 4

0

(0) (0) (0) (0) (0)
( )

5 ! (5 1)! (5 2)! (5 3)! (5 4)!

k k k k k
k k k k k

k

y y y y y
y x x x x x x

k k k k k

+ + + +
+ + + +

=

 
= + + + +  + + + + 
∑  

Using (8a)-(8e) in the above equation and then carrying out some manipulations it gives 

5 3 5 4
(3) (4)

0 0

5 5 1 5 2 5 3 5 4

1

5 5 1 5 2 5 3 5 4

1

( ) (0) (0)
(5 3)! (5 4)!

(5 2)! (5 1)! (5 )! (5 1)! (5 2)!

(5 1)! (5 )! (5 1)! (5 2)! (5 3)!

k k

k k

k k k k k

k

k k k k k

k

x x
y x x y y

k k

x x x x x

k k k k k

x x x x x

k k k k k

+ +

= =

+ + + +

=

+ + + +

=

 
= + + 
 + + 

 
− + + + +  − − + + 

− + + + +
− + + +

∑ ∑

∑

∑
 
  
 

 

Or 

5 3 5 4
(3) (4) 2

0 0

( ) ( (0) 3) ( (0) 8)
(5 3)! (5 4)!

k k
x x

k k

x x
y x y y x e xe

k k

+ +

= =

 
= + + + − + 
 + + 

∑ ∑  

Using the boundary conditions it gives 

y
(3)
(0) = -3  and y

(4)
(0) = -8.   

Thus, the solution is  

2( ) x xy x x e xe= − +         (10) 

This is the same as the exact solution of the problem.        

2.2 Problem 2: Consider the following equation. 

(5) 5 ( )

5

48
( ) 24 , 0 1

(1 )

(0) 0, '(0) 1, ''(0) 1, (1) ln(2), '(1) 0.5

y xy x e x
x

y y y y y

−= − + < <
+

= = = − = =
  (11) 

 

Solution: Performing similar steps as in Problem 1, we get 

(5) (0) 24 4!y = =          (12) 

(6) (0) 120 5!y = − = −           (13)  

(7) (6) (5)(0) 5( (0) (0)) 5(120 24) 720 6!y y y= − − = − + = =    (14) 
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(8) (7) (6) (5)(0) 5( (0) 2 (0) (0) '''(0)) 5*48( '''(0) 2 ''(0))y y y y y y y= − − + + +  

Or 
(8) (0) 5(6! 2*(5!) 4! '''(0) 48 '''(0) 96)y y y= − + + − +        

(8) (0) 5!(44 '''(0))y y= − −         (15) 

(9) (8) (7) (6) (5) (4) (4)(0) 5( (0) 3 (0) 3 (0) '''(0) (0) (0)) 5*48( (0) 3 '''(0))y y y y y y y y y= − − + + + +  

Or 
(9) (8) (4) (4)(0) 5( (0) 3*6! 3*5! '''(0) 4! (0) 48 (0) 3*48 '''(0))y y y y y y= − − − + − −  

Or 
(9) (4)(0) 5( 5!*44 16*4! '''(0) 3*6! 4! (0))y y y= − − − − −  

Or  
(9) (4)(0) 5!(342 (0))y y= +        (16) 

Performing successive differentiation in (11) and then putting x=0, we have the following recursive 

relation for n
th
 derivative 

( 6) ( 5 ) ( 1) ( 1) ( )

0

(0) 5 (0) (0) 240( ) 1

n
n n n k k n n

k

k

y C y y y ny n+ + − + +

=

+ = + ≥∑  (17) 

We write the solution as the linear combination of fundamental polynomials. The well known such 

relation is Taylor series. Thus, the solution in the form of Taylor series of about x=0, i.e., 

2 3 ( )1 1 1 1
( ) (0) '(0) ''(0) '''(0) .... (0) ...

1! 2! 3! !

n ny x y y x y x y x y x
n

= + + + + + +   (18) 

Using the boundary conditions and (12)-(17) in (18), and then after some manipulations it gives 

y (3)(0) =2!    y (4)(0) =-3! 

Thus, the solution is  

2 3 4

( ) .... log(1 )
2 3 4

x x x
y x x x= − + − + = +       (19) 

This is the same as the exact solution of the problem. 

 

Conclusion 

In this paper, we have discussed a very simple method for solving fifth order boundary value problems 

that provides efficient solutions. In limiting case, the solution matches the exact solution. For numerical 

solutions, we can take as number of terms as we please in order to reduce the error. We have tested the 

method on two problems given in literature and their solutions match the exact solutions in limiting case. 
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